Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.68
      1 /*	$NetBSD: arm32_kvminit.c,v 1.68 2021/03/21 09:00:55 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_arm_debug.h"
    125 #include "opt_arm_start.h"
    126 #include "opt_fdt.h"
    127 #include "opt_multiprocessor.h"
    128 
    129 #include <sys/cdefs.h>
    130 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.68 2021/03/21 09:00:55 skrll Exp $");
    131 
    132 #include <sys/param.h>
    133 
    134 #include <sys/asan.h>
    135 #include <sys/bus.h>
    136 #include <sys/device.h>
    137 #include <sys/kernel.h>
    138 #include <sys/reboot.h>
    139 
    140 #include <dev/cons.h>
    141 
    142 #include <uvm/uvm_extern.h>
    143 
    144 #include <arm/arm32/machdep.h>
    145 #include <arm/bootconfig.h>
    146 #include <arm/db_machdep.h>
    147 #include <arm/locore.h>
    148 #include <arm/undefined.h>
    149 
    150 #if defined(FDT)
    151 #include <arch/evbarm/fdt/platform.h>
    152 #include <arm/fdt/arm_fdtvar.h>
    153 #include <dev/fdt/fdt_memory.h>
    154 #endif
    155 
    156 #ifdef MULTIPROCESSOR
    157 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    158 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    159 #endif
    160 #endif
    161 
    162 #ifdef VERBOSE_INIT_ARM
    163 #define VPRINTF(...)	printf(__VA_ARGS__)
    164 #else
    165 #define VPRINTF(...)	__nothing
    166 #endif
    167 
    168 #if defined(__HAVE_GENERIC_START)
    169 #if defined(KERNEL_BASE_VOFFSET)
    170 #error KERNEL_BASE_VOFFSET should not be defined with __HAVE_GENERIC_START
    171 #endif
    172 #endif
    173 
    174 struct bootmem_info bootmem_info;
    175 
    176 extern void *msgbufaddr;
    177 paddr_t msgbufphys;
    178 paddr_t physical_start;
    179 paddr_t physical_end;
    180 
    181 extern char etext[];
    182 extern char __data_start[], _edata[];
    183 extern char __bss_start[], __bss_end__[];
    184 extern char _end[];
    185 
    186 /* Page tables for mapping kernel VM */
    187 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    188 
    189 #ifdef KASAN
    190 vaddr_t kasan_kernelstart;
    191 vaddr_t kasan_kernelsize;
    192 
    193 #define	KERNEL_L2PT_KASAN_NUM	howmany(VM_KERNEL_KASAN_SIZE, L2_S_SEGSIZE)
    194 bool kasan_l2pts_created  __attribute__((__section__(".data"))) = false;
    195 pv_addr_t kasan_l2pt[KERNEL_L2PT_KASAN_NUM];
    196 #else
    197 #define KERNEL_L2PT_KASAN_NUM	0
    198 #endif
    199 
    200 u_long kern_vtopdiff __attribute__((__section__(".data")));
    201 
    202 void
    203 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    204 {
    205 	struct bootmem_info * const bmi = &bootmem_info;
    206 	pv_addr_t *pv = bmi->bmi_freeblocks;
    207 
    208 	/*
    209 	 * FDT/generic start fills in kern_vtopdiff early
    210 	 */
    211 #if defined(__HAVE_GENERIC_START)
    212 	extern char KERNEL_BASE_virt[];
    213 	extern char const __stop__init_memory[];
    214 
    215 	VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
    216 
    217 	vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
    218 	vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
    219 
    220 	kernelstart = KERN_VTOPHYS(kstartva);
    221 
    222 	VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
    223 #else
    224 	vaddr_t kendva = round_page((vaddr_t)_end);
    225 
    226 #if defined(KERNEL_BASE_VOFFSET)
    227 	kern_vtopdiff = KERNEL_BASE_VOFFSET;
    228 #else
    229 	KASSERT(memstart == kernelstart);
    230 	kern_vtopdiff = KERNEL_BASE + memstart;
    231 #endif
    232 #endif
    233 	paddr_t kernelend = KERN_VTOPHYS(kendva);
    234 
    235 	VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
    236 	    memstart, memsize);
    237 	VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
    238 	    kernelstart, kernelend);
    239 
    240 	physical_start = bmi->bmi_start = memstart;
    241 	physical_end = bmi->bmi_end = memstart + memsize;
    242 #ifndef ARM_HAS_LPAE
    243 	if (physical_end == 0) {
    244 		physical_end = -PAGE_SIZE;
    245 		memsize -= PAGE_SIZE;
    246 		bmi->bmi_end -= PAGE_SIZE;
    247 		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    248 		    __func__);
    249 	}
    250 #endif
    251 	physmem = memsize / PAGE_SIZE;
    252 
    253 	/*
    254 	 * Let's record where the kernel lives.
    255 	 */
    256 
    257 	bmi->bmi_kernelstart = kernelstart;
    258 	bmi->bmi_kernelend = kernelend;
    259 
    260 #if defined(FDT)
    261 	fdt_memory_remove_range(bmi->bmi_kernelstart,
    262 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
    263 #endif
    264 
    265 	VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
    266 	    kernelend);
    267 
    268 #if 0
    269 	// XXX Makes RPI abort
    270 	KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
    271 #endif
    272 	/*
    273 	 * Now the rest of the free memory must be after the kernel.
    274 	 */
    275 	pv->pv_pa = bmi->bmi_kernelend;
    276 	pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    277 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    278 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    279 	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    280 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    281 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    282 	pv++;
    283 
    284 	/*
    285 	 * Add a free block for any memory before the kernel.
    286 	 */
    287 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    288 		pv->pv_pa = bmi->bmi_start;
    289 		pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    290 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    291 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    292 		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    293 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    294 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    295 		pv++;
    296 	}
    297 
    298 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    299 
    300 	SLIST_INIT(&bmi->bmi_freechunks);
    301 	SLIST_INIT(&bmi->bmi_chunks);
    302 }
    303 
    304 static bool
    305 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    306 {
    307 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    308 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    309 	    && acc_pv->pv_prot == pv->pv_prot
    310 	    && acc_pv->pv_cache == pv->pv_cache) {
    311 #if 0
    312 		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    313 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
    314 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
    315 #endif
    316 		acc_pv->pv_size += pv->pv_size;
    317 		return true;
    318 	}
    319 
    320 	return false;
    321 }
    322 
    323 static void
    324 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    325 {
    326 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    327 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    328 		pv_addr_t * const pv0 = (*pvp);
    329 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    330 		if (concat_pvaddr(pv0, pv)) {
    331 			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    332 			    __func__, "appending", pv,
    333 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    334 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    335 			pv = SLIST_NEXT(pv0, pv_list);
    336 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    337 				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    338 				    __func__, "merging", pv,
    339 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    340 				    pv0->pv_pa,
    341 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    342 				SLIST_REMOVE_AFTER(pv0, pv_list);
    343 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    344 			}
    345 			return;
    346 		}
    347 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    348 		pvp = &SLIST_NEXT(*pvp, pv_list);
    349 	}
    350 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    351 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    352 	KASSERT(new_pv != NULL);
    353 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    354 	*new_pv = *pv;
    355 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    356 	(*pvp) = new_pv;
    357 
    358 	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    359 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    360 	    new_pv->pv_size / PAGE_SIZE);
    361 	if (SLIST_NEXT(new_pv, pv_list)) {
    362 		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    363 	} else {
    364 		VPRINTF("at tail\n");
    365 	}
    366 }
    367 
    368 static void
    369 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    370     int prot, int cache, bool zero_p)
    371 {
    372 	size_t nbytes = npages * PAGE_SIZE;
    373 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    374 	size_t free_idx = 0;
    375 	static bool l1pt_found;
    376 
    377 	KASSERT(npages > 0);
    378 
    379 	/*
    380 	 * If we haven't allocated the kernel L1 page table and we are aligned
    381 	 * at a L1 table boundary, alloc the memory for it.
    382 	 */
    383 	if (!l1pt_found
    384 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    385 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    386 		l1pt_found = true;
    387 		VPRINTF(" l1pt");
    388 
    389 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    390 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    391 		add_pages(bmi, &kernel_l1pt);
    392 	}
    393 
    394 	while (nbytes > free_pv->pv_size) {
    395 		free_pv++;
    396 		free_idx++;
    397 		if (free_idx == bmi->bmi_nfreeblocks) {
    398 			panic("%s: could not allocate %zu bytes",
    399 			    __func__, nbytes);
    400 		}
    401 	}
    402 
    403 	/*
    404 	 * As we allocate the memory, make sure that we don't walk over
    405 	 * our current first level translation table.
    406 	 */
    407 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    408 
    409 #if defined(FDT)
    410 	fdt_memory_remove_range(free_pv->pv_pa, nbytes);
    411 #endif
    412 	pv->pv_pa = free_pv->pv_pa;
    413 	pv->pv_va = free_pv->pv_va;
    414 	pv->pv_size = nbytes;
    415 	pv->pv_prot = prot;
    416 	pv->pv_cache = cache;
    417 
    418 	/*
    419 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    420 	 * just use PTE_CACHE.
    421 	 */
    422 	if (cache == PTE_PAGETABLE
    423 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    424 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    425 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    426 		pv->pv_cache = PTE_CACHE;
    427 
    428 	free_pv->pv_pa += nbytes;
    429 	free_pv->pv_va += nbytes;
    430 	free_pv->pv_size -= nbytes;
    431 	if (free_pv->pv_size == 0) {
    432 		--bmi->bmi_nfreeblocks;
    433 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    434 			free_pv[0] = free_pv[1];
    435 		}
    436 	}
    437 
    438 	bmi->bmi_freepages -= npages;
    439 
    440 	if (zero_p)
    441 		memset((void *)pv->pv_va, 0, nbytes);
    442 }
    443 
    444 void
    445 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    446     const struct pmap_devmap *devmap, bool mapallmem_p)
    447 {
    448 	struct bootmem_info * const bmi = &bootmem_info;
    449 #ifdef MULTIPROCESSOR
    450 	const size_t cpu_num = arm_cpu_max;
    451 #else
    452 	const size_t cpu_num = 1;
    453 #endif
    454 
    455 #ifdef ARM_HAS_VBAR
    456 	const bool map_vectors_p = false;
    457 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    458 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    459 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    460 #else
    461 	const bool map_vectors_p = true;
    462 #endif
    463 
    464 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    465 	KASSERT(mapallmem_p);
    466 #ifdef ARM_MMU_EXTENDED
    467 	/*
    468 	 * The direct map VA space ends at the start of the kernel VM space.
    469 	 */
    470 	pmap_directlimit = kernel_vm_base;
    471 #else
    472 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    473 #endif /* ARM_MMU_EXTENDED */
    474 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    475 
    476 	/*
    477 	 * Calculate the number of L2 pages needed for mapping the
    478 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    479 	 * and 1 for IO
    480 	 */
    481 	size_t kernel_size = bmi->bmi_kernelend;
    482 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    483 	kernel_size += L1_TABLE_SIZE;
    484 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    485 	kernel_size += PAGE_SIZE * KERNEL_L2PT_KASAN_NUM;
    486 	if (map_vectors_p) {
    487 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    488 	}
    489 	if (iovbase) {
    490 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    491 	}
    492 	kernel_size +=
    493 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    494 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    495 	kernel_size += round_page(MSGBUFSIZE);
    496 	kernel_size += 0x10000;	/* slop */
    497 	if (!mapallmem_p) {
    498 		kernel_size += PAGE_SIZE
    499 		    * howmany(kernel_size, L2_S_SEGSIZE);
    500 	}
    501 	kernel_size = round_page(kernel_size);
    502 
    503 	/*
    504 	 * Now we know how many L2 pages it will take.
    505 	 */
    506 	const size_t KERNEL_L2PT_KERNEL_NUM =
    507 	    howmany(kernel_size, L2_S_SEGSIZE);
    508 
    509 	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    510 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    511 
    512 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    513 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    514 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    515 	pv_addr_t msgbuf;
    516 	pv_addr_t text;
    517 	pv_addr_t data;
    518 	pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
    519 #if ARM_MMU_XSCALE == 1
    520 	pv_addr_t minidataclean;
    521 #endif
    522 
    523 	/*
    524 	 * We need to allocate some fixed page tables to get the kernel going.
    525 	 *
    526 	 * We are going to allocate our bootstrap pages from the beginning of
    527 	 * the free space that we just calculated.  We allocate one page
    528 	 * directory and a number of page tables and store the physical
    529 	 * addresses in the bmi_l2pts array in bootmem_info.
    530 	 *
    531 	 * The kernel page directory must be on a 16K boundary.  The page
    532 	 * tables must be on 4K boundaries.  What we do is allocate the
    533 	 * page directory on the first 16K boundary that we encounter, and
    534 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    535 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    536 	 * least one 16K aligned region.
    537 	 */
    538 
    539 	VPRINTF("%s: allocating page tables for", __func__);
    540 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    541 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    542 	}
    543 
    544 	kernel_l1pt.pv_pa = 0;
    545 	kernel_l1pt.pv_va = 0;
    546 
    547 	/*
    548 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    549 	 * an L1 page table, we will allocate the pages for it first and then
    550 	 * allocate the L2 page.
    551 	 */
    552 
    553 	if (map_vectors_p) {
    554 		/*
    555 		 * First allocate L2 page for the vectors.
    556 		 */
    557 		VPRINTF(" vector");
    558 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    559 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    560 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    561 	}
    562 
    563 	/*
    564 	 * Now allocate L2 pages for the kernel
    565 	 */
    566 	VPRINTF(" kernel");
    567 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    568 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    569 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    570 		add_pages(bmi, &kernel_l2pt[idx]);
    571 	}
    572 
    573 	/*
    574 	 * Now allocate L2 pages for the initial kernel VA space.
    575 	 */
    576 	VPRINTF(" vm");
    577 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    578 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    579 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    580 		add_pages(bmi, &vmdata_l2pt[idx]);
    581 	}
    582 
    583 #ifdef KASAN
    584 	/*
    585 	 * Now allocate L2 pages for the KASAN shadow map l2pt VA space.
    586 	 */
    587 	VPRINTF(" kasan");
    588 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; ++idx) {
    589 		valloc_pages(bmi, &kasan_l2pt[idx], 1,
    590 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    591 		add_pages(bmi, &kasan_l2pt[idx]);
    592 	}
    593 
    594 #endif
    595 	/*
    596 	 * If someone wanted a L2 page for I/O, allocate it now.
    597 	 */
    598 	if (iovbase) {
    599 		VPRINTF(" io");
    600 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    601 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    602 		add_pages(bmi, &bmi->bmi_io_l2pt);
    603 	}
    604 
    605 	VPRINTF("%s: allocating stacks\n", __func__);
    606 
    607 	/* Allocate stacks for all modes and CPUs */
    608 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    609 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    610 	add_pages(bmi, &abtstack);
    611 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    612 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    613 	add_pages(bmi, &fiqstack);
    614 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    615 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    616 	add_pages(bmi, &irqstack);
    617 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    618 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    619 	add_pages(bmi, &undstack);
    620 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    621 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    622 	add_pages(bmi, &idlestack);
    623 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    624 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    625 	add_pages(bmi, &kernelstack);
    626 
    627 	/* Allocate the message buffer from the end of memory. */
    628 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    629 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    630 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
    631 	add_pages(bmi, &msgbuf);
    632 	msgbufphys = msgbuf.pv_pa;
    633 	msgbufaddr = (void *)msgbuf.pv_va;
    634 
    635 #ifdef KASAN
    636 	kasan_kernelstart = KERNEL_BASE;
    637 	kasan_kernelsize = (msgbuf.pv_va + round_page(MSGBUFSIZE)) - KERNEL_BASE;
    638 #endif
    639 
    640 	if (map_vectors_p) {
    641 		/*
    642 		 * Allocate a page for the system vector page.
    643 		 * This page will just contain the system vectors and can be
    644 		 * shared by all processes.
    645 		 */
    646 		VPRINTF(" vector");
    647 
    648 		valloc_pages(bmi, &systempage, 1,
    649 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
    650 		    PTE_CACHE, true);
    651 	}
    652 	systempage.pv_va = vectors;
    653 
    654 	/*
    655 	 * If the caller needed a few extra pages for some reason, allocate
    656 	 * them now.
    657 	 */
    658 #if ARM_MMU_XSCALE == 1
    659 #if (ARM_NMMUS > 1)
    660 	if (xscale_use_minidata)
    661 #endif
    662 		valloc_pages(bmi, &minidataclean, 1,
    663 		    VM_PROT_READ | VM_PROT_WRITE, 0, true);
    664 #endif
    665 
    666 	/*
    667 	 * Ok we have allocated physical pages for the primary kernel
    668 	 * page tables and stacks.  Let's just confirm that.
    669 	 */
    670 	if (kernel_l1pt.pv_va == 0
    671 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    672 		panic("%s: Failed to allocate or align the kernel "
    673 		    "page directory", __func__);
    674 
    675 	VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
    676 	    kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
    677 
    678 	/*
    679 	 * Now we start construction of the L1 page table
    680 	 * We start by mapping the L2 page tables into the L1.
    681 	 * This means that we can replace L1 mappings later on if necessary
    682 	 */
    683 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    684 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    685 
    686 	if (map_vectors_p) {
    687 		/* Map the L2 pages tables in the L1 page table */
    688 		const vaddr_t va = systempage.pv_va & -L2_S_SEGSIZE;
    689 
    690 		pmap_link_l2pt(l1pt_va, va,  &bmi->bmi_vector_l2pt);
    691 
    692 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    693 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    694 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va, "(vectors)");
    695 	}
    696 
    697 	/*
    698 	 * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
    699 	 * start PA
    700 	 */
    701 	const vaddr_t kernel_base =
    702 	    KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    703 
    704 	VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
    705 	    kernel_base, KERNEL_L2PT_KERNEL_NUM);
    706 
    707 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    708 		const vaddr_t va = kernel_base + idx * L2_S_SEGSIZE;
    709 
    710 		pmap_link_l2pt(l1pt_va, va, &kernel_l2pt[idx]);
    711 
    712 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    713 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
    714 		    va, "(kernel)");
    715 	}
    716 
    717 	VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
    718 	    kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
    719 
    720 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    721 		const vaddr_t va = kernel_vm_base + idx * L2_S_SEGSIZE;
    722 
    723 		pmap_link_l2pt(l1pt_va, va, &vmdata_l2pt[idx]);
    724 
    725 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    726 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    727 		    va, "(vm)");
    728 	}
    729 	if (iovbase) {
    730 		const vaddr_t va = iovbase & -L2_S_SEGSIZE;
    731 
    732 		pmap_link_l2pt(l1pt_va, va, &bmi->bmi_io_l2pt);
    733 
    734 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    735 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    736 		    va, "(io)");
    737 	}
    738 
    739 #ifdef KASAN
    740 	VPRINTF("%s: kasan_shadow_base %x KERNEL_L2PT_KASAN_NUM %d\n", __func__,
    741 	    VM_KERNEL_KASAN_BASE, KERNEL_L2PT_KASAN_NUM);
    742 
    743 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; idx++) {
    744 		const vaddr_t va = VM_KERNEL_KASAN_BASE  + idx * L2_S_SEGSIZE;
    745 
    746 		pmap_link_l2pt(l1pt_va, va, &kasan_l2pt[idx]);
    747 
    748 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    749 		    __func__, kasan_l2pt[idx].pv_va, kasan_l2pt[idx].pv_pa,
    750 		    va, "(kasan)");
    751 	}
    752 	kasan_l2pts_created = true;
    753 #endif
    754 
    755 	/* update the top of the kernel VM */
    756 	pmap_curmaxkvaddr =
    757 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    758 
    759 	// This could be done earlier and then the kernel data and pages
    760 	// allocated above would get merged (concatentated)
    761 
    762 	VPRINTF("Mapping kernel\n");
    763 
    764 	extern char etext[];
    765 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    766 	size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
    767 
    768 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    769 
    770 	/* start at offset of kernel in RAM */
    771 
    772 	text.pv_pa = bmi->bmi_kernelstart;
    773 	text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
    774 	text.pv_size = textsize;
    775 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    776 	text.pv_cache = PTE_CACHE;
    777 
    778 	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    779 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    780 
    781 	add_pages(bmi, &text);
    782 
    783 	data.pv_pa = text.pv_pa + textsize;
    784 	data.pv_va = text.pv_va + textsize;
    785 	data.pv_size = totalsize - textsize;
    786 	data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    787 	data.pv_cache = PTE_CACHE;
    788 
    789 	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    790 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    791 
    792 	add_pages(bmi, &data);
    793 
    794 	VPRINTF("Listing Chunks\n");
    795 
    796 	pv_addr_t *lpv;
    797 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    798 		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
    799 		    "(PA %#lx, prot %d, cache %d)\n",
    800 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    801 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    802 	}
    803 	VPRINTF("\nMapping Chunks\n");
    804 
    805 	pv_addr_t cur_pv;
    806 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    807 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    808 		cur_pv = *pv;
    809 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    810 		pv = SLIST_NEXT(pv, pv_list);
    811 	} else {
    812 		cur_pv.pv_va = KERNEL_BASE;
    813 		cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
    814 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    815 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    816 		cur_pv.pv_cache = PTE_CACHE;
    817 	}
    818 	while (pv != NULL) {
    819 		if (mapallmem_p) {
    820 			if (concat_pvaddr(&cur_pv, pv)) {
    821 				pv = SLIST_NEXT(pv, pv_list);
    822 				continue;
    823 			}
    824 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    825 				/*
    826 				 * See if we can extend the current pv to emcompass the
    827 				 * hole, and if so do it and retry the concatenation.
    828 				 */
    829 				if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    830 				    && cur_pv.pv_cache == PTE_CACHE) {
    831 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    832 					continue;
    833 				}
    834 
    835 				/*
    836 				 * We couldn't so emit the current chunk and then
    837 				 */
    838 				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    839 				    "(PA %#lx, prot %d, cache %d)\n",
    840 				    __func__,
    841 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    842 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    843 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    844 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    845 
    846 				/*
    847 				 * set the current chunk to the hole and try again.
    848 				 */
    849 				cur_pv.pv_pa += cur_pv.pv_size;
    850 				cur_pv.pv_va += cur_pv.pv_size;
    851 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    852 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    853 				cur_pv.pv_cache = PTE_CACHE;
    854 				continue;
    855 			}
    856 		}
    857 
    858 		/*
    859 		 * The new pv didn't concatenate so emit the current one
    860 		 * and use the new pv as the current pv.
    861 		 */
    862 		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    863 		    "(PA %#lx, prot %d, cache %d)\n",
    864 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    865 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    866 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    867 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    868 		cur_pv = *pv;
    869 		pv = SLIST_NEXT(pv, pv_list);
    870 	}
    871 
    872 	/*
    873 	 * If we are mapping all of memory, let's map the rest of memory.
    874 	 */
    875 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    876 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    877 		    && cur_pv.pv_cache == PTE_CACHE) {
    878 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    879 		} else {
    880 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    881 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    882 			    kernel_vm_base);
    883 			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    884 			    "(PA %#lx, prot %d, cache %d)\n",
    885 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    886 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    887 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    888 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    889 			cur_pv.pv_pa += cur_pv.pv_size;
    890 			cur_pv.pv_va += cur_pv.pv_size;
    891 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    892 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    893 			cur_pv.pv_cache = PTE_CACHE;
    894 		}
    895 	}
    896 
    897 	/*
    898 	 * The amount we can direct map is limited by the start of the
    899 	 * virtual part of the kernel address space.  Don't overrun
    900 	 * into it.
    901 	 */
    902 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    903 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    904 	}
    905 
    906 	/*
    907 	 * Now we map the final chunk.
    908 	 */
    909 	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    910 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    911 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    912 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    913 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    914 
    915 	/*
    916 	 * Now we map the stuff that isn't directly after the kernel
    917 	 */
    918 	if (map_vectors_p) {
    919 		/* Map the vector page. */
    920 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    921 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
    922 	}
    923 
    924 	/* Map the Mini-Data cache clean area. */
    925 #if ARM_MMU_XSCALE == 1
    926 #if (ARM_NMMUS > 1)
    927 	if (xscale_use_minidata)
    928 #endif
    929 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    930 		    minidataclean.pv_pa);
    931 #endif
    932 
    933 	/*
    934 	 * Map integrated peripherals at same address in first level page
    935 	 * table so that we can continue to use console.
    936 	 */
    937 	if (devmap)
    938 		pmap_devmap_bootstrap(l1pt_va, devmap);
    939 
    940 	/* Tell the user about where all the bits and pieces live. */
    941 	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
    942 	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    943 
    944 #ifdef VERBOSE_INIT_ARM
    945 	static const char mem_fmt[] =
    946 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    947 	static const char mem_fmt_nov[] =
    948 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    949 #endif
    950 
    951 #if 0
    952 	// XXX Doesn't make sense if kernel not at bottom of RAM
    953 	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    954 	    KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
    955 	    (int)physmem);
    956 #endif
    957 	VPRINTF(mem_fmt, "text section",
    958 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    959 	       text.pv_va, text.pv_va + text.pv_size - 1,
    960 	       (int)(text.pv_size / PAGE_SIZE));
    961 	VPRINTF(mem_fmt, "data section",
    962 	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
    963 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    964 	       (int)((round_page((vaddr_t)_edata)
    965 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    966 	VPRINTF(mem_fmt, "bss section",
    967 	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
    968 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    969 	       (int)((round_page((vaddr_t)__bss_end__)
    970 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    971 	VPRINTF(mem_fmt, "L1 page directory",
    972 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    973 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    974 	    L1_TABLE_SIZE / PAGE_SIZE);
    975 	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
    976 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    977 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    978 	    ABT_STACK_SIZE);
    979 	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
    980 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    981 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    982 	    FIQ_STACK_SIZE);
    983 	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
    984 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    985 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    986 	    IRQ_STACK_SIZE);
    987 	VPRINTF(mem_fmt, "UND stack (CPU 0)",
    988 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    989 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    990 	    UND_STACK_SIZE);
    991 	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
    992 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    993 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    994 	    UPAGES);
    995 	VPRINTF(mem_fmt, "SVC stack",
    996 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    997 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    998 	    UPAGES);
    999 	VPRINTF(mem_fmt, "Message Buffer",
   1000 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
   1001 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
   1002 	    (int)msgbuf_pgs);
   1003 	if (map_vectors_p) {
   1004 		VPRINTF(mem_fmt, "Exception Vectors",
   1005 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
   1006 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
   1007 		    1);
   1008 	}
   1009 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
   1010 		pv = &bmi->bmi_freeblocks[i];
   1011 
   1012 		VPRINTF(mem_fmt_nov, "Free Memory",
   1013 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
   1014 		    pv->pv_size / PAGE_SIZE);
   1015 	}
   1016 	/*
   1017 	 * Now we have the real page tables in place so we can switch to them.
   1018 	 * Once this is done we will be running with the REAL kernel page
   1019 	 * tables.
   1020 	 */
   1021 
   1022 	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
   1023 #ifdef _ARM_ARCH_6
   1024 	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
   1025 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
   1026 	    armreg_contextidr_read());
   1027 #endif
   1028 	VPRINTF("\n");
   1029 
   1030 	/* Switch tables */
   1031 	VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
   1032 
   1033 	cpu_ttb = l1pt_pa;
   1034 
   1035 	cpu_domains(DOMAIN_DEFAULT);
   1036 
   1037 	cpu_idcache_wbinv_all();
   1038 
   1039 #ifdef __HAVE_GENERIC_START
   1040 
   1041 	/*
   1042 	 * Turn on caches and set SCTLR/ACTLR
   1043 	 */
   1044 	cpu_setup(boot_args);
   1045 #endif
   1046 
   1047 	VPRINTF(" ttb");
   1048 
   1049 #ifdef ARM_MMU_EXTENDED
   1050 	/*
   1051 	 * TTBCR should have been initialized by the MD start code.
   1052 	 */
   1053 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
   1054 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
   1055 	/*
   1056 	 * Disable lookups via TTBR0 until there is an activated pmap.
   1057 	 */
   1058 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
   1059 	cpu_setttb(l1pt_pa, KERNEL_PID);
   1060 	isb();
   1061 #else
   1062 	cpu_setttb(l1pt_pa, true);
   1063 #endif
   1064 
   1065 	cpu_tlb_flushID();
   1066 
   1067 #ifdef KASAN
   1068 	extern uint8_t start_stacks_bottom[];
   1069 	kasan_early_init((void *)start_stacks_bottom);
   1070 #endif
   1071 
   1072 #ifdef ARM_MMU_EXTENDED
   1073 	VPRINTF("\nsctlr=%#x actlr=%#x\n",
   1074 	    armreg_sctlr_read(), armreg_auxctl_read());
   1075 #else
   1076 	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
   1077 #endif
   1078 
   1079 #ifdef MULTIPROCESSOR
   1080 #ifndef __HAVE_GENERIC_START
   1081 	/*
   1082 	 * Kick the secondaries to load the TTB.  After which they'll go
   1083 	 * back to sleep to wait for the final kick so they will hatch.
   1084 	 */
   1085 	VPRINTF(" hatchlings");
   1086 	cpu_boot_secondary_processors();
   1087 #endif
   1088 #endif
   1089 
   1090 	VPRINTF(" OK\n");
   1091 }
   1092