Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.10
      1  1.10   thorpej /*	$NetBSD: cpu.c,v 1.10 2001/11/23 21:18:30 thorpej Exp $	*/
      2   1.1      matt 
      3   1.1      matt /*
      4   1.1      matt  * Copyright (c) 1995 Mark Brinicombe.
      5   1.1      matt  * Copyright (c) 1995 Brini.
      6   1.1      matt  * All rights reserved.
      7   1.1      matt  *
      8   1.1      matt  * Redistribution and use in source and binary forms, with or without
      9   1.1      matt  * modification, are permitted provided that the following conditions
     10   1.1      matt  * are met:
     11   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     12   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     13   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     15   1.1      matt  *    documentation and/or other materials provided with the distribution.
     16   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     17   1.1      matt  *    must display the following acknowledgement:
     18   1.1      matt  *	This product includes software developed by Brini.
     19   1.1      matt  * 4. The name of the company nor the name of the author may be used to
     20   1.1      matt  *    endorse or promote products derived from this software without specific
     21   1.1      matt  *    prior written permission.
     22   1.1      matt  *
     23   1.1      matt  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24   1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25   1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26   1.1      matt  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27   1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28   1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29   1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1      matt  * SUCH DAMAGE.
     34   1.1      matt  *
     35   1.1      matt  * RiscBSD kernel project
     36   1.1      matt  *
     37   1.1      matt  * cpu.c
     38   1.1      matt  *
     39   1.1      matt  * Probing and configuration for the master cpu
     40   1.1      matt  *
     41   1.1      matt  * Created      : 10/10/95
     42   1.1      matt  */
     43   1.1      matt 
     44   1.1      matt #include "opt_armfpe.h"
     45   1.1      matt #include "opt_cputypes.h"
     46   1.1      matt 
     47   1.1      matt #include <sys/param.h>
     48   1.1      matt #include <sys/systm.h>
     49   1.1      matt #include <sys/malloc.h>
     50   1.1      matt #include <sys/device.h>
     51   1.1      matt #include <sys/proc.h>
     52   1.1      matt #include <uvm/uvm_extern.h>
     53   1.1      matt #include <machine/conf.h>
     54   1.1      matt #include <machine/cpu.h>
     55  1.10   thorpej #include <arm/undefined.h>
     56  1.10   thorpej 
     57  1.10   thorpej #include <arm/cpus.h>
     58   1.1      matt 
     59   1.1      matt #ifdef ARMFPE
     60   1.1      matt #include <machine/bootconfig.h> /* For boot args */
     61   1.1      matt #include <arm32/fpe-arm/armfpe.h>
     62   1.1      matt #endif	/* ARMFPE */
     63   1.1      matt 
     64   1.1      matt cpu_t cpus[MAX_CPUS];
     65   1.1      matt 
     66   1.1      matt char cpu_model[64];
     67   1.1      matt volatile int undefined_test;	/* Used for FPA test */
     68   1.1      matt extern int cpuctrl;		/* cpu control register value */
     69   1.1      matt 
     70   1.1      matt /* Prototypes */
     71   1.1      matt void identify_master_cpu __P((struct device *dv, int cpu_number));
     72   1.1      matt void identify_arm_cpu	__P((struct device *dv, int cpu_number));
     73   1.1      matt void identify_arm_fpu	__P((struct device *dv, int cpu_number));
     74   1.5     chris int fpa_test __P((u_int, u_int, trapframe_t *, int));
     75   1.5     chris int fpa_handler __P((u_int, u_int, trapframe_t *, int));
     76   1.1      matt 
     77   1.1      matt /*
     78   1.1      matt  * void cpusattach(struct device *parent, struct device *dev, void *aux)
     79   1.1      matt  *
     80   1.1      matt  * Attach the main cpu
     81   1.1      matt  */
     82   1.1      matt 
     83   1.1      matt void
     84   1.1      matt cpu_attach(dv)
     85   1.1      matt 	struct device *dv;
     86   1.1      matt {
     87   1.1      matt 	identify_master_cpu(dv, CPU_MASTER);
     88   1.1      matt }
     89   1.1      matt 
     90   1.1      matt /*
     91   1.1      matt  * Used to test for an FPA. The following function is installed as a coproc1
     92   1.1      matt  * handler on the undefined instruction vector and then we issue a FPA
     93   1.1      matt  * instruction. If undefined_test is non zero then the FPA did not handle
     94   1.1      matt  * the instruction so must be absent.
     95   1.1      matt  */
     96   1.1      matt 
     97   1.1      matt int
     98   1.5     chris fpa_test(address, instruction, frame, fault_code)
     99   1.1      matt 	u_int address;
    100   1.1      matt 	u_int instruction;
    101   1.1      matt 	trapframe_t *frame;
    102   1.5     chris 	int fault_code;
    103   1.1      matt {
    104   1.1      matt 
    105   1.1      matt 	frame->tf_pc += INSN_SIZE;
    106   1.1      matt 	++undefined_test;
    107   1.1      matt 	return(0);
    108   1.1      matt }
    109   1.1      matt 
    110   1.1      matt /*
    111   1.1      matt  * If an FPA was found then this function is installed as the coproc1 handler
    112   1.1      matt  * on the undefined instruction vector. Currently we don't support FPA's
    113   1.1      matt  * so this just triggers an exception.
    114   1.1      matt  */
    115   1.1      matt 
    116   1.1      matt int
    117   1.1      matt fpa_handler(address, instruction, frame, fault_code)
    118   1.1      matt 	u_int address;
    119   1.1      matt 	u_int instruction;
    120   1.1      matt 	trapframe_t *frame;
    121   1.1      matt 	int fault_code;
    122   1.1      matt {
    123   1.1      matt 	u_int fpsr;
    124   1.1      matt 
    125   1.1      matt 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    126   1.1      matt 
    127   1.1      matt 	printf("FPA exception: fpsr = %08x\n", fpsr);
    128   1.1      matt 
    129   1.1      matt 	return(1);
    130   1.1      matt }
    131   1.1      matt 
    132   1.1      matt 
    133   1.1      matt /*
    134   1.1      matt  * Identify the master (boot) CPU
    135   1.1      matt  * This also probes for an FPU and will install an FPE if necessary
    136   1.1      matt  */
    137   1.1      matt 
    138   1.1      matt void
    139   1.1      matt identify_master_cpu(dv, cpu_number)
    140   1.1      matt 	struct device *dv;
    141   1.1      matt 	int cpu_number;
    142   1.1      matt {
    143   1.1      matt 	u_int fpsr;
    144   1.1      matt 	void *uh;
    145   1.1      matt 
    146   1.1      matt 	cpus[cpu_number].cpu_ctrl = cpuctrl;
    147   1.1      matt 
    148   1.1      matt 	/* Get the cpu ID from coprocessor 15 */
    149   1.1      matt 
    150   1.1      matt 	cpus[cpu_number].cpu_id = cpu_id();
    151   1.1      matt 
    152   1.1      matt 	identify_arm_cpu(dv, cpu_number);
    153   1.1      matt 	strcpy(cpu_model, cpus[cpu_number].cpu_model);
    154   1.1      matt 
    155   1.1      matt 	if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
    156   1.1      matt 	    && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
    157   1.1      matt 		printf("%s: SA-110 with bugged STM^ instruction\n",
    158   1.1      matt 		       dv->dv_xname);
    159   1.1      matt 	}
    160   1.1      matt 
    161   1.1      matt #ifdef CPU_ARM8
    162   1.1      matt 	if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    163   1.1      matt 		int clock = arm8_clock_config(0, 0);
    164   1.1      matt 		char *fclk;
    165   1.1      matt 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    166   1.1      matt 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    167   1.1      matt 		printf("%s", (clock & 2) ? " sync" : "");
    168   1.1      matt 		switch ((clock >> 2) & 3) {
    169   1.1      matt 		case 0 :
    170   1.1      matt 			fclk = "bus clock";
    171   1.1      matt 			break;
    172   1.1      matt 		case 1 :
    173   1.1      matt 			fclk = "ref clock";
    174   1.1      matt 			break;
    175   1.1      matt 		case 3 :
    176   1.1      matt 			fclk = "pll";
    177   1.1      matt 			break;
    178   1.1      matt 		default :
    179   1.1      matt 			fclk = "illegal";
    180   1.1      matt 			break;
    181   1.1      matt 		}
    182   1.1      matt 		printf(" fclk source=%s\n", fclk);
    183   1.1      matt  	}
    184   1.1      matt #endif
    185   1.1      matt 
    186   1.1      matt 	/*
    187   1.1      matt 	 * Ok now we test for an FPA
    188   1.1      matt 	 * At this point no floating point emulator has been installed.
    189   1.1      matt 	 * This means any FP instruction will cause undefined exception.
    190   1.1      matt 	 * We install a temporay coproc 1 handler which will modify
    191   1.1      matt 	 * undefined_test if it is called.
    192   1.1      matt 	 * We then try to read the FP status register. If undefined_test
    193   1.1      matt 	 * has been decremented then the instruction was not handled by
    194   1.1      matt 	 * an FPA so we know the FPA is missing. If undefined_test is
    195   1.1      matt 	 * still 1 then we know the instruction was handled by an FPA.
    196   1.1      matt 	 * We then remove our test handler and look at the
    197   1.1      matt 	 * FP status register for identification.
    198   1.1      matt 	 */
    199   1.1      matt 
    200   1.1      matt 	uh = install_coproc_handler(FP_COPROC, fpa_test);
    201   1.1      matt 
    202   1.1      matt 	undefined_test = 0;
    203   1.1      matt 
    204   1.1      matt 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    205   1.1      matt 
    206   1.1      matt 	remove_coproc_handler(uh);
    207   1.1      matt 
    208   1.1      matt 	if (undefined_test == 0) {
    209   1.1      matt 		cpus[cpu_number].fpu_type = (fpsr >> 24);
    210   1.1      matt 	        switch (fpsr >> 24) {
    211   1.1      matt 		case 0x81 :
    212   1.1      matt 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
    213   1.1      matt 			break;
    214   1.1      matt 
    215   1.1      matt 		default :
    216   1.1      matt 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
    217   1.1      matt 			break;
    218   1.1      matt 		}
    219   1.1      matt 		cpus[cpu_number].fpu_flags = 0;
    220   1.1      matt 		install_coproc_handler(FP_COPROC, fpa_handler);
    221   1.1      matt 	} else {
    222   1.1      matt 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
    223   1.1      matt 		cpus[cpu_number].fpu_flags = 0;
    224   1.1      matt 
    225   1.1      matt 		/*
    226   1.1      matt 		 * Ok if ARMFPE is defined and the boot options request the
    227   1.1      matt 		 * ARM FPE then it will be installed as the FPE.
    228   1.1      matt 		 * This is just while I work on integrating the new FPE.
    229   1.1      matt 		 * It means the new FPE gets installed if compiled int (ARMFPE
    230   1.1      matt 		 * defined) and also gives me a on/off option when I boot in
    231   1.1      matt 		 * case the new FPE is causing panics.
    232   1.1      matt 		 */
    233   1.1      matt 
    234   1.1      matt #ifdef ARMFPE
    235   1.1      matt 		if (boot_args) {
    236   1.2     bjh21 			int usearmfpe = 1;
    237   1.1      matt 
    238   1.2     bjh21 			get_bootconf_option(boot_args, "armfpe",
    239   1.2     bjh21 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    240   1.2     bjh21 			if (usearmfpe) {
    241   1.1      matt 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
    242   1.1      matt 					identify_arm_fpu(dv, cpu_number);
    243   1.1      matt 			}
    244   1.1      matt 		}
    245   1.1      matt 
    246   1.1      matt #endif
    247   1.1      matt 	}
    248   1.1      matt 
    249   1.1      matt 	identify_arm_fpu(dv, cpu_number);
    250   1.1      matt }
    251   1.1      matt 
    252   1.1      matt struct cpuidtab {
    253   1.1      matt 	u_int32_t	cpuid;
    254   1.1      matt 	enum		cpu_class cpu_class;
    255   1.9   thorpej 	const char	*cpu_name;
    256   1.1      matt };
    257   1.1      matt 
    258   1.1      matt const struct cpuidtab cpuids[] = {
    259   1.1      matt 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2" },
    260   1.1      matt 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250" },
    261   1.1      matt 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3" },
    262   1.1      matt 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600" },
    263   1.1      matt 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610" },
    264   1.1      matt 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620" },
    265   1.1      matt 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700" },
    266   1.1      matt 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710" },
    267   1.1      matt 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500" },
    268   1.1      matt 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a" },
    269   1.1      matt 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE" },
    270   1.1      matt 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T" },
    271   1.1      matt 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T" },
    272   1.1      matt 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
    273   1.1      matt 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
    274   1.1      matt 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810" },
    275   1.1      matt 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T" },
    276   1.1      matt 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T" },
    277   1.1      matt 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T" },
    278   1.1      matt 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S" },
    279   1.1      matt 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
    280   1.6  rearnsha 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
    281   1.1      matt 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110" },
    282   1.1      matt 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100" },
    283   1.1      matt 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110" },
    284   1.8   thorpej 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"i80200" },
    285   1.1      matt 	{ 0, CPU_CLASS_NONE, NULL }
    286   1.1      matt };
    287   1.1      matt 
    288   1.1      matt struct cpu_classtab {
    289   1.9   thorpej 	const char	*class_name;
    290   1.9   thorpej 	const char	*class_option;
    291   1.1      matt };
    292   1.1      matt 
    293   1.1      matt const struct cpu_classtab cpu_classes[] = {
    294   1.6  rearnsha 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    295   1.6  rearnsha 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    296   1.6  rearnsha 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    297   1.6  rearnsha 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    298   1.6  rearnsha 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    299   1.6  rearnsha 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    300   1.6  rearnsha 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    301   1.6  rearnsha 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    302   1.6  rearnsha 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    303   1.6  rearnsha 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    304   1.6  rearnsha 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    305   1.7   thorpej 	{ "XScale",	"CPU_XSCALE" },		/* CPU_CLASS_XSCALE */
    306   1.1      matt };
    307   1.1      matt 
    308   1.1      matt /*
    309   1.1      matt  * Report the type of the specifed arm processor. This uses the generic and
    310   1.1      matt  * arm specific information in the cpu structure to identify the processor.
    311   1.1      matt  * The remaining fields in the cpu structure are filled in appropriately.
    312   1.1      matt  */
    313   1.1      matt 
    314   1.1      matt void
    315   1.1      matt identify_arm_cpu(dv, cpu_number)
    316   1.1      matt 	struct device *dv;
    317   1.1      matt 	int cpu_number;
    318   1.1      matt {
    319   1.1      matt 	cpu_t *cpu;
    320   1.1      matt 	u_int cpuid;
    321   1.1      matt 	int i;
    322   1.1      matt 
    323   1.1      matt 	cpu = &cpus[cpu_number];
    324   1.1      matt 	cpuid = cpu->cpu_id;
    325   1.1      matt 
    326   1.1      matt 	if (cpuid == 0) {
    327   1.1      matt 		printf("Processor failed probe - no CPU ID\n");
    328   1.1      matt 		return;
    329   1.1      matt 	}
    330   1.1      matt 
    331   1.1      matt 	for (i = 0; cpuids[i].cpuid != 0; i++)
    332   1.1      matt 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    333   1.1      matt 			cpu->cpu_class = cpuids[i].cpu_class;
    334   1.1      matt 			sprintf(cpu->cpu_model, "%s rev %d (%s core)",
    335   1.1      matt 			    cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
    336   1.1      matt 			    cpu_classes[cpu->cpu_class].class_name);
    337   1.1      matt 			break;
    338   1.1      matt 		}
    339   1.1      matt 
    340   1.1      matt 	if (cpuids[i].cpuid == 0)
    341   1.1      matt 		sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    342   1.1      matt 
    343   1.1      matt 	switch (cpu->cpu_class) {
    344   1.1      matt 	case CPU_CLASS_ARM6:
    345   1.1      matt 	case CPU_CLASS_ARM7:
    346   1.3     chris 	case CPU_CLASS_ARM7TDMI:
    347   1.1      matt 	case CPU_CLASS_ARM8:
    348   1.1      matt 		if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    349   1.1      matt 			strcat(cpu->cpu_model, " IDC disabled");
    350   1.1      matt 		else
    351   1.1      matt 			strcat(cpu->cpu_model, " IDC enabled");
    352   1.1      matt 		break;
    353   1.6  rearnsha 	case CPU_CLASS_ARM9TDMI:
    354   1.1      matt 	case CPU_CLASS_SA1:
    355   1.4      matt 	case CPU_CLASS_XSCALE:
    356   1.1      matt 		if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    357   1.1      matt 			strcat(cpu->cpu_model, " DC disabled");
    358   1.1      matt 		else
    359   1.1      matt 			strcat(cpu->cpu_model, " DC enabled");
    360   1.1      matt 		if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    361   1.1      matt 			strcat(cpu->cpu_model, " IC disabled");
    362   1.1      matt 		else
    363   1.1      matt 			strcat(cpu->cpu_model, " IC enabled");
    364   1.1      matt 		break;
    365   1.1      matt 	}
    366   1.1      matt 	if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    367   1.1      matt 		strcat(cpu->cpu_model, " WB disabled");
    368   1.1      matt 	else
    369   1.1      matt 		strcat(cpu->cpu_model, " WB enabled");
    370   1.1      matt 
    371   1.1      matt 	if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
    372   1.1      matt 		strcat(cpu->cpu_model, " LABT");
    373   1.1      matt 	else
    374   1.1      matt 		strcat(cpu->cpu_model, " EABT");
    375   1.1      matt 
    376   1.1      matt 	if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
    377   1.1      matt 		strcat(cpu->cpu_model, " branch prediction enabled");
    378   1.1      matt 
    379   1.1      matt 	/* Print the info */
    380   1.1      matt 
    381   1.1      matt 	printf(": %s\n", cpu->cpu_model);
    382   1.1      matt 
    383   1.1      matt 	switch (cpu->cpu_class) {
    384   1.1      matt #ifdef CPU_ARM2
    385   1.1      matt 	case CPU_CLASS_ARM2:
    386   1.1      matt #endif
    387   1.1      matt #ifdef CPU_ARM250
    388   1.1      matt 	case CPU_CLASS_ARM2AS:
    389   1.1      matt #endif
    390   1.1      matt #ifdef CPU_ARM3
    391   1.1      matt 	case CPU_CLASS_ARM3:
    392   1.1      matt #endif
    393   1.1      matt #ifdef CPU_ARM6
    394   1.1      matt 	case CPU_CLASS_ARM6:
    395   1.1      matt #endif
    396   1.1      matt #ifdef CPU_ARM7
    397   1.1      matt 	case CPU_CLASS_ARM7:
    398   1.1      matt #endif
    399   1.3     chris #ifdef CPU_ARM7TDMI
    400   1.3     chris 	case CPU_CLASS_ARM7TDMI:
    401   1.3     chris #endif
    402   1.1      matt #ifdef CPU_ARM8
    403   1.1      matt 	case CPU_CLASS_ARM8:
    404   1.6  rearnsha #endif
    405   1.6  rearnsha #ifdef CPU_ARM9
    406   1.6  rearnsha 	case CPU_CLASS_ARM9TDMI:
    407   1.1      matt #endif
    408   1.1      matt #ifdef CPU_SA110
    409   1.1      matt 	case CPU_CLASS_SA1:
    410   1.4      matt #endif
    411   1.4      matt #ifdef CPU_XSCALE
    412   1.4      matt 	case CPU_CLASS_XSCALE:
    413   1.1      matt #endif
    414   1.1      matt 		break;
    415   1.1      matt 	default:
    416   1.1      matt 		if (cpu_classes[cpu->cpu_class].class_option != NULL)
    417   1.1      matt 			printf("%s: %s does not fully support this CPU."
    418   1.1      matt 			       "\n", dv->dv_xname, ostype);
    419   1.1      matt 		else {
    420   1.1      matt 			printf("%s: This kernel does not fully support "
    421   1.1      matt 			       "this CPU.\n", dv->dv_xname);
    422   1.1      matt 			printf("%s: Recompile with \"options %s\" to "
    423   1.1      matt 			       "correct this.\n", dv->dv_xname,
    424   1.1      matt 			       cpu_classes[cpu->cpu_class].class_option);
    425   1.1      matt 		}
    426   1.1      matt 		break;
    427   1.1      matt 	}
    428   1.1      matt 
    429   1.1      matt }
    430   1.1      matt 
    431   1.1      matt 
    432   1.1      matt /*
    433   1.1      matt  * Report the type of the specifed arm fpu. This uses the generic and arm
    434   1.1      matt  * specific information in the cpu structure to identify the fpu. The
    435   1.1      matt  * remaining fields in the cpu structure are filled in appropriately.
    436   1.1      matt  */
    437   1.1      matt 
    438   1.1      matt void
    439   1.1      matt identify_arm_fpu(dv, cpu_number)
    440   1.1      matt 	struct device *dv;
    441   1.1      matt 	int cpu_number;
    442   1.1      matt {
    443   1.1      matt 	cpu_t *cpu;
    444   1.1      matt 
    445   1.1      matt 	cpu = &cpus[cpu_number];
    446   1.1      matt 
    447   1.1      matt 	/* Now for the FP info */
    448   1.1      matt 
    449   1.1      matt 	switch (cpu->fpu_class) {
    450   1.1      matt 	case FPU_CLASS_NONE :
    451   1.1      matt 		strcpy(cpu->fpu_model, "None");
    452   1.1      matt 		break;
    453   1.1      matt 	case FPU_CLASS_FPE :
    454   1.1      matt 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    455   1.1      matt 		printf("%s: no FP hardware found\n", dv->dv_xname);
    456   1.1      matt 		break;
    457   1.1      matt 	case FPU_CLASS_FPA :
    458   1.1      matt 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    459   1.1      matt 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
    460   1.1      matt 			strcpy(cpu->fpu_model, "FPA11");
    461   1.1      matt 			printf("%s: FPA11 found\n", dv->dv_xname);
    462   1.1      matt 		} else {
    463   1.1      matt 			strcpy(cpu->fpu_model, "FPA");
    464   1.1      matt 			printf("%s: FPA10 found\n", dv->dv_xname);
    465   1.1      matt 		}
    466   1.1      matt 		if ((cpu->fpu_flags & 4) == 0)
    467   1.1      matt 			strcat(cpu->fpu_model, "");
    468   1.1      matt 		else
    469   1.1      matt 			strcat(cpu->fpu_model, " clk/2");
    470   1.1      matt 		break;
    471   1.1      matt 	case FPU_CLASS_FPU :
    472   1.1      matt 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
    473   1.1      matt 		    cpu->fpu_type);
    474   1.1      matt 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
    475   1.1      matt 		break;
    476   1.1      matt 	}
    477   1.1      matt }
    478   1.1      matt 
    479   1.1      matt /* End of cpu.c */
    480