Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.14
      1  1.14     bjh21 /*	$NetBSD: cpu.c,v 1.14 2002/01/27 14:43:47 bjh21 Exp $	*/
      2   1.1      matt 
      3   1.1      matt /*
      4   1.1      matt  * Copyright (c) 1995 Mark Brinicombe.
      5   1.1      matt  * Copyright (c) 1995 Brini.
      6   1.1      matt  * All rights reserved.
      7   1.1      matt  *
      8   1.1      matt  * Redistribution and use in source and binary forms, with or without
      9   1.1      matt  * modification, are permitted provided that the following conditions
     10   1.1      matt  * are met:
     11   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     12   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     13   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     15   1.1      matt  *    documentation and/or other materials provided with the distribution.
     16   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     17   1.1      matt  *    must display the following acknowledgement:
     18   1.1      matt  *	This product includes software developed by Brini.
     19   1.1      matt  * 4. The name of the company nor the name of the author may be used to
     20   1.1      matt  *    endorse or promote products derived from this software without specific
     21   1.1      matt  *    prior written permission.
     22   1.1      matt  *
     23   1.1      matt  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24   1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25   1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26   1.1      matt  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27   1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28   1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29   1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1      matt  * SUCH DAMAGE.
     34   1.1      matt  *
     35   1.1      matt  * RiscBSD kernel project
     36   1.1      matt  *
     37   1.1      matt  * cpu.c
     38   1.1      matt  *
     39   1.1      matt  * Probing and configuration for the master cpu
     40   1.1      matt  *
     41   1.1      matt  * Created      : 10/10/95
     42   1.1      matt  */
     43   1.1      matt 
     44   1.1      matt #include "opt_armfpe.h"
     45   1.1      matt #include "opt_cputypes.h"
     46   1.1      matt 
     47   1.1      matt #include <sys/param.h>
     48   1.1      matt #include <sys/systm.h>
     49   1.1      matt #include <sys/malloc.h>
     50   1.1      matt #include <sys/device.h>
     51   1.1      matt #include <sys/proc.h>
     52   1.1      matt #include <uvm/uvm_extern.h>
     53   1.1      matt #include <machine/conf.h>
     54   1.1      matt #include <machine/cpu.h>
     55  1.10   thorpej #include <arm/undefined.h>
     56  1.10   thorpej 
     57  1.10   thorpej #include <arm/cpus.h>
     58   1.1      matt 
     59   1.1      matt #ifdef ARMFPE
     60   1.1      matt #include <machine/bootconfig.h> /* For boot args */
     61  1.11   thorpej #include <arm/fpe-arm/armfpe.h>
     62  1.11   thorpej #endif
     63   1.1      matt 
     64   1.1      matt cpu_t cpus[MAX_CPUS];
     65   1.1      matt 
     66   1.1      matt char cpu_model[64];
     67   1.1      matt volatile int undefined_test;	/* Used for FPA test */
     68   1.1      matt extern int cpuctrl;		/* cpu control register value */
     69   1.1      matt 
     70   1.1      matt /* Prototypes */
     71   1.1      matt void identify_master_cpu __P((struct device *dv, int cpu_number));
     72   1.1      matt void identify_arm_cpu	__P((struct device *dv, int cpu_number));
     73   1.1      matt void identify_arm_fpu	__P((struct device *dv, int cpu_number));
     74   1.5     chris int fpa_test __P((u_int, u_int, trapframe_t *, int));
     75   1.5     chris int fpa_handler __P((u_int, u_int, trapframe_t *, int));
     76   1.1      matt 
     77   1.1      matt /*
     78   1.1      matt  * void cpusattach(struct device *parent, struct device *dev, void *aux)
     79   1.1      matt  *
     80   1.1      matt  * Attach the main cpu
     81   1.1      matt  */
     82   1.1      matt 
     83   1.1      matt void
     84   1.1      matt cpu_attach(dv)
     85   1.1      matt 	struct device *dv;
     86   1.1      matt {
     87   1.1      matt 	identify_master_cpu(dv, CPU_MASTER);
     88   1.1      matt }
     89   1.1      matt 
     90   1.1      matt /*
     91   1.1      matt  * Used to test for an FPA. The following function is installed as a coproc1
     92   1.1      matt  * handler on the undefined instruction vector and then we issue a FPA
     93   1.1      matt  * instruction. If undefined_test is non zero then the FPA did not handle
     94   1.1      matt  * the instruction so must be absent.
     95   1.1      matt  */
     96   1.1      matt 
     97   1.1      matt int
     98   1.5     chris fpa_test(address, instruction, frame, fault_code)
     99   1.1      matt 	u_int address;
    100   1.1      matt 	u_int instruction;
    101   1.1      matt 	trapframe_t *frame;
    102   1.5     chris 	int fault_code;
    103   1.1      matt {
    104   1.1      matt 
    105   1.1      matt 	frame->tf_pc += INSN_SIZE;
    106   1.1      matt 	++undefined_test;
    107   1.1      matt 	return(0);
    108   1.1      matt }
    109   1.1      matt 
    110   1.1      matt /*
    111   1.1      matt  * If an FPA was found then this function is installed as the coproc1 handler
    112   1.1      matt  * on the undefined instruction vector. Currently we don't support FPA's
    113   1.1      matt  * so this just triggers an exception.
    114   1.1      matt  */
    115   1.1      matt 
    116   1.1      matt int
    117   1.1      matt fpa_handler(address, instruction, frame, fault_code)
    118   1.1      matt 	u_int address;
    119   1.1      matt 	u_int instruction;
    120   1.1      matt 	trapframe_t *frame;
    121   1.1      matt 	int fault_code;
    122   1.1      matt {
    123   1.1      matt 	u_int fpsr;
    124   1.1      matt 
    125   1.1      matt 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    126   1.1      matt 
    127   1.1      matt 	printf("FPA exception: fpsr = %08x\n", fpsr);
    128   1.1      matt 
    129   1.1      matt 	return(1);
    130   1.1      matt }
    131   1.1      matt 
    132   1.1      matt 
    133   1.1      matt /*
    134   1.1      matt  * Identify the master (boot) CPU
    135   1.1      matt  * This also probes for an FPU and will install an FPE if necessary
    136   1.1      matt  */
    137   1.1      matt 
    138   1.1      matt void
    139   1.1      matt identify_master_cpu(dv, cpu_number)
    140   1.1      matt 	struct device *dv;
    141   1.1      matt 	int cpu_number;
    142   1.1      matt {
    143   1.1      matt 	u_int fpsr;
    144   1.1      matt 	void *uh;
    145   1.1      matt 
    146   1.1      matt 	cpus[cpu_number].cpu_ctrl = cpuctrl;
    147   1.1      matt 
    148   1.1      matt 	/* Get the cpu ID from coprocessor 15 */
    149   1.1      matt 
    150   1.1      matt 	cpus[cpu_number].cpu_id = cpu_id();
    151   1.1      matt 
    152   1.1      matt 	identify_arm_cpu(dv, cpu_number);
    153   1.1      matt 	strcpy(cpu_model, cpus[cpu_number].cpu_model);
    154   1.1      matt 
    155   1.1      matt 	if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
    156   1.1      matt 	    && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
    157   1.1      matt 		printf("%s: SA-110 with bugged STM^ instruction\n",
    158   1.1      matt 		       dv->dv_xname);
    159   1.1      matt 	}
    160   1.1      matt 
    161   1.1      matt #ifdef CPU_ARM8
    162   1.1      matt 	if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    163   1.1      matt 		int clock = arm8_clock_config(0, 0);
    164   1.1      matt 		char *fclk;
    165   1.1      matt 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    166   1.1      matt 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    167   1.1      matt 		printf("%s", (clock & 2) ? " sync" : "");
    168   1.1      matt 		switch ((clock >> 2) & 3) {
    169   1.1      matt 		case 0 :
    170   1.1      matt 			fclk = "bus clock";
    171   1.1      matt 			break;
    172   1.1      matt 		case 1 :
    173   1.1      matt 			fclk = "ref clock";
    174   1.1      matt 			break;
    175   1.1      matt 		case 3 :
    176   1.1      matt 			fclk = "pll";
    177   1.1      matt 			break;
    178   1.1      matt 		default :
    179   1.1      matt 			fclk = "illegal";
    180   1.1      matt 			break;
    181   1.1      matt 		}
    182   1.1      matt 		printf(" fclk source=%s\n", fclk);
    183   1.1      matt  	}
    184   1.1      matt #endif
    185   1.1      matt 
    186   1.1      matt 	/*
    187   1.1      matt 	 * Ok now we test for an FPA
    188   1.1      matt 	 * At this point no floating point emulator has been installed.
    189   1.1      matt 	 * This means any FP instruction will cause undefined exception.
    190   1.1      matt 	 * We install a temporay coproc 1 handler which will modify
    191   1.1      matt 	 * undefined_test if it is called.
    192   1.1      matt 	 * We then try to read the FP status register. If undefined_test
    193   1.1      matt 	 * has been decremented then the instruction was not handled by
    194   1.1      matt 	 * an FPA so we know the FPA is missing. If undefined_test is
    195   1.1      matt 	 * still 1 then we know the instruction was handled by an FPA.
    196   1.1      matt 	 * We then remove our test handler and look at the
    197   1.1      matt 	 * FP status register for identification.
    198   1.1      matt 	 */
    199   1.1      matt 
    200   1.1      matt 	uh = install_coproc_handler(FP_COPROC, fpa_test);
    201   1.1      matt 
    202   1.1      matt 	undefined_test = 0;
    203   1.1      matt 
    204   1.1      matt 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    205   1.1      matt 
    206   1.1      matt 	remove_coproc_handler(uh);
    207   1.1      matt 
    208   1.1      matt 	if (undefined_test == 0) {
    209   1.1      matt 		cpus[cpu_number].fpu_type = (fpsr >> 24);
    210   1.1      matt 	        switch (fpsr >> 24) {
    211   1.1      matt 		case 0x81 :
    212   1.1      matt 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
    213   1.1      matt 			break;
    214   1.1      matt 
    215   1.1      matt 		default :
    216   1.1      matt 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
    217   1.1      matt 			break;
    218   1.1      matt 		}
    219   1.1      matt 		cpus[cpu_number].fpu_flags = 0;
    220   1.1      matt 		install_coproc_handler(FP_COPROC, fpa_handler);
    221   1.1      matt 	} else {
    222   1.1      matt 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
    223   1.1      matt 		cpus[cpu_number].fpu_flags = 0;
    224   1.1      matt 
    225   1.1      matt 		/*
    226   1.1      matt 		 * Ok if ARMFPE is defined and the boot options request the
    227   1.1      matt 		 * ARM FPE then it will be installed as the FPE.
    228   1.1      matt 		 * This is just while I work on integrating the new FPE.
    229   1.1      matt 		 * It means the new FPE gets installed if compiled int (ARMFPE
    230   1.1      matt 		 * defined) and also gives me a on/off option when I boot in
    231   1.1      matt 		 * case the new FPE is causing panics.
    232   1.1      matt 		 */
    233   1.1      matt 
    234   1.1      matt #ifdef ARMFPE
    235   1.1      matt 		if (boot_args) {
    236   1.2     bjh21 			int usearmfpe = 1;
    237   1.1      matt 
    238   1.2     bjh21 			get_bootconf_option(boot_args, "armfpe",
    239   1.2     bjh21 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    240   1.2     bjh21 			if (usearmfpe) {
    241   1.1      matt 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
    242   1.1      matt 					identify_arm_fpu(dv, cpu_number);
    243   1.1      matt 			}
    244   1.1      matt 		}
    245   1.1      matt 
    246   1.1      matt #endif
    247   1.1      matt 	}
    248   1.1      matt 
    249   1.1      matt 	identify_arm_fpu(dv, cpu_number);
    250   1.1      matt }
    251   1.1      matt 
    252  1.13   thorpej static const char *generic_steppings[16] = {
    253  1.14     bjh21 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    254  1.14     bjh21 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    255  1.14     bjh21 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    256  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    257  1.14     bjh21 };
    258  1.14     bjh21 
    259  1.14     bjh21 static const char *sa110_steppings[16] = {
    260  1.14     bjh21 	"rev 0",	"step J",	"step K",	"step S",
    261  1.14     bjh21 	"step T",	"rev 5",	"rev 6",	"rev 7",
    262  1.14     bjh21 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    263  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    264  1.14     bjh21 };
    265  1.14     bjh21 
    266  1.14     bjh21 static const char *sa1100_steppings[16] = {
    267  1.14     bjh21 	"rev 0",	"step B",	"step C",	"rev 3",
    268  1.14     bjh21 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    269  1.14     bjh21 	"step D",	"step E",	"rev 10"	"step G",
    270  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    271  1.14     bjh21 };
    272  1.14     bjh21 
    273  1.14     bjh21 static const char *sa1110_steppings[16] = {
    274  1.14     bjh21 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    275  1.14     bjh21 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    276  1.14     bjh21 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    277  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    278  1.13   thorpej };
    279  1.13   thorpej 
    280  1.13   thorpej static const char *i80200_steppings[16] = {
    281  1.14     bjh21 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    282  1.14     bjh21 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    283  1.14     bjh21 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    284  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    285  1.13   thorpej };
    286  1.13   thorpej 
    287   1.1      matt struct cpuidtab {
    288   1.1      matt 	u_int32_t	cpuid;
    289   1.1      matt 	enum		cpu_class cpu_class;
    290   1.9   thorpej 	const char	*cpu_name;
    291  1.13   thorpej 	const char	**cpu_steppings;
    292   1.1      matt };
    293   1.1      matt 
    294   1.1      matt const struct cpuidtab cpuids[] = {
    295  1.13   thorpej 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    296  1.13   thorpej 	  generic_steppings },
    297  1.13   thorpej 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    298  1.13   thorpej 	  generic_steppings },
    299  1.13   thorpej 
    300  1.13   thorpej 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    301  1.13   thorpej 	  generic_steppings },
    302  1.13   thorpej 
    303  1.13   thorpej 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    304  1.13   thorpej 	  generic_steppings },
    305  1.13   thorpej 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    306  1.13   thorpej 	  generic_steppings },
    307  1.13   thorpej 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    308  1.13   thorpej 	  generic_steppings },
    309  1.13   thorpej 
    310  1.13   thorpej 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    311  1.13   thorpej 	  generic_steppings },
    312  1.13   thorpej 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    313  1.13   thorpej 	  generic_steppings },
    314  1.13   thorpej 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    315  1.13   thorpej 	  generic_steppings },
    316  1.13   thorpej 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    317  1.13   thorpej 	  generic_steppings },
    318  1.13   thorpej 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    319  1.13   thorpej 	  generic_steppings },
    320  1.13   thorpej 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    321  1.13   thorpej 	  generic_steppings },
    322  1.13   thorpej 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    323  1.13   thorpej 	  generic_steppings },
    324  1.13   thorpej 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    325  1.13   thorpej 	  generic_steppings },
    326  1.13   thorpej 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    327  1.13   thorpej 	  generic_steppings },
    328  1.13   thorpej 
    329  1.13   thorpej 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    330  1.13   thorpej 	  generic_steppings },
    331  1.13   thorpej 
    332  1.13   thorpej 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    333  1.13   thorpej 	  generic_steppings },
    334  1.13   thorpej 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    335  1.13   thorpej 	  generic_steppings },
    336  1.13   thorpej 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    337  1.13   thorpej 	  generic_steppings },
    338  1.13   thorpej 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    339  1.13   thorpej 	  generic_steppings },
    340  1.13   thorpej 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    341  1.13   thorpej 	  generic_steppings },
    342  1.13   thorpej 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    343  1.13   thorpej 	  generic_steppings },
    344  1.13   thorpej 
    345  1.13   thorpej 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    346  1.14     bjh21 	  sa110_steppings },
    347  1.13   thorpej 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    348  1.14     bjh21 	  sa1100_steppings },
    349  1.13   thorpej 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    350  1.14     bjh21 	  sa1110_steppings },
    351  1.13   thorpej 
    352  1.13   thorpej 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"i80200",
    353  1.13   thorpej 	  i80200_steppings },
    354  1.13   thorpej 
    355  1.13   thorpej 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    356   1.1      matt };
    357   1.1      matt 
    358   1.1      matt struct cpu_classtab {
    359   1.9   thorpej 	const char	*class_name;
    360   1.9   thorpej 	const char	*class_option;
    361   1.1      matt };
    362   1.1      matt 
    363   1.1      matt const struct cpu_classtab cpu_classes[] = {
    364   1.6  rearnsha 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    365   1.6  rearnsha 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    366   1.6  rearnsha 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    367   1.6  rearnsha 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    368   1.6  rearnsha 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    369   1.6  rearnsha 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    370   1.6  rearnsha 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    371   1.6  rearnsha 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    372   1.6  rearnsha 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    373   1.6  rearnsha 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    374   1.6  rearnsha 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    375   1.7   thorpej 	{ "XScale",	"CPU_XSCALE" },		/* CPU_CLASS_XSCALE */
    376   1.1      matt };
    377   1.1      matt 
    378   1.1      matt /*
    379   1.1      matt  * Report the type of the specifed arm processor. This uses the generic and
    380   1.1      matt  * arm specific information in the cpu structure to identify the processor.
    381   1.1      matt  * The remaining fields in the cpu structure are filled in appropriately.
    382   1.1      matt  */
    383   1.1      matt 
    384  1.12   thorpej static const char *wtnames[] = {
    385  1.12   thorpej 	"write-through",
    386  1.12   thorpej 	"write-back",
    387  1.12   thorpej 	"write-back",
    388  1.12   thorpej 	"**unknown 3**",
    389  1.12   thorpej 	"**unknown 4**",
    390  1.12   thorpej 	"write-back-locking",		/* XXX XScale-specific? */
    391  1.12   thorpej 	"write-back-locking-A",
    392  1.12   thorpej 	"write-back-locking-B",
    393  1.12   thorpej 	"**unknown 8**",
    394  1.12   thorpej 	"**unknown 9**",
    395  1.12   thorpej 	"**unknown 10**",
    396  1.12   thorpej 	"**unknown 11**",
    397  1.12   thorpej 	"**unknown 12**",
    398  1.12   thorpej 	"**unknown 13**",
    399  1.12   thorpej 	"**unknown 14**",
    400  1.12   thorpej 	"**unknown 15**",
    401  1.12   thorpej };
    402  1.12   thorpej 
    403   1.1      matt void
    404   1.1      matt identify_arm_cpu(dv, cpu_number)
    405   1.1      matt 	struct device *dv;
    406   1.1      matt 	int cpu_number;
    407   1.1      matt {
    408   1.1      matt 	cpu_t *cpu;
    409   1.1      matt 	u_int cpuid;
    410   1.1      matt 	int i;
    411   1.1      matt 
    412   1.1      matt 	cpu = &cpus[cpu_number];
    413   1.1      matt 	cpuid = cpu->cpu_id;
    414   1.1      matt 
    415   1.1      matt 	if (cpuid == 0) {
    416   1.1      matt 		printf("Processor failed probe - no CPU ID\n");
    417   1.1      matt 		return;
    418   1.1      matt 	}
    419   1.1      matt 
    420   1.1      matt 	for (i = 0; cpuids[i].cpuid != 0; i++)
    421   1.1      matt 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    422   1.1      matt 			cpu->cpu_class = cpuids[i].cpu_class;
    423  1.13   thorpej 			sprintf(cpu->cpu_model, "%s %s (%s core)",
    424  1.13   thorpej 			    cpuids[i].cpu_name,
    425  1.13   thorpej 			    cpuids[i].cpu_steppings[cpuid &
    426  1.13   thorpej 						    CPU_ID_REVISION_MASK],
    427   1.1      matt 			    cpu_classes[cpu->cpu_class].class_name);
    428   1.1      matt 			break;
    429   1.1      matt 		}
    430   1.1      matt 
    431   1.1      matt 	if (cpuids[i].cpuid == 0)
    432   1.1      matt 		sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    433   1.1      matt 
    434   1.1      matt 	switch (cpu->cpu_class) {
    435   1.1      matt 	case CPU_CLASS_ARM6:
    436   1.1      matt 	case CPU_CLASS_ARM7:
    437   1.3     chris 	case CPU_CLASS_ARM7TDMI:
    438   1.1      matt 	case CPU_CLASS_ARM8:
    439   1.1      matt 		if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    440   1.1      matt 			strcat(cpu->cpu_model, " IDC disabled");
    441   1.1      matt 		else
    442   1.1      matt 			strcat(cpu->cpu_model, " IDC enabled");
    443   1.1      matt 		break;
    444   1.6  rearnsha 	case CPU_CLASS_ARM9TDMI:
    445   1.1      matt 	case CPU_CLASS_SA1:
    446   1.4      matt 	case CPU_CLASS_XSCALE:
    447   1.1      matt 		if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    448   1.1      matt 			strcat(cpu->cpu_model, " DC disabled");
    449   1.1      matt 		else
    450   1.1      matt 			strcat(cpu->cpu_model, " DC enabled");
    451   1.1      matt 		if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    452   1.1      matt 			strcat(cpu->cpu_model, " IC disabled");
    453   1.1      matt 		else
    454   1.1      matt 			strcat(cpu->cpu_model, " IC enabled");
    455   1.1      matt 		break;
    456   1.1      matt 	}
    457   1.1      matt 	if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    458   1.1      matt 		strcat(cpu->cpu_model, " WB disabled");
    459   1.1      matt 	else
    460   1.1      matt 		strcat(cpu->cpu_model, " WB enabled");
    461   1.1      matt 
    462   1.1      matt 	if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
    463   1.1      matt 		strcat(cpu->cpu_model, " LABT");
    464   1.1      matt 	else
    465   1.1      matt 		strcat(cpu->cpu_model, " EABT");
    466   1.1      matt 
    467   1.1      matt 	if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
    468   1.1      matt 		strcat(cpu->cpu_model, " branch prediction enabled");
    469   1.1      matt 
    470   1.1      matt 	/* Print the info */
    471  1.12   thorpej 	printf(": %s\n", cpu->cpu_model);
    472   1.1      matt 
    473  1.12   thorpej 	/* Print cache info. */
    474  1.12   thorpej 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    475  1.12   thorpej 		goto skip_pcache;
    476  1.12   thorpej 
    477  1.12   thorpej 	if (arm_pcache_unified) {
    478  1.12   thorpej 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
    479  1.12   thorpej 		    dv->dv_xname, arm_pdcache_size / 1024,
    480  1.12   thorpej 		    arm_pdcache_line_size, arm_pdcache_ways,
    481  1.12   thorpej 		    wtnames[arm_pcache_type]);
    482  1.12   thorpej 	} else {
    483  1.12   thorpej 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
    484  1.12   thorpej 		    dv->dv_xname, arm_picache_size / 1024,
    485  1.12   thorpej 		    arm_picache_line_size, arm_picache_ways);
    486  1.12   thorpej 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
    487  1.12   thorpej 		    dv->dv_xname, arm_pdcache_size / 1024,
    488  1.12   thorpej 		    arm_pdcache_line_size, arm_pdcache_ways,
    489  1.12   thorpej 		    wtnames[arm_pcache_type]);
    490  1.12   thorpej 	}
    491  1.12   thorpej 
    492  1.12   thorpej  skip_pcache:
    493   1.1      matt 
    494   1.1      matt 	switch (cpu->cpu_class) {
    495   1.1      matt #ifdef CPU_ARM2
    496   1.1      matt 	case CPU_CLASS_ARM2:
    497   1.1      matt #endif
    498   1.1      matt #ifdef CPU_ARM250
    499   1.1      matt 	case CPU_CLASS_ARM2AS:
    500   1.1      matt #endif
    501   1.1      matt #ifdef CPU_ARM3
    502   1.1      matt 	case CPU_CLASS_ARM3:
    503   1.1      matt #endif
    504   1.1      matt #ifdef CPU_ARM6
    505   1.1      matt 	case CPU_CLASS_ARM6:
    506   1.1      matt #endif
    507   1.1      matt #ifdef CPU_ARM7
    508   1.1      matt 	case CPU_CLASS_ARM7:
    509   1.1      matt #endif
    510   1.3     chris #ifdef CPU_ARM7TDMI
    511   1.3     chris 	case CPU_CLASS_ARM7TDMI:
    512   1.3     chris #endif
    513   1.1      matt #ifdef CPU_ARM8
    514   1.1      matt 	case CPU_CLASS_ARM8:
    515   1.6  rearnsha #endif
    516   1.6  rearnsha #ifdef CPU_ARM9
    517   1.6  rearnsha 	case CPU_CLASS_ARM9TDMI:
    518   1.1      matt #endif
    519   1.1      matt #ifdef CPU_SA110
    520   1.1      matt 	case CPU_CLASS_SA1:
    521   1.4      matt #endif
    522   1.4      matt #ifdef CPU_XSCALE
    523   1.4      matt 	case CPU_CLASS_XSCALE:
    524   1.1      matt #endif
    525   1.1      matt 		break;
    526   1.1      matt 	default:
    527   1.1      matt 		if (cpu_classes[cpu->cpu_class].class_option != NULL)
    528   1.1      matt 			printf("%s: %s does not fully support this CPU."
    529   1.1      matt 			       "\n", dv->dv_xname, ostype);
    530   1.1      matt 		else {
    531   1.1      matt 			printf("%s: This kernel does not fully support "
    532   1.1      matt 			       "this CPU.\n", dv->dv_xname);
    533   1.1      matt 			printf("%s: Recompile with \"options %s\" to "
    534   1.1      matt 			       "correct this.\n", dv->dv_xname,
    535   1.1      matt 			       cpu_classes[cpu->cpu_class].class_option);
    536   1.1      matt 		}
    537   1.1      matt 		break;
    538   1.1      matt 	}
    539   1.1      matt 
    540   1.1      matt }
    541   1.1      matt 
    542   1.1      matt 
    543   1.1      matt /*
    544   1.1      matt  * Report the type of the specifed arm fpu. This uses the generic and arm
    545   1.1      matt  * specific information in the cpu structure to identify the fpu. The
    546   1.1      matt  * remaining fields in the cpu structure are filled in appropriately.
    547   1.1      matt  */
    548   1.1      matt 
    549   1.1      matt void
    550   1.1      matt identify_arm_fpu(dv, cpu_number)
    551   1.1      matt 	struct device *dv;
    552   1.1      matt 	int cpu_number;
    553   1.1      matt {
    554   1.1      matt 	cpu_t *cpu;
    555   1.1      matt 
    556   1.1      matt 	cpu = &cpus[cpu_number];
    557   1.1      matt 
    558   1.1      matt 	/* Now for the FP info */
    559   1.1      matt 
    560   1.1      matt 	switch (cpu->fpu_class) {
    561   1.1      matt 	case FPU_CLASS_NONE :
    562   1.1      matt 		strcpy(cpu->fpu_model, "None");
    563   1.1      matt 		break;
    564   1.1      matt 	case FPU_CLASS_FPE :
    565   1.1      matt 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    566   1.1      matt 		printf("%s: no FP hardware found\n", dv->dv_xname);
    567   1.1      matt 		break;
    568   1.1      matt 	case FPU_CLASS_FPA :
    569   1.1      matt 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    570   1.1      matt 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
    571   1.1      matt 			strcpy(cpu->fpu_model, "FPA11");
    572   1.1      matt 			printf("%s: FPA11 found\n", dv->dv_xname);
    573   1.1      matt 		} else {
    574   1.1      matt 			strcpy(cpu->fpu_model, "FPA");
    575   1.1      matt 			printf("%s: FPA10 found\n", dv->dv_xname);
    576   1.1      matt 		}
    577   1.1      matt 		if ((cpu->fpu_flags & 4) == 0)
    578   1.1      matt 			strcat(cpu->fpu_model, "");
    579   1.1      matt 		else
    580   1.1      matt 			strcat(cpu->fpu_model, " clk/2");
    581   1.1      matt 		break;
    582   1.1      matt 	case FPU_CLASS_FPU :
    583   1.1      matt 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
    584   1.1      matt 		    cpu->fpu_type);
    585   1.1      matt 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
    586   1.1      matt 		break;
    587   1.1      matt 	}
    588   1.1      matt }
    589   1.1      matt 
    590   1.1      matt /* End of cpu.c */
    591