cpu.c revision 1.17 1 1.17 bjh21 /* $NetBSD: cpu.c,v 1.17 2002/03/09 19:11:21 bjh21 Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt #include "opt_cputypes.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.1 matt #include <sys/systm.h>
49 1.1 matt #include <sys/malloc.h>
50 1.1 matt #include <sys/device.h>
51 1.1 matt #include <sys/proc.h>
52 1.1 matt #include <uvm/uvm_extern.h>
53 1.1 matt #include <machine/conf.h>
54 1.1 matt #include <machine/cpu.h>
55 1.10 thorpej #include <arm/undefined.h>
56 1.10 thorpej
57 1.10 thorpej #include <arm/cpus.h>
58 1.1 matt
59 1.1 matt #ifdef ARMFPE
60 1.1 matt #include <machine/bootconfig.h> /* For boot args */
61 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
62 1.11 thorpej #endif
63 1.1 matt
64 1.1 matt cpu_t cpus[MAX_CPUS];
65 1.1 matt
66 1.1 matt char cpu_model[64];
67 1.1 matt volatile int undefined_test; /* Used for FPA test */
68 1.1 matt extern int cpuctrl; /* cpu control register value */
69 1.1 matt
70 1.1 matt /* Prototypes */
71 1.15 bjh21 void identify_master_cpu(struct device *dv, int cpu_number);
72 1.15 bjh21 void identify_arm_cpu(struct device *dv, int cpu_number);
73 1.15 bjh21 void identify_arm_fpu(struct device *dv, int cpu_number);
74 1.15 bjh21 int fpa_test(u_int, u_int, trapframe_t *, int);
75 1.15 bjh21 int fpa_handler(u_int, u_int, trapframe_t *, int);
76 1.1 matt
77 1.1 matt /*
78 1.1 matt * void cpusattach(struct device *parent, struct device *dev, void *aux)
79 1.1 matt *
80 1.1 matt * Attach the main cpu
81 1.1 matt */
82 1.1 matt
83 1.1 matt void
84 1.15 bjh21 cpu_attach(struct device *dv)
85 1.1 matt {
86 1.15 bjh21
87 1.1 matt identify_master_cpu(dv, CPU_MASTER);
88 1.1 matt }
89 1.1 matt
90 1.1 matt /*
91 1.1 matt * Used to test for an FPA. The following function is installed as a coproc1
92 1.1 matt * handler on the undefined instruction vector and then we issue a FPA
93 1.1 matt * instruction. If undefined_test is non zero then the FPA did not handle
94 1.1 matt * the instruction so must be absent.
95 1.1 matt */
96 1.1 matt
97 1.1 matt int
98 1.15 bjh21 fpa_test(u_int address, u_int instruction, trapframe_t *frame, int fault_code)
99 1.1 matt {
100 1.1 matt
101 1.1 matt frame->tf_pc += INSN_SIZE;
102 1.1 matt ++undefined_test;
103 1.1 matt return(0);
104 1.1 matt }
105 1.1 matt
106 1.1 matt /*
107 1.1 matt * If an FPA was found then this function is installed as the coproc1 handler
108 1.1 matt * on the undefined instruction vector. Currently we don't support FPA's
109 1.1 matt * so this just triggers an exception.
110 1.1 matt */
111 1.1 matt
112 1.1 matt int
113 1.15 bjh21 fpa_handler(u_int address, u_int instruction, trapframe_t *frame,
114 1.15 bjh21 int fault_code)
115 1.1 matt {
116 1.1 matt u_int fpsr;
117 1.1 matt
118 1.15 bjh21 __asm __volatile("stmfd sp!, {r0};"
119 1.16 bjh21 "rfs r0;"
120 1.15 bjh21 "mov %0, r0;"
121 1.15 bjh21 "ldmfd sp!, {r0}" : "=r" (fpsr));
122 1.1 matt
123 1.1 matt printf("FPA exception: fpsr = %08x\n", fpsr);
124 1.1 matt
125 1.1 matt return(1);
126 1.1 matt }
127 1.1 matt
128 1.1 matt
129 1.1 matt /*
130 1.1 matt * Identify the master (boot) CPU
131 1.1 matt * This also probes for an FPU and will install an FPE if necessary
132 1.1 matt */
133 1.1 matt
134 1.1 matt void
135 1.15 bjh21 identify_master_cpu(struct device *dv, int cpu_number)
136 1.1 matt {
137 1.1 matt u_int fpsr;
138 1.1 matt void *uh;
139 1.1 matt
140 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
141 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
142 1.17 bjh21
143 1.1 matt cpus[cpu_number].cpu_ctrl = cpuctrl;
144 1.1 matt
145 1.1 matt /* Get the cpu ID from coprocessor 15 */
146 1.1 matt
147 1.1 matt cpus[cpu_number].cpu_id = cpu_id();
148 1.1 matt
149 1.1 matt identify_arm_cpu(dv, cpu_number);
150 1.1 matt strcpy(cpu_model, cpus[cpu_number].cpu_model);
151 1.1 matt
152 1.1 matt if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
153 1.1 matt && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
154 1.1 matt printf("%s: SA-110 with bugged STM^ instruction\n",
155 1.1 matt dv->dv_xname);
156 1.1 matt }
157 1.1 matt
158 1.1 matt #ifdef CPU_ARM8
159 1.1 matt if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
160 1.1 matt int clock = arm8_clock_config(0, 0);
161 1.1 matt char *fclk;
162 1.1 matt printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
163 1.1 matt printf(" clock:%s", (clock & 1) ? " dynamic" : "");
164 1.1 matt printf("%s", (clock & 2) ? " sync" : "");
165 1.1 matt switch ((clock >> 2) & 3) {
166 1.15 bjh21 case 0:
167 1.1 matt fclk = "bus clock";
168 1.1 matt break;
169 1.15 bjh21 case 1:
170 1.1 matt fclk = "ref clock";
171 1.1 matt break;
172 1.15 bjh21 case 3:
173 1.1 matt fclk = "pll";
174 1.1 matt break;
175 1.15 bjh21 default:
176 1.1 matt fclk = "illegal";
177 1.1 matt break;
178 1.1 matt }
179 1.1 matt printf(" fclk source=%s\n", fclk);
180 1.1 matt }
181 1.1 matt #endif
182 1.1 matt
183 1.1 matt /*
184 1.1 matt * Ok now we test for an FPA
185 1.1 matt * At this point no floating point emulator has been installed.
186 1.1 matt * This means any FP instruction will cause undefined exception.
187 1.1 matt * We install a temporay coproc 1 handler which will modify
188 1.1 matt * undefined_test if it is called.
189 1.1 matt * We then try to read the FP status register. If undefined_test
190 1.1 matt * has been decremented then the instruction was not handled by
191 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
192 1.1 matt * still 1 then we know the instruction was handled by an FPA.
193 1.1 matt * We then remove our test handler and look at the
194 1.1 matt * FP status register for identification.
195 1.1 matt */
196 1.1 matt
197 1.1 matt uh = install_coproc_handler(FP_COPROC, fpa_test);
198 1.1 matt
199 1.1 matt undefined_test = 0;
200 1.1 matt
201 1.15 bjh21 __asm __volatile("stmfd sp!, {r0};"
202 1.16 bjh21 "rfs r0;"
203 1.15 bjh21 "mov %0, r0;"
204 1.15 bjh21 "ldmfd sp!, {r0}" : "=r" (fpsr));
205 1.1 matt
206 1.1 matt remove_coproc_handler(uh);
207 1.1 matt
208 1.1 matt if (undefined_test == 0) {
209 1.1 matt cpus[cpu_number].fpu_type = (fpsr >> 24);
210 1.1 matt switch (fpsr >> 24) {
211 1.15 bjh21 case 0x81:
212 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
213 1.1 matt break;
214 1.1 matt
215 1.15 bjh21 default:
216 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
217 1.1 matt break;
218 1.1 matt }
219 1.1 matt cpus[cpu_number].fpu_flags = 0;
220 1.1 matt install_coproc_handler(FP_COPROC, fpa_handler);
221 1.1 matt } else {
222 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
223 1.1 matt cpus[cpu_number].fpu_flags = 0;
224 1.1 matt
225 1.1 matt /*
226 1.1 matt * Ok if ARMFPE is defined and the boot options request the
227 1.1 matt * ARM FPE then it will be installed as the FPE.
228 1.1 matt * This is just while I work on integrating the new FPE.
229 1.1 matt * It means the new FPE gets installed if compiled int (ARMFPE
230 1.1 matt * defined) and also gives me a on/off option when I boot in
231 1.1 matt * case the new FPE is causing panics.
232 1.1 matt */
233 1.1 matt
234 1.1 matt #ifdef ARMFPE
235 1.1 matt if (boot_args) {
236 1.2 bjh21 int usearmfpe = 1;
237 1.1 matt
238 1.2 bjh21 get_bootconf_option(boot_args, "armfpe",
239 1.2 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
240 1.2 bjh21 if (usearmfpe) {
241 1.1 matt if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
242 1.1 matt identify_arm_fpu(dv, cpu_number);
243 1.1 matt }
244 1.1 matt }
245 1.1 matt
246 1.1 matt #endif
247 1.1 matt }
248 1.1 matt
249 1.1 matt identify_arm_fpu(dv, cpu_number);
250 1.1 matt }
251 1.1 matt
252 1.13 thorpej static const char *generic_steppings[16] = {
253 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
254 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
255 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
256 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
257 1.14 bjh21 };
258 1.14 bjh21
259 1.14 bjh21 static const char *sa110_steppings[16] = {
260 1.14 bjh21 "rev 0", "step J", "step K", "step S",
261 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
262 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
263 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
264 1.14 bjh21 };
265 1.14 bjh21
266 1.14 bjh21 static const char *sa1100_steppings[16] = {
267 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
268 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
269 1.14 bjh21 "step D", "step E", "rev 10" "step G",
270 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
271 1.14 bjh21 };
272 1.14 bjh21
273 1.14 bjh21 static const char *sa1110_steppings[16] = {
274 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
275 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
276 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
277 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
278 1.13 thorpej };
279 1.13 thorpej
280 1.13 thorpej static const char *i80200_steppings[16] = {
281 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
282 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
283 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
284 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
285 1.13 thorpej };
286 1.13 thorpej
287 1.1 matt struct cpuidtab {
288 1.1 matt u_int32_t cpuid;
289 1.1 matt enum cpu_class cpu_class;
290 1.9 thorpej const char *cpu_name;
291 1.13 thorpej const char **cpu_steppings;
292 1.1 matt };
293 1.1 matt
294 1.1 matt const struct cpuidtab cpuids[] = {
295 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
296 1.13 thorpej generic_steppings },
297 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
298 1.13 thorpej generic_steppings },
299 1.13 thorpej
300 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
301 1.13 thorpej generic_steppings },
302 1.13 thorpej
303 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
304 1.13 thorpej generic_steppings },
305 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
306 1.13 thorpej generic_steppings },
307 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
308 1.13 thorpej generic_steppings },
309 1.13 thorpej
310 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
311 1.13 thorpej generic_steppings },
312 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
313 1.13 thorpej generic_steppings },
314 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
315 1.13 thorpej generic_steppings },
316 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
317 1.13 thorpej generic_steppings },
318 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
319 1.13 thorpej generic_steppings },
320 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
321 1.13 thorpej generic_steppings },
322 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
323 1.13 thorpej generic_steppings },
324 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
325 1.13 thorpej generic_steppings },
326 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
327 1.13 thorpej generic_steppings },
328 1.13 thorpej
329 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
330 1.13 thorpej generic_steppings },
331 1.13 thorpej
332 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
333 1.13 thorpej generic_steppings },
334 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
335 1.13 thorpej generic_steppings },
336 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
337 1.13 thorpej generic_steppings },
338 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
339 1.13 thorpej generic_steppings },
340 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
341 1.13 thorpej generic_steppings },
342 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
343 1.13 thorpej generic_steppings },
344 1.13 thorpej
345 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
346 1.14 bjh21 sa110_steppings },
347 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
348 1.14 bjh21 sa1100_steppings },
349 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
350 1.14 bjh21 sa1110_steppings },
351 1.13 thorpej
352 1.13 thorpej { CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
353 1.13 thorpej i80200_steppings },
354 1.13 thorpej
355 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
356 1.1 matt };
357 1.1 matt
358 1.1 matt struct cpu_classtab {
359 1.9 thorpej const char *class_name;
360 1.9 thorpej const char *class_option;
361 1.1 matt };
362 1.1 matt
363 1.1 matt const struct cpu_classtab cpu_classes[] = {
364 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
365 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
366 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
367 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
368 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
369 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
370 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
371 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
372 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
373 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
374 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
375 1.7 thorpej { "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
376 1.1 matt };
377 1.1 matt
378 1.1 matt /*
379 1.1 matt * Report the type of the specifed arm processor. This uses the generic and
380 1.1 matt * arm specific information in the cpu structure to identify the processor.
381 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
382 1.1 matt */
383 1.1 matt
384 1.12 thorpej static const char *wtnames[] = {
385 1.12 thorpej "write-through",
386 1.12 thorpej "write-back",
387 1.12 thorpej "write-back",
388 1.12 thorpej "**unknown 3**",
389 1.12 thorpej "**unknown 4**",
390 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
391 1.12 thorpej "write-back-locking-A",
392 1.12 thorpej "write-back-locking-B",
393 1.12 thorpej "**unknown 8**",
394 1.12 thorpej "**unknown 9**",
395 1.12 thorpej "**unknown 10**",
396 1.12 thorpej "**unknown 11**",
397 1.12 thorpej "**unknown 12**",
398 1.12 thorpej "**unknown 13**",
399 1.12 thorpej "**unknown 14**",
400 1.12 thorpej "**unknown 15**",
401 1.12 thorpej };
402 1.12 thorpej
403 1.1 matt void
404 1.15 bjh21 identify_arm_cpu(struct device *dv, int cpu_number)
405 1.1 matt {
406 1.1 matt cpu_t *cpu;
407 1.1 matt u_int cpuid;
408 1.1 matt int i;
409 1.1 matt
410 1.1 matt cpu = &cpus[cpu_number];
411 1.1 matt cpuid = cpu->cpu_id;
412 1.1 matt
413 1.1 matt if (cpuid == 0) {
414 1.1 matt printf("Processor failed probe - no CPU ID\n");
415 1.1 matt return;
416 1.1 matt }
417 1.1 matt
418 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
419 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
420 1.1 matt cpu->cpu_class = cpuids[i].cpu_class;
421 1.13 thorpej sprintf(cpu->cpu_model, "%s %s (%s core)",
422 1.13 thorpej cpuids[i].cpu_name,
423 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
424 1.13 thorpej CPU_ID_REVISION_MASK],
425 1.1 matt cpu_classes[cpu->cpu_class].class_name);
426 1.1 matt break;
427 1.1 matt }
428 1.1 matt
429 1.1 matt if (cpuids[i].cpuid == 0)
430 1.1 matt sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
431 1.1 matt
432 1.1 matt switch (cpu->cpu_class) {
433 1.1 matt case CPU_CLASS_ARM6:
434 1.1 matt case CPU_CLASS_ARM7:
435 1.3 chris case CPU_CLASS_ARM7TDMI:
436 1.1 matt case CPU_CLASS_ARM8:
437 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
438 1.1 matt strcat(cpu->cpu_model, " IDC disabled");
439 1.1 matt else
440 1.1 matt strcat(cpu->cpu_model, " IDC enabled");
441 1.1 matt break;
442 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
443 1.1 matt case CPU_CLASS_SA1:
444 1.4 matt case CPU_CLASS_XSCALE:
445 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
446 1.1 matt strcat(cpu->cpu_model, " DC disabled");
447 1.1 matt else
448 1.1 matt strcat(cpu->cpu_model, " DC enabled");
449 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
450 1.1 matt strcat(cpu->cpu_model, " IC disabled");
451 1.1 matt else
452 1.1 matt strcat(cpu->cpu_model, " IC enabled");
453 1.1 matt break;
454 1.1 matt }
455 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
456 1.1 matt strcat(cpu->cpu_model, " WB disabled");
457 1.1 matt else
458 1.1 matt strcat(cpu->cpu_model, " WB enabled");
459 1.1 matt
460 1.1 matt if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
461 1.1 matt strcat(cpu->cpu_model, " LABT");
462 1.1 matt else
463 1.1 matt strcat(cpu->cpu_model, " EABT");
464 1.1 matt
465 1.1 matt if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
466 1.1 matt strcat(cpu->cpu_model, " branch prediction enabled");
467 1.1 matt
468 1.1 matt /* Print the info */
469 1.12 thorpej printf(": %s\n", cpu->cpu_model);
470 1.1 matt
471 1.12 thorpej /* Print cache info. */
472 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
473 1.12 thorpej goto skip_pcache;
474 1.12 thorpej
475 1.12 thorpej if (arm_pcache_unified) {
476 1.12 thorpej printf("%s: %dKB/%dB %d-way %s unified cache\n",
477 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
478 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
479 1.12 thorpej wtnames[arm_pcache_type]);
480 1.12 thorpej } else {
481 1.12 thorpej printf("%s: %dKB/%dB %d-way Instruction cache\n",
482 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
483 1.12 thorpej arm_picache_line_size, arm_picache_ways);
484 1.12 thorpej printf("%s: %dKB/%dB %d-way %s Data cache\n",
485 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
486 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
487 1.12 thorpej wtnames[arm_pcache_type]);
488 1.12 thorpej }
489 1.12 thorpej
490 1.12 thorpej skip_pcache:
491 1.1 matt
492 1.1 matt switch (cpu->cpu_class) {
493 1.1 matt #ifdef CPU_ARM2
494 1.1 matt case CPU_CLASS_ARM2:
495 1.1 matt #endif
496 1.1 matt #ifdef CPU_ARM250
497 1.1 matt case CPU_CLASS_ARM2AS:
498 1.1 matt #endif
499 1.1 matt #ifdef CPU_ARM3
500 1.1 matt case CPU_CLASS_ARM3:
501 1.1 matt #endif
502 1.1 matt #ifdef CPU_ARM6
503 1.1 matt case CPU_CLASS_ARM6:
504 1.1 matt #endif
505 1.1 matt #ifdef CPU_ARM7
506 1.1 matt case CPU_CLASS_ARM7:
507 1.1 matt #endif
508 1.3 chris #ifdef CPU_ARM7TDMI
509 1.3 chris case CPU_CLASS_ARM7TDMI:
510 1.3 chris #endif
511 1.1 matt #ifdef CPU_ARM8
512 1.1 matt case CPU_CLASS_ARM8:
513 1.6 rearnsha #endif
514 1.6 rearnsha #ifdef CPU_ARM9
515 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
516 1.1 matt #endif
517 1.1 matt #ifdef CPU_SA110
518 1.1 matt case CPU_CLASS_SA1:
519 1.4 matt #endif
520 1.4 matt #ifdef CPU_XSCALE
521 1.4 matt case CPU_CLASS_XSCALE:
522 1.1 matt #endif
523 1.1 matt break;
524 1.1 matt default:
525 1.1 matt if (cpu_classes[cpu->cpu_class].class_option != NULL)
526 1.1 matt printf("%s: %s does not fully support this CPU."
527 1.1 matt "\n", dv->dv_xname, ostype);
528 1.1 matt else {
529 1.1 matt printf("%s: This kernel does not fully support "
530 1.1 matt "this CPU.\n", dv->dv_xname);
531 1.1 matt printf("%s: Recompile with \"options %s\" to "
532 1.1 matt "correct this.\n", dv->dv_xname,
533 1.1 matt cpu_classes[cpu->cpu_class].class_option);
534 1.1 matt }
535 1.1 matt break;
536 1.1 matt }
537 1.1 matt
538 1.1 matt }
539 1.1 matt
540 1.1 matt
541 1.1 matt /*
542 1.1 matt * Report the type of the specifed arm fpu. This uses the generic and arm
543 1.1 matt * specific information in the cpu structure to identify the fpu. The
544 1.1 matt * remaining fields in the cpu structure are filled in appropriately.
545 1.1 matt */
546 1.1 matt
547 1.1 matt void
548 1.15 bjh21 identify_arm_fpu(struct device *dv, int cpu_number)
549 1.1 matt {
550 1.1 matt cpu_t *cpu;
551 1.1 matt
552 1.1 matt cpu = &cpus[cpu_number];
553 1.1 matt
554 1.1 matt /* Now for the FP info */
555 1.1 matt
556 1.1 matt switch (cpu->fpu_class) {
557 1.1 matt case FPU_CLASS_NONE :
558 1.1 matt strcpy(cpu->fpu_model, "None");
559 1.1 matt break;
560 1.1 matt case FPU_CLASS_FPE :
561 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
562 1.1 matt printf("%s: no FP hardware found\n", dv->dv_xname);
563 1.1 matt break;
564 1.1 matt case FPU_CLASS_FPA :
565 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
566 1.1 matt if (cpu->fpu_type == FPU_TYPE_FPA11) {
567 1.1 matt strcpy(cpu->fpu_model, "FPA11");
568 1.1 matt printf("%s: FPA11 found\n", dv->dv_xname);
569 1.1 matt } else {
570 1.1 matt strcpy(cpu->fpu_model, "FPA");
571 1.1 matt printf("%s: FPA10 found\n", dv->dv_xname);
572 1.1 matt }
573 1.1 matt if ((cpu->fpu_flags & 4) == 0)
574 1.1 matt strcat(cpu->fpu_model, "");
575 1.1 matt else
576 1.1 matt strcat(cpu->fpu_model, " clk/2");
577 1.1 matt break;
578 1.1 matt case FPU_CLASS_FPU :
579 1.1 matt sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
580 1.1 matt cpu->fpu_type);
581 1.1 matt printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
582 1.1 matt break;
583 1.1 matt }
584 1.1 matt }
585 1.1 matt
586 1.1 matt /* End of cpu.c */
587