cpu.c revision 1.18 1 1.18 bjh21 /* $NetBSD: cpu.c,v 1.18 2002/03/09 21:30:58 bjh21 Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt #include "opt_cputypes.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.1 matt #include <sys/systm.h>
49 1.1 matt #include <sys/malloc.h>
50 1.1 matt #include <sys/device.h>
51 1.1 matt #include <sys/proc.h>
52 1.1 matt #include <uvm/uvm_extern.h>
53 1.1 matt #include <machine/conf.h>
54 1.1 matt #include <machine/cpu.h>
55 1.10 thorpej #include <arm/undefined.h>
56 1.10 thorpej
57 1.10 thorpej #include <arm/cpus.h>
58 1.1 matt
59 1.1 matt #ifdef ARMFPE
60 1.1 matt #include <machine/bootconfig.h> /* For boot args */
61 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
62 1.11 thorpej #endif
63 1.1 matt
64 1.1 matt cpu_t cpus[MAX_CPUS];
65 1.1 matt
66 1.1 matt char cpu_model[64];
67 1.1 matt volatile int undefined_test; /* Used for FPA test */
68 1.1 matt
69 1.1 matt /* Prototypes */
70 1.15 bjh21 void identify_master_cpu(struct device *dv, int cpu_number);
71 1.18 bjh21 void identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *);
72 1.15 bjh21 void identify_arm_fpu(struct device *dv, int cpu_number);
73 1.15 bjh21 int fpa_test(u_int, u_int, trapframe_t *, int);
74 1.15 bjh21 int fpa_handler(u_int, u_int, trapframe_t *, int);
75 1.1 matt
76 1.1 matt /*
77 1.1 matt * void cpusattach(struct device *parent, struct device *dev, void *aux)
78 1.1 matt *
79 1.1 matt * Attach the main cpu
80 1.1 matt */
81 1.1 matt
82 1.1 matt void
83 1.15 bjh21 cpu_attach(struct device *dv)
84 1.1 matt {
85 1.15 bjh21
86 1.1 matt identify_master_cpu(dv, CPU_MASTER);
87 1.1 matt }
88 1.1 matt
89 1.1 matt /*
90 1.1 matt * Used to test for an FPA. The following function is installed as a coproc1
91 1.1 matt * handler on the undefined instruction vector and then we issue a FPA
92 1.1 matt * instruction. If undefined_test is non zero then the FPA did not handle
93 1.1 matt * the instruction so must be absent.
94 1.1 matt */
95 1.1 matt
96 1.1 matt int
97 1.15 bjh21 fpa_test(u_int address, u_int instruction, trapframe_t *frame, int fault_code)
98 1.1 matt {
99 1.1 matt
100 1.1 matt frame->tf_pc += INSN_SIZE;
101 1.1 matt ++undefined_test;
102 1.1 matt return(0);
103 1.1 matt }
104 1.1 matt
105 1.1 matt /*
106 1.1 matt * If an FPA was found then this function is installed as the coproc1 handler
107 1.1 matt * on the undefined instruction vector. Currently we don't support FPA's
108 1.1 matt * so this just triggers an exception.
109 1.1 matt */
110 1.1 matt
111 1.1 matt int
112 1.15 bjh21 fpa_handler(u_int address, u_int instruction, trapframe_t *frame,
113 1.15 bjh21 int fault_code)
114 1.1 matt {
115 1.1 matt u_int fpsr;
116 1.1 matt
117 1.15 bjh21 __asm __volatile("stmfd sp!, {r0};"
118 1.16 bjh21 "rfs r0;"
119 1.15 bjh21 "mov %0, r0;"
120 1.15 bjh21 "ldmfd sp!, {r0}" : "=r" (fpsr));
121 1.1 matt
122 1.1 matt printf("FPA exception: fpsr = %08x\n", fpsr);
123 1.1 matt
124 1.1 matt return(1);
125 1.1 matt }
126 1.1 matt
127 1.1 matt
128 1.1 matt /*
129 1.1 matt * Identify the master (boot) CPU
130 1.1 matt * This also probes for an FPU and will install an FPE if necessary
131 1.1 matt */
132 1.1 matt
133 1.1 matt void
134 1.15 bjh21 identify_master_cpu(struct device *dv, int cpu_number)
135 1.1 matt {
136 1.1 matt u_int fpsr;
137 1.1 matt void *uh;
138 1.1 matt
139 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
140 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
141 1.17 bjh21
142 1.1 matt /* Get the cpu ID from coprocessor 15 */
143 1.1 matt
144 1.18 bjh21 curcpu()->ci_cpuid = cpu_id();
145 1.1 matt
146 1.18 bjh21 identify_arm_cpu(dv, cpu_number, curcpu());
147 1.1 matt strcpy(cpu_model, cpus[cpu_number].cpu_model);
148 1.1 matt
149 1.1 matt if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
150 1.18 bjh21 && (curcpu()->ci_cpuid & CPU_ID_REVISION_MASK) < 3) {
151 1.1 matt printf("%s: SA-110 with bugged STM^ instruction\n",
152 1.1 matt dv->dv_xname);
153 1.1 matt }
154 1.1 matt
155 1.1 matt #ifdef CPU_ARM8
156 1.18 bjh21 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
157 1.1 matt int clock = arm8_clock_config(0, 0);
158 1.1 matt char *fclk;
159 1.1 matt printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
160 1.1 matt printf(" clock:%s", (clock & 1) ? " dynamic" : "");
161 1.1 matt printf("%s", (clock & 2) ? " sync" : "");
162 1.1 matt switch ((clock >> 2) & 3) {
163 1.15 bjh21 case 0:
164 1.1 matt fclk = "bus clock";
165 1.1 matt break;
166 1.15 bjh21 case 1:
167 1.1 matt fclk = "ref clock";
168 1.1 matt break;
169 1.15 bjh21 case 3:
170 1.1 matt fclk = "pll";
171 1.1 matt break;
172 1.15 bjh21 default:
173 1.1 matt fclk = "illegal";
174 1.1 matt break;
175 1.1 matt }
176 1.1 matt printf(" fclk source=%s\n", fclk);
177 1.1 matt }
178 1.1 matt #endif
179 1.1 matt
180 1.1 matt /*
181 1.1 matt * Ok now we test for an FPA
182 1.1 matt * At this point no floating point emulator has been installed.
183 1.1 matt * This means any FP instruction will cause undefined exception.
184 1.1 matt * We install a temporay coproc 1 handler which will modify
185 1.1 matt * undefined_test if it is called.
186 1.1 matt * We then try to read the FP status register. If undefined_test
187 1.1 matt * has been decremented then the instruction was not handled by
188 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
189 1.1 matt * still 1 then we know the instruction was handled by an FPA.
190 1.1 matt * We then remove our test handler and look at the
191 1.1 matt * FP status register for identification.
192 1.1 matt */
193 1.1 matt
194 1.1 matt uh = install_coproc_handler(FP_COPROC, fpa_test);
195 1.1 matt
196 1.1 matt undefined_test = 0;
197 1.1 matt
198 1.15 bjh21 __asm __volatile("stmfd sp!, {r0};"
199 1.16 bjh21 "rfs r0;"
200 1.15 bjh21 "mov %0, r0;"
201 1.15 bjh21 "ldmfd sp!, {r0}" : "=r" (fpsr));
202 1.1 matt
203 1.1 matt remove_coproc_handler(uh);
204 1.1 matt
205 1.1 matt if (undefined_test == 0) {
206 1.1 matt cpus[cpu_number].fpu_type = (fpsr >> 24);
207 1.1 matt switch (fpsr >> 24) {
208 1.15 bjh21 case 0x81:
209 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
210 1.1 matt break;
211 1.1 matt
212 1.15 bjh21 default:
213 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
214 1.1 matt break;
215 1.1 matt }
216 1.1 matt cpus[cpu_number].fpu_flags = 0;
217 1.1 matt install_coproc_handler(FP_COPROC, fpa_handler);
218 1.1 matt } else {
219 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
220 1.1 matt cpus[cpu_number].fpu_flags = 0;
221 1.1 matt
222 1.1 matt /*
223 1.1 matt * Ok if ARMFPE is defined and the boot options request the
224 1.1 matt * ARM FPE then it will be installed as the FPE.
225 1.1 matt * This is just while I work on integrating the new FPE.
226 1.1 matt * It means the new FPE gets installed if compiled int (ARMFPE
227 1.1 matt * defined) and also gives me a on/off option when I boot in
228 1.1 matt * case the new FPE is causing panics.
229 1.1 matt */
230 1.1 matt
231 1.1 matt #ifdef ARMFPE
232 1.1 matt if (boot_args) {
233 1.2 bjh21 int usearmfpe = 1;
234 1.1 matt
235 1.2 bjh21 get_bootconf_option(boot_args, "armfpe",
236 1.2 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
237 1.2 bjh21 if (usearmfpe) {
238 1.1 matt if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
239 1.1 matt identify_arm_fpu(dv, cpu_number);
240 1.1 matt }
241 1.1 matt }
242 1.1 matt
243 1.1 matt #endif
244 1.1 matt }
245 1.1 matt
246 1.1 matt identify_arm_fpu(dv, cpu_number);
247 1.1 matt }
248 1.1 matt
249 1.13 thorpej static const char *generic_steppings[16] = {
250 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
251 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
252 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
253 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
254 1.14 bjh21 };
255 1.14 bjh21
256 1.14 bjh21 static const char *sa110_steppings[16] = {
257 1.14 bjh21 "rev 0", "step J", "step K", "step S",
258 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
259 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
260 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
261 1.14 bjh21 };
262 1.14 bjh21
263 1.14 bjh21 static const char *sa1100_steppings[16] = {
264 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
265 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
266 1.14 bjh21 "step D", "step E", "rev 10" "step G",
267 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
268 1.14 bjh21 };
269 1.14 bjh21
270 1.14 bjh21 static const char *sa1110_steppings[16] = {
271 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
272 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
273 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
274 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
275 1.13 thorpej };
276 1.13 thorpej
277 1.13 thorpej static const char *i80200_steppings[16] = {
278 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
279 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
280 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
281 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
282 1.13 thorpej };
283 1.13 thorpej
284 1.1 matt struct cpuidtab {
285 1.1 matt u_int32_t cpuid;
286 1.1 matt enum cpu_class cpu_class;
287 1.9 thorpej const char *cpu_name;
288 1.13 thorpej const char **cpu_steppings;
289 1.1 matt };
290 1.1 matt
291 1.1 matt const struct cpuidtab cpuids[] = {
292 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
293 1.13 thorpej generic_steppings },
294 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
295 1.13 thorpej generic_steppings },
296 1.13 thorpej
297 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
298 1.13 thorpej generic_steppings },
299 1.13 thorpej
300 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
301 1.13 thorpej generic_steppings },
302 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
303 1.13 thorpej generic_steppings },
304 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
305 1.13 thorpej generic_steppings },
306 1.13 thorpej
307 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
308 1.13 thorpej generic_steppings },
309 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
310 1.13 thorpej generic_steppings },
311 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
312 1.13 thorpej generic_steppings },
313 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
314 1.13 thorpej generic_steppings },
315 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
316 1.13 thorpej generic_steppings },
317 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
318 1.13 thorpej generic_steppings },
319 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
320 1.13 thorpej generic_steppings },
321 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
322 1.13 thorpej generic_steppings },
323 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
324 1.13 thorpej generic_steppings },
325 1.13 thorpej
326 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
327 1.13 thorpej generic_steppings },
328 1.13 thorpej
329 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
330 1.13 thorpej generic_steppings },
331 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
332 1.13 thorpej generic_steppings },
333 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
334 1.13 thorpej generic_steppings },
335 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
336 1.13 thorpej generic_steppings },
337 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
338 1.13 thorpej generic_steppings },
339 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
340 1.13 thorpej generic_steppings },
341 1.13 thorpej
342 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
343 1.14 bjh21 sa110_steppings },
344 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
345 1.14 bjh21 sa1100_steppings },
346 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
347 1.14 bjh21 sa1110_steppings },
348 1.13 thorpej
349 1.13 thorpej { CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
350 1.13 thorpej i80200_steppings },
351 1.13 thorpej
352 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
353 1.1 matt };
354 1.1 matt
355 1.1 matt struct cpu_classtab {
356 1.9 thorpej const char *class_name;
357 1.9 thorpej const char *class_option;
358 1.1 matt };
359 1.1 matt
360 1.1 matt const struct cpu_classtab cpu_classes[] = {
361 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
362 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
363 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
364 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
365 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
366 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
367 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
368 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
369 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
370 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
371 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
372 1.7 thorpej { "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
373 1.1 matt };
374 1.1 matt
375 1.1 matt /*
376 1.1 matt * Report the type of the specifed arm processor. This uses the generic and
377 1.1 matt * arm specific information in the cpu structure to identify the processor.
378 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
379 1.1 matt */
380 1.1 matt
381 1.12 thorpej static const char *wtnames[] = {
382 1.12 thorpej "write-through",
383 1.12 thorpej "write-back",
384 1.12 thorpej "write-back",
385 1.12 thorpej "**unknown 3**",
386 1.12 thorpej "**unknown 4**",
387 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
388 1.12 thorpej "write-back-locking-A",
389 1.12 thorpej "write-back-locking-B",
390 1.12 thorpej "**unknown 8**",
391 1.12 thorpej "**unknown 9**",
392 1.12 thorpej "**unknown 10**",
393 1.12 thorpej "**unknown 11**",
394 1.12 thorpej "**unknown 12**",
395 1.12 thorpej "**unknown 13**",
396 1.12 thorpej "**unknown 14**",
397 1.12 thorpej "**unknown 15**",
398 1.12 thorpej };
399 1.12 thorpej
400 1.1 matt void
401 1.18 bjh21 identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *ci)
402 1.1 matt {
403 1.1 matt cpu_t *cpu;
404 1.1 matt u_int cpuid;
405 1.1 matt int i;
406 1.1 matt
407 1.1 matt cpu = &cpus[cpu_number];
408 1.18 bjh21 cpuid = ci->ci_cpuid;
409 1.1 matt
410 1.1 matt if (cpuid == 0) {
411 1.1 matt printf("Processor failed probe - no CPU ID\n");
412 1.1 matt return;
413 1.1 matt }
414 1.1 matt
415 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
416 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
417 1.1 matt cpu->cpu_class = cpuids[i].cpu_class;
418 1.13 thorpej sprintf(cpu->cpu_model, "%s %s (%s core)",
419 1.13 thorpej cpuids[i].cpu_name,
420 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
421 1.13 thorpej CPU_ID_REVISION_MASK],
422 1.1 matt cpu_classes[cpu->cpu_class].class_name);
423 1.1 matt break;
424 1.1 matt }
425 1.1 matt
426 1.1 matt if (cpuids[i].cpuid == 0)
427 1.1 matt sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
428 1.1 matt
429 1.1 matt switch (cpu->cpu_class) {
430 1.1 matt case CPU_CLASS_ARM6:
431 1.1 matt case CPU_CLASS_ARM7:
432 1.3 chris case CPU_CLASS_ARM7TDMI:
433 1.1 matt case CPU_CLASS_ARM8:
434 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
435 1.1 matt strcat(cpu->cpu_model, " IDC disabled");
436 1.1 matt else
437 1.1 matt strcat(cpu->cpu_model, " IDC enabled");
438 1.1 matt break;
439 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
440 1.1 matt case CPU_CLASS_SA1:
441 1.4 matt case CPU_CLASS_XSCALE:
442 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
443 1.1 matt strcat(cpu->cpu_model, " DC disabled");
444 1.1 matt else
445 1.1 matt strcat(cpu->cpu_model, " DC enabled");
446 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
447 1.1 matt strcat(cpu->cpu_model, " IC disabled");
448 1.1 matt else
449 1.1 matt strcat(cpu->cpu_model, " IC enabled");
450 1.1 matt break;
451 1.1 matt }
452 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
453 1.1 matt strcat(cpu->cpu_model, " WB disabled");
454 1.1 matt else
455 1.1 matt strcat(cpu->cpu_model, " WB enabled");
456 1.1 matt
457 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
458 1.1 matt strcat(cpu->cpu_model, " LABT");
459 1.1 matt else
460 1.1 matt strcat(cpu->cpu_model, " EABT");
461 1.1 matt
462 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
463 1.1 matt strcat(cpu->cpu_model, " branch prediction enabled");
464 1.1 matt
465 1.1 matt /* Print the info */
466 1.12 thorpej printf(": %s\n", cpu->cpu_model);
467 1.1 matt
468 1.12 thorpej /* Print cache info. */
469 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
470 1.12 thorpej goto skip_pcache;
471 1.12 thorpej
472 1.12 thorpej if (arm_pcache_unified) {
473 1.12 thorpej printf("%s: %dKB/%dB %d-way %s unified cache\n",
474 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
475 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
476 1.12 thorpej wtnames[arm_pcache_type]);
477 1.12 thorpej } else {
478 1.12 thorpej printf("%s: %dKB/%dB %d-way Instruction cache\n",
479 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
480 1.12 thorpej arm_picache_line_size, arm_picache_ways);
481 1.12 thorpej printf("%s: %dKB/%dB %d-way %s Data cache\n",
482 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
483 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
484 1.12 thorpej wtnames[arm_pcache_type]);
485 1.12 thorpej }
486 1.12 thorpej
487 1.12 thorpej skip_pcache:
488 1.1 matt
489 1.1 matt switch (cpu->cpu_class) {
490 1.1 matt #ifdef CPU_ARM2
491 1.1 matt case CPU_CLASS_ARM2:
492 1.1 matt #endif
493 1.1 matt #ifdef CPU_ARM250
494 1.1 matt case CPU_CLASS_ARM2AS:
495 1.1 matt #endif
496 1.1 matt #ifdef CPU_ARM3
497 1.1 matt case CPU_CLASS_ARM3:
498 1.1 matt #endif
499 1.1 matt #ifdef CPU_ARM6
500 1.1 matt case CPU_CLASS_ARM6:
501 1.1 matt #endif
502 1.1 matt #ifdef CPU_ARM7
503 1.1 matt case CPU_CLASS_ARM7:
504 1.1 matt #endif
505 1.3 chris #ifdef CPU_ARM7TDMI
506 1.3 chris case CPU_CLASS_ARM7TDMI:
507 1.3 chris #endif
508 1.1 matt #ifdef CPU_ARM8
509 1.1 matt case CPU_CLASS_ARM8:
510 1.6 rearnsha #endif
511 1.6 rearnsha #ifdef CPU_ARM9
512 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
513 1.1 matt #endif
514 1.1 matt #ifdef CPU_SA110
515 1.1 matt case CPU_CLASS_SA1:
516 1.4 matt #endif
517 1.4 matt #ifdef CPU_XSCALE
518 1.4 matt case CPU_CLASS_XSCALE:
519 1.1 matt #endif
520 1.1 matt break;
521 1.1 matt default:
522 1.1 matt if (cpu_classes[cpu->cpu_class].class_option != NULL)
523 1.1 matt printf("%s: %s does not fully support this CPU."
524 1.1 matt "\n", dv->dv_xname, ostype);
525 1.1 matt else {
526 1.1 matt printf("%s: This kernel does not fully support "
527 1.1 matt "this CPU.\n", dv->dv_xname);
528 1.1 matt printf("%s: Recompile with \"options %s\" to "
529 1.1 matt "correct this.\n", dv->dv_xname,
530 1.1 matt cpu_classes[cpu->cpu_class].class_option);
531 1.1 matt }
532 1.1 matt break;
533 1.1 matt }
534 1.1 matt
535 1.1 matt }
536 1.1 matt
537 1.1 matt
538 1.1 matt /*
539 1.1 matt * Report the type of the specifed arm fpu. This uses the generic and arm
540 1.1 matt * specific information in the cpu structure to identify the fpu. The
541 1.1 matt * remaining fields in the cpu structure are filled in appropriately.
542 1.1 matt */
543 1.1 matt
544 1.1 matt void
545 1.15 bjh21 identify_arm_fpu(struct device *dv, int cpu_number)
546 1.1 matt {
547 1.1 matt cpu_t *cpu;
548 1.1 matt
549 1.1 matt cpu = &cpus[cpu_number];
550 1.1 matt
551 1.1 matt /* Now for the FP info */
552 1.1 matt
553 1.1 matt switch (cpu->fpu_class) {
554 1.1 matt case FPU_CLASS_NONE :
555 1.1 matt strcpy(cpu->fpu_model, "None");
556 1.1 matt break;
557 1.1 matt case FPU_CLASS_FPE :
558 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
559 1.1 matt printf("%s: no FP hardware found\n", dv->dv_xname);
560 1.1 matt break;
561 1.1 matt case FPU_CLASS_FPA :
562 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
563 1.1 matt if (cpu->fpu_type == FPU_TYPE_FPA11) {
564 1.1 matt strcpy(cpu->fpu_model, "FPA11");
565 1.1 matt printf("%s: FPA11 found\n", dv->dv_xname);
566 1.1 matt } else {
567 1.1 matt strcpy(cpu->fpu_model, "FPA");
568 1.1 matt printf("%s: FPA10 found\n", dv->dv_xname);
569 1.1 matt }
570 1.1 matt if ((cpu->fpu_flags & 4) == 0)
571 1.1 matt strcat(cpu->fpu_model, "");
572 1.1 matt else
573 1.1 matt strcat(cpu->fpu_model, " clk/2");
574 1.1 matt break;
575 1.1 matt case FPU_CLASS_FPU :
576 1.1 matt sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
577 1.1 matt cpu->fpu_type);
578 1.1 matt printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
579 1.1 matt break;
580 1.1 matt }
581 1.1 matt }
582 1.1 matt
583 1.1 matt /* End of cpu.c */
584