Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.23
      1  1.23     bjh21 /*	$NetBSD: cpu.c,v 1.23 2002/03/10 11:06:01 bjh21 Exp $	*/
      2   1.1      matt 
      3   1.1      matt /*
      4   1.1      matt  * Copyright (c) 1995 Mark Brinicombe.
      5   1.1      matt  * Copyright (c) 1995 Brini.
      6   1.1      matt  * All rights reserved.
      7   1.1      matt  *
      8   1.1      matt  * Redistribution and use in source and binary forms, with or without
      9   1.1      matt  * modification, are permitted provided that the following conditions
     10   1.1      matt  * are met:
     11   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     12   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     13   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     15   1.1      matt  *    documentation and/or other materials provided with the distribution.
     16   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     17   1.1      matt  *    must display the following acknowledgement:
     18   1.1      matt  *	This product includes software developed by Brini.
     19   1.1      matt  * 4. The name of the company nor the name of the author may be used to
     20   1.1      matt  *    endorse or promote products derived from this software without specific
     21   1.1      matt  *    prior written permission.
     22   1.1      matt  *
     23   1.1      matt  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24   1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25   1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26   1.1      matt  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27   1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28   1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29   1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1      matt  * SUCH DAMAGE.
     34   1.1      matt  *
     35   1.1      matt  * RiscBSD kernel project
     36   1.1      matt  *
     37   1.1      matt  * cpu.c
     38   1.1      matt  *
     39   1.1      matt  * Probing and configuration for the master cpu
     40   1.1      matt  *
     41   1.1      matt  * Created      : 10/10/95
     42   1.1      matt  */
     43   1.1      matt 
     44   1.1      matt #include "opt_armfpe.h"
     45   1.1      matt #include "opt_cputypes.h"
     46   1.1      matt 
     47   1.1      matt #include <sys/param.h>
     48  1.20     bjh21 
     49  1.23     bjh21 __RCSID("$NetBSD: cpu.c,v 1.23 2002/03/10 11:06:01 bjh21 Exp $");
     50  1.20     bjh21 
     51   1.1      matt #include <sys/systm.h>
     52   1.1      matt #include <sys/malloc.h>
     53   1.1      matt #include <sys/device.h>
     54   1.1      matt #include <sys/proc.h>
     55   1.1      matt #include <uvm/uvm_extern.h>
     56   1.1      matt #include <machine/conf.h>
     57   1.1      matt #include <machine/cpu.h>
     58  1.10   thorpej #include <arm/undefined.h>
     59  1.10   thorpej 
     60  1.10   thorpej #include <arm/cpus.h>
     61   1.1      matt 
     62   1.1      matt #ifdef ARMFPE
     63   1.1      matt #include <machine/bootconfig.h> /* For boot args */
     64  1.11   thorpej #include <arm/fpe-arm/armfpe.h>
     65  1.11   thorpej #endif
     66   1.1      matt 
     67   1.1      matt cpu_t cpus[MAX_CPUS];
     68   1.1      matt 
     69  1.20     bjh21 char cpu_model[256];
     70   1.1      matt volatile int undefined_test;	/* Used for FPA test */
     71   1.1      matt 
     72   1.1      matt /* Prototypes */
     73  1.15     bjh21 void identify_master_cpu(struct device *dv, int cpu_number);
     74  1.18     bjh21 void identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *);
     75  1.15     bjh21 void identify_arm_fpu(struct device *dv, int cpu_number);
     76  1.15     bjh21 int fpa_test(u_int, u_int, trapframe_t *, int);
     77  1.15     bjh21 int fpa_handler(u_int, u_int, trapframe_t *, int);
     78   1.1      matt 
     79   1.1      matt /*
     80   1.1      matt  * void cpusattach(struct device *parent, struct device *dev, void *aux)
     81   1.1      matt  *
     82   1.1      matt  * Attach the main cpu
     83   1.1      matt  */
     84   1.1      matt 
     85   1.1      matt void
     86  1.15     bjh21 cpu_attach(struct device *dv)
     87   1.1      matt {
     88  1.15     bjh21 
     89   1.1      matt 	identify_master_cpu(dv, CPU_MASTER);
     90   1.1      matt }
     91   1.1      matt 
     92   1.1      matt /*
     93   1.1      matt  * Used to test for an FPA. The following function is installed as a coproc1
     94   1.1      matt  * handler on the undefined instruction vector and then we issue a FPA
     95   1.1      matt  * instruction. If undefined_test is non zero then the FPA did not handle
     96   1.1      matt  * the instruction so must be absent.
     97   1.1      matt  */
     98   1.1      matt 
     99   1.1      matt int
    100  1.15     bjh21 fpa_test(u_int address, u_int instruction, trapframe_t *frame, int fault_code)
    101   1.1      matt {
    102   1.1      matt 
    103   1.1      matt 	frame->tf_pc += INSN_SIZE;
    104   1.1      matt 	++undefined_test;
    105   1.1      matt 	return(0);
    106   1.1      matt }
    107   1.1      matt 
    108   1.1      matt /*
    109   1.1      matt  * If an FPA was found then this function is installed as the coproc1 handler
    110   1.1      matt  * on the undefined instruction vector. Currently we don't support FPA's
    111   1.1      matt  * so this just triggers an exception.
    112   1.1      matt  */
    113   1.1      matt 
    114   1.1      matt int
    115  1.15     bjh21 fpa_handler(u_int address, u_int instruction, trapframe_t *frame,
    116  1.15     bjh21     int fault_code)
    117   1.1      matt {
    118   1.1      matt 	u_int fpsr;
    119   1.1      matt 
    120  1.21     bjh21 	__asm __volatile("rfs %0" : "=r" (fpsr));
    121   1.1      matt 
    122   1.1      matt 	printf("FPA exception: fpsr = %08x\n", fpsr);
    123   1.1      matt 
    124   1.1      matt 	return(1);
    125   1.1      matt }
    126   1.1      matt 
    127   1.1      matt 
    128   1.1      matt /*
    129   1.1      matt  * Identify the master (boot) CPU
    130   1.1      matt  * This also probes for an FPU and will install an FPE if necessary
    131   1.1      matt  */
    132   1.1      matt 
    133   1.1      matt void
    134  1.15     bjh21 identify_master_cpu(struct device *dv, int cpu_number)
    135   1.1      matt {
    136   1.1      matt 	u_int fpsr;
    137   1.1      matt 	void *uh;
    138  1.23     bjh21 
    139  1.23     bjh21 	curcpu()->ci_dev = dv;
    140   1.1      matt 
    141  1.17     bjh21 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
    142  1.17     bjh21 	    NULL, dv->dv_xname, "arm700swibug");
    143  1.17     bjh21 
    144   1.1      matt 	/* Get the cpu ID from coprocessor 15 */
    145   1.1      matt 
    146  1.18     bjh21 	curcpu()->ci_cpuid = cpu_id();
    147   1.1      matt 
    148  1.18     bjh21 	identify_arm_cpu(dv, cpu_number, curcpu());
    149   1.1      matt 
    150  1.19     bjh21 	if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_SA110
    151  1.18     bjh21 	    && (curcpu()->ci_cpuid & CPU_ID_REVISION_MASK) < 3) {
    152   1.1      matt 		printf("%s: SA-110 with bugged STM^ instruction\n",
    153   1.1      matt 		       dv->dv_xname);
    154   1.1      matt 	}
    155   1.1      matt 
    156   1.1      matt #ifdef CPU_ARM8
    157  1.18     bjh21 	if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    158   1.1      matt 		int clock = arm8_clock_config(0, 0);
    159   1.1      matt 		char *fclk;
    160   1.1      matt 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    161   1.1      matt 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    162   1.1      matt 		printf("%s", (clock & 2) ? " sync" : "");
    163   1.1      matt 		switch ((clock >> 2) & 3) {
    164  1.15     bjh21 		case 0:
    165   1.1      matt 			fclk = "bus clock";
    166   1.1      matt 			break;
    167  1.15     bjh21 		case 1:
    168   1.1      matt 			fclk = "ref clock";
    169   1.1      matt 			break;
    170  1.15     bjh21 		case 3:
    171   1.1      matt 			fclk = "pll";
    172   1.1      matt 			break;
    173  1.15     bjh21 		default:
    174   1.1      matt 			fclk = "illegal";
    175   1.1      matt 			break;
    176   1.1      matt 		}
    177   1.1      matt 		printf(" fclk source=%s\n", fclk);
    178   1.1      matt  	}
    179   1.1      matt #endif
    180   1.1      matt 
    181   1.1      matt 	/*
    182   1.1      matt 	 * Ok now we test for an FPA
    183   1.1      matt 	 * At this point no floating point emulator has been installed.
    184   1.1      matt 	 * This means any FP instruction will cause undefined exception.
    185   1.1      matt 	 * We install a temporay coproc 1 handler which will modify
    186   1.1      matt 	 * undefined_test if it is called.
    187   1.1      matt 	 * We then try to read the FP status register. If undefined_test
    188   1.1      matt 	 * has been decremented then the instruction was not handled by
    189   1.1      matt 	 * an FPA so we know the FPA is missing. If undefined_test is
    190   1.1      matt 	 * still 1 then we know the instruction was handled by an FPA.
    191   1.1      matt 	 * We then remove our test handler and look at the
    192   1.1      matt 	 * FP status register for identification.
    193   1.1      matt 	 */
    194   1.1      matt 
    195   1.1      matt 	uh = install_coproc_handler(FP_COPROC, fpa_test);
    196   1.1      matt 
    197   1.1      matt 	undefined_test = 0;
    198   1.1      matt 
    199  1.21     bjh21 	__asm __volatile("rfs %0" : "=r" (fpsr));
    200   1.1      matt 
    201   1.1      matt 	remove_coproc_handler(uh);
    202   1.1      matt 
    203   1.1      matt 	if (undefined_test == 0) {
    204   1.1      matt 		cpus[cpu_number].fpu_type = (fpsr >> 24);
    205   1.1      matt 	        switch (fpsr >> 24) {
    206  1.15     bjh21 		case 0x81:
    207   1.1      matt 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
    208   1.1      matt 			break;
    209   1.1      matt 
    210  1.15     bjh21 		default:
    211   1.1      matt 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
    212   1.1      matt 			break;
    213   1.1      matt 		}
    214   1.1      matt 		install_coproc_handler(FP_COPROC, fpa_handler);
    215   1.1      matt 	} else {
    216   1.1      matt 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
    217   1.1      matt 
    218   1.1      matt 		/*
    219   1.1      matt 		 * Ok if ARMFPE is defined and the boot options request the
    220   1.1      matt 		 * ARM FPE then it will be installed as the FPE.
    221   1.1      matt 		 * This is just while I work on integrating the new FPE.
    222   1.1      matt 		 * It means the new FPE gets installed if compiled int (ARMFPE
    223   1.1      matt 		 * defined) and also gives me a on/off option when I boot in
    224   1.1      matt 		 * case the new FPE is causing panics.
    225   1.1      matt 		 */
    226   1.1      matt 
    227   1.1      matt #ifdef ARMFPE
    228   1.1      matt 		if (boot_args) {
    229   1.2     bjh21 			int usearmfpe = 1;
    230   1.1      matt 
    231   1.2     bjh21 			get_bootconf_option(boot_args, "armfpe",
    232   1.2     bjh21 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    233   1.2     bjh21 			if (usearmfpe) {
    234   1.1      matt 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
    235   1.1      matt 					identify_arm_fpu(dv, cpu_number);
    236   1.1      matt 			}
    237   1.1      matt 		}
    238   1.1      matt 
    239   1.1      matt #endif
    240   1.1      matt 	}
    241   1.1      matt 
    242   1.1      matt 	identify_arm_fpu(dv, cpu_number);
    243   1.1      matt }
    244   1.1      matt 
    245  1.19     bjh21 enum cpu_class {
    246  1.19     bjh21 	CPU_CLASS_NONE,
    247  1.19     bjh21 	CPU_CLASS_ARM2,
    248  1.19     bjh21 	CPU_CLASS_ARM2AS,
    249  1.19     bjh21 	CPU_CLASS_ARM3,
    250  1.19     bjh21 	CPU_CLASS_ARM6,
    251  1.19     bjh21 	CPU_CLASS_ARM7,
    252  1.19     bjh21 	CPU_CLASS_ARM7TDMI,
    253  1.19     bjh21 	CPU_CLASS_ARM8,
    254  1.19     bjh21 	CPU_CLASS_ARM9TDMI,
    255  1.19     bjh21 	CPU_CLASS_ARM9ES,
    256  1.19     bjh21 	CPU_CLASS_SA1,
    257  1.19     bjh21 	CPU_CLASS_XSCALE,
    258  1.19     bjh21 };
    259  1.19     bjh21 
    260  1.13   thorpej static const char *generic_steppings[16] = {
    261  1.14     bjh21 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    262  1.14     bjh21 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    263  1.14     bjh21 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    264  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    265  1.14     bjh21 };
    266  1.14     bjh21 
    267  1.14     bjh21 static const char *sa110_steppings[16] = {
    268  1.14     bjh21 	"rev 0",	"step J",	"step K",	"step S",
    269  1.14     bjh21 	"step T",	"rev 5",	"rev 6",	"rev 7",
    270  1.14     bjh21 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    271  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    272  1.14     bjh21 };
    273  1.14     bjh21 
    274  1.14     bjh21 static const char *sa1100_steppings[16] = {
    275  1.14     bjh21 	"rev 0",	"step B",	"step C",	"rev 3",
    276  1.14     bjh21 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    277  1.14     bjh21 	"step D",	"step E",	"rev 10"	"step G",
    278  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    279  1.14     bjh21 };
    280  1.14     bjh21 
    281  1.14     bjh21 static const char *sa1110_steppings[16] = {
    282  1.14     bjh21 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    283  1.14     bjh21 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    284  1.14     bjh21 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    285  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    286  1.13   thorpej };
    287  1.13   thorpej 
    288  1.13   thorpej static const char *i80200_steppings[16] = {
    289  1.14     bjh21 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    290  1.14     bjh21 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    291  1.14     bjh21 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    292  1.14     bjh21 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    293  1.13   thorpej };
    294  1.13   thorpej 
    295   1.1      matt struct cpuidtab {
    296   1.1      matt 	u_int32_t	cpuid;
    297   1.1      matt 	enum		cpu_class cpu_class;
    298   1.9   thorpej 	const char	*cpu_name;
    299  1.13   thorpej 	const char	**cpu_steppings;
    300   1.1      matt };
    301   1.1      matt 
    302   1.1      matt const struct cpuidtab cpuids[] = {
    303  1.13   thorpej 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    304  1.13   thorpej 	  generic_steppings },
    305  1.13   thorpej 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    306  1.13   thorpej 	  generic_steppings },
    307  1.13   thorpej 
    308  1.13   thorpej 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    309  1.13   thorpej 	  generic_steppings },
    310  1.13   thorpej 
    311  1.13   thorpej 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    312  1.13   thorpej 	  generic_steppings },
    313  1.13   thorpej 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    314  1.13   thorpej 	  generic_steppings },
    315  1.13   thorpej 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    316  1.13   thorpej 	  generic_steppings },
    317  1.13   thorpej 
    318  1.13   thorpej 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    319  1.13   thorpej 	  generic_steppings },
    320  1.13   thorpej 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    321  1.13   thorpej 	  generic_steppings },
    322  1.13   thorpej 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    323  1.13   thorpej 	  generic_steppings },
    324  1.13   thorpej 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    325  1.13   thorpej 	  generic_steppings },
    326  1.13   thorpej 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    327  1.13   thorpej 	  generic_steppings },
    328  1.13   thorpej 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    329  1.13   thorpej 	  generic_steppings },
    330  1.13   thorpej 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    331  1.13   thorpej 	  generic_steppings },
    332  1.13   thorpej 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    333  1.13   thorpej 	  generic_steppings },
    334  1.13   thorpej 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    335  1.13   thorpej 	  generic_steppings },
    336  1.13   thorpej 
    337  1.13   thorpej 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    338  1.13   thorpej 	  generic_steppings },
    339  1.13   thorpej 
    340  1.13   thorpej 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    341  1.13   thorpej 	  generic_steppings },
    342  1.13   thorpej 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    343  1.13   thorpej 	  generic_steppings },
    344  1.13   thorpej 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    345  1.13   thorpej 	  generic_steppings },
    346  1.13   thorpej 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    347  1.13   thorpej 	  generic_steppings },
    348  1.13   thorpej 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    349  1.13   thorpej 	  generic_steppings },
    350  1.13   thorpej 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    351  1.13   thorpej 	  generic_steppings },
    352  1.13   thorpej 
    353  1.13   thorpej 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    354  1.14     bjh21 	  sa110_steppings },
    355  1.13   thorpej 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    356  1.14     bjh21 	  sa1100_steppings },
    357  1.13   thorpej 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    358  1.14     bjh21 	  sa1110_steppings },
    359  1.13   thorpej 
    360  1.13   thorpej 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"i80200",
    361  1.13   thorpej 	  i80200_steppings },
    362  1.13   thorpej 
    363  1.13   thorpej 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    364   1.1      matt };
    365   1.1      matt 
    366   1.1      matt struct cpu_classtab {
    367   1.9   thorpej 	const char	*class_name;
    368   1.9   thorpej 	const char	*class_option;
    369   1.1      matt };
    370   1.1      matt 
    371   1.1      matt const struct cpu_classtab cpu_classes[] = {
    372   1.6  rearnsha 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    373   1.6  rearnsha 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    374   1.6  rearnsha 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    375   1.6  rearnsha 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    376   1.6  rearnsha 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    377   1.6  rearnsha 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    378   1.6  rearnsha 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    379   1.6  rearnsha 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    380   1.6  rearnsha 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    381   1.6  rearnsha 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    382   1.6  rearnsha 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    383   1.7   thorpej 	{ "XScale",	"CPU_XSCALE" },		/* CPU_CLASS_XSCALE */
    384   1.1      matt };
    385   1.1      matt 
    386   1.1      matt /*
    387   1.1      matt  * Report the type of the specifed arm processor. This uses the generic and
    388   1.1      matt  * arm specific information in the cpu structure to identify the processor.
    389   1.1      matt  * The remaining fields in the cpu structure are filled in appropriately.
    390   1.1      matt  */
    391   1.1      matt 
    392  1.12   thorpej static const char *wtnames[] = {
    393  1.12   thorpej 	"write-through",
    394  1.12   thorpej 	"write-back",
    395  1.12   thorpej 	"write-back",
    396  1.12   thorpej 	"**unknown 3**",
    397  1.12   thorpej 	"**unknown 4**",
    398  1.12   thorpej 	"write-back-locking",		/* XXX XScale-specific? */
    399  1.12   thorpej 	"write-back-locking-A",
    400  1.12   thorpej 	"write-back-locking-B",
    401  1.12   thorpej 	"**unknown 8**",
    402  1.12   thorpej 	"**unknown 9**",
    403  1.12   thorpej 	"**unknown 10**",
    404  1.12   thorpej 	"**unknown 11**",
    405  1.12   thorpej 	"**unknown 12**",
    406  1.12   thorpej 	"**unknown 13**",
    407  1.12   thorpej 	"**unknown 14**",
    408  1.12   thorpej 	"**unknown 15**",
    409  1.12   thorpej };
    410  1.12   thorpej 
    411   1.1      matt void
    412  1.18     bjh21 identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *ci)
    413   1.1      matt {
    414   1.1      matt 	cpu_t *cpu;
    415   1.1      matt 	u_int cpuid;
    416  1.19     bjh21 	enum cpu_class cpu_class;
    417   1.1      matt 	int i;
    418   1.1      matt 
    419   1.1      matt 	cpu = &cpus[cpu_number];
    420  1.18     bjh21 	cpuid = ci->ci_cpuid;
    421   1.1      matt 
    422   1.1      matt 	if (cpuid == 0) {
    423   1.1      matt 		printf("Processor failed probe - no CPU ID\n");
    424   1.1      matt 		return;
    425   1.1      matt 	}
    426   1.1      matt 
    427   1.1      matt 	for (i = 0; cpuids[i].cpuid != 0; i++)
    428   1.1      matt 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    429  1.19     bjh21 			cpu_class = cpuids[i].cpu_class;
    430  1.20     bjh21 			sprintf(cpu_model, "%s %s (%s core)",
    431  1.13   thorpej 			    cpuids[i].cpu_name,
    432  1.13   thorpej 			    cpuids[i].cpu_steppings[cpuid &
    433  1.13   thorpej 						    CPU_ID_REVISION_MASK],
    434  1.19     bjh21 			    cpu_classes[cpu_class].class_name);
    435   1.1      matt 			break;
    436   1.1      matt 		}
    437   1.1      matt 
    438   1.1      matt 	if (cpuids[i].cpuid == 0)
    439  1.20     bjh21 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    440   1.1      matt 
    441  1.19     bjh21 	switch (cpu_class) {
    442   1.1      matt 	case CPU_CLASS_ARM6:
    443   1.1      matt 	case CPU_CLASS_ARM7:
    444   1.3     chris 	case CPU_CLASS_ARM7TDMI:
    445   1.1      matt 	case CPU_CLASS_ARM8:
    446  1.18     bjh21 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    447  1.20     bjh21 			strcat(cpu_model, " IDC disabled");
    448   1.1      matt 		else
    449  1.20     bjh21 			strcat(cpu_model, " IDC enabled");
    450   1.1      matt 		break;
    451   1.6  rearnsha 	case CPU_CLASS_ARM9TDMI:
    452   1.1      matt 	case CPU_CLASS_SA1:
    453   1.4      matt 	case CPU_CLASS_XSCALE:
    454  1.18     bjh21 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    455  1.20     bjh21 			strcat(cpu_model, " DC disabled");
    456   1.1      matt 		else
    457  1.20     bjh21 			strcat(cpu_model, " DC enabled");
    458  1.18     bjh21 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    459  1.20     bjh21 			strcat(cpu_model, " IC disabled");
    460   1.1      matt 		else
    461  1.20     bjh21 			strcat(cpu_model, " IC enabled");
    462   1.1      matt 		break;
    463  1.19     bjh21 	default:
    464  1.19     bjh21 		break;
    465   1.1      matt 	}
    466  1.18     bjh21 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    467  1.20     bjh21 		strcat(cpu_model, " WB disabled");
    468   1.1      matt 	else
    469  1.20     bjh21 		strcat(cpu_model, " WB enabled");
    470   1.1      matt 
    471  1.18     bjh21 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    472  1.20     bjh21 		strcat(cpu_model, " LABT");
    473   1.1      matt 	else
    474  1.20     bjh21 		strcat(cpu_model, " EABT");
    475   1.1      matt 
    476  1.18     bjh21 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    477  1.20     bjh21 		strcat(cpu_model, " branch prediction enabled");
    478   1.1      matt 
    479   1.1      matt 	/* Print the info */
    480  1.20     bjh21 	printf(": %s\n", cpu_model);
    481   1.1      matt 
    482  1.12   thorpej 	/* Print cache info. */
    483  1.12   thorpej 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    484  1.12   thorpej 		goto skip_pcache;
    485  1.12   thorpej 
    486  1.12   thorpej 	if (arm_pcache_unified) {
    487  1.12   thorpej 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
    488  1.12   thorpej 		    dv->dv_xname, arm_pdcache_size / 1024,
    489  1.12   thorpej 		    arm_pdcache_line_size, arm_pdcache_ways,
    490  1.12   thorpej 		    wtnames[arm_pcache_type]);
    491  1.12   thorpej 	} else {
    492  1.12   thorpej 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
    493  1.12   thorpej 		    dv->dv_xname, arm_picache_size / 1024,
    494  1.12   thorpej 		    arm_picache_line_size, arm_picache_ways);
    495  1.12   thorpej 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
    496  1.12   thorpej 		    dv->dv_xname, arm_pdcache_size / 1024,
    497  1.12   thorpej 		    arm_pdcache_line_size, arm_pdcache_ways,
    498  1.12   thorpej 		    wtnames[arm_pcache_type]);
    499  1.12   thorpej 	}
    500  1.12   thorpej 
    501  1.12   thorpej  skip_pcache:
    502   1.1      matt 
    503  1.19     bjh21 	switch (cpu_class) {
    504   1.1      matt #ifdef CPU_ARM2
    505   1.1      matt 	case CPU_CLASS_ARM2:
    506   1.1      matt #endif
    507   1.1      matt #ifdef CPU_ARM250
    508   1.1      matt 	case CPU_CLASS_ARM2AS:
    509   1.1      matt #endif
    510   1.1      matt #ifdef CPU_ARM3
    511   1.1      matt 	case CPU_CLASS_ARM3:
    512   1.1      matt #endif
    513   1.1      matt #ifdef CPU_ARM6
    514   1.1      matt 	case CPU_CLASS_ARM6:
    515   1.1      matt #endif
    516   1.1      matt #ifdef CPU_ARM7
    517   1.1      matt 	case CPU_CLASS_ARM7:
    518   1.1      matt #endif
    519   1.3     chris #ifdef CPU_ARM7TDMI
    520   1.3     chris 	case CPU_CLASS_ARM7TDMI:
    521   1.3     chris #endif
    522   1.1      matt #ifdef CPU_ARM8
    523   1.1      matt 	case CPU_CLASS_ARM8:
    524   1.6  rearnsha #endif
    525   1.6  rearnsha #ifdef CPU_ARM9
    526   1.6  rearnsha 	case CPU_CLASS_ARM9TDMI:
    527   1.1      matt #endif
    528   1.1      matt #ifdef CPU_SA110
    529   1.1      matt 	case CPU_CLASS_SA1:
    530   1.4      matt #endif
    531   1.4      matt #ifdef CPU_XSCALE
    532   1.4      matt 	case CPU_CLASS_XSCALE:
    533   1.1      matt #endif
    534   1.1      matt 		break;
    535   1.1      matt 	default:
    536  1.19     bjh21 		if (cpu_classes[cpu_class].class_option != NULL)
    537   1.1      matt 			printf("%s: %s does not fully support this CPU."
    538   1.1      matt 			       "\n", dv->dv_xname, ostype);
    539   1.1      matt 		else {
    540   1.1      matt 			printf("%s: This kernel does not fully support "
    541   1.1      matt 			       "this CPU.\n", dv->dv_xname);
    542   1.1      matt 			printf("%s: Recompile with \"options %s\" to "
    543   1.1      matt 			       "correct this.\n", dv->dv_xname,
    544  1.19     bjh21 			       cpu_classes[cpu_class].class_option);
    545   1.1      matt 		}
    546   1.1      matt 		break;
    547   1.1      matt 	}
    548   1.1      matt 
    549   1.1      matt }
    550   1.1      matt 
    551   1.1      matt 
    552   1.1      matt /*
    553   1.1      matt  * Report the type of the specifed arm fpu. This uses the generic and arm
    554   1.1      matt  * specific information in the cpu structure to identify the fpu. The
    555   1.1      matt  * remaining fields in the cpu structure are filled in appropriately.
    556   1.1      matt  */
    557   1.1      matt 
    558   1.1      matt void
    559  1.15     bjh21 identify_arm_fpu(struct device *dv, int cpu_number)
    560   1.1      matt {
    561   1.1      matt 	cpu_t *cpu;
    562   1.1      matt 
    563   1.1      matt 	cpu = &cpus[cpu_number];
    564   1.1      matt 
    565   1.1      matt 	/* Now for the FP info */
    566   1.1      matt 
    567   1.1      matt 	switch (cpu->fpu_class) {
    568   1.1      matt 	case FPU_CLASS_NONE :
    569   1.1      matt 		strcpy(cpu->fpu_model, "None");
    570   1.1      matt 		break;
    571   1.1      matt 	case FPU_CLASS_FPE :
    572   1.1      matt 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    573   1.1      matt 		printf("%s: no FP hardware found\n", dv->dv_xname);
    574   1.1      matt 		break;
    575   1.1      matt 	case FPU_CLASS_FPA :
    576   1.1      matt 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    577   1.1      matt 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
    578   1.1      matt 			strcpy(cpu->fpu_model, "FPA11");
    579   1.1      matt 			printf("%s: FPA11 found\n", dv->dv_xname);
    580   1.1      matt 		} else {
    581   1.1      matt 			strcpy(cpu->fpu_model, "FPA");
    582   1.1      matt 			printf("%s: FPA10 found\n", dv->dv_xname);
    583   1.1      matt 		}
    584   1.1      matt 	case FPU_CLASS_FPU :
    585   1.1      matt 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
    586   1.1      matt 		    cpu->fpu_type);
    587   1.1      matt 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
    588   1.1      matt 		break;
    589   1.1      matt 	}
    590   1.1      matt }
    591   1.1      matt 
    592   1.1      matt /* End of cpu.c */
    593