cpu.c revision 1.23 1 1.23 bjh21 /* $NetBSD: cpu.c,v 1.23 2002/03/10 11:06:01 bjh21 Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt #include "opt_cputypes.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.23 bjh21 __RCSID("$NetBSD: cpu.c,v 1.23 2002/03/10 11:06:01 bjh21 Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.1 matt #include <sys/malloc.h>
53 1.1 matt #include <sys/device.h>
54 1.1 matt #include <sys/proc.h>
55 1.1 matt #include <uvm/uvm_extern.h>
56 1.1 matt #include <machine/conf.h>
57 1.1 matt #include <machine/cpu.h>
58 1.10 thorpej #include <arm/undefined.h>
59 1.10 thorpej
60 1.10 thorpej #include <arm/cpus.h>
61 1.1 matt
62 1.1 matt #ifdef ARMFPE
63 1.1 matt #include <machine/bootconfig.h> /* For boot args */
64 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
65 1.11 thorpej #endif
66 1.1 matt
67 1.1 matt cpu_t cpus[MAX_CPUS];
68 1.1 matt
69 1.20 bjh21 char cpu_model[256];
70 1.1 matt volatile int undefined_test; /* Used for FPA test */
71 1.1 matt
72 1.1 matt /* Prototypes */
73 1.15 bjh21 void identify_master_cpu(struct device *dv, int cpu_number);
74 1.18 bjh21 void identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *);
75 1.15 bjh21 void identify_arm_fpu(struct device *dv, int cpu_number);
76 1.15 bjh21 int fpa_test(u_int, u_int, trapframe_t *, int);
77 1.15 bjh21 int fpa_handler(u_int, u_int, trapframe_t *, int);
78 1.1 matt
79 1.1 matt /*
80 1.1 matt * void cpusattach(struct device *parent, struct device *dev, void *aux)
81 1.1 matt *
82 1.1 matt * Attach the main cpu
83 1.1 matt */
84 1.1 matt
85 1.1 matt void
86 1.15 bjh21 cpu_attach(struct device *dv)
87 1.1 matt {
88 1.15 bjh21
89 1.1 matt identify_master_cpu(dv, CPU_MASTER);
90 1.1 matt }
91 1.1 matt
92 1.1 matt /*
93 1.1 matt * Used to test for an FPA. The following function is installed as a coproc1
94 1.1 matt * handler on the undefined instruction vector and then we issue a FPA
95 1.1 matt * instruction. If undefined_test is non zero then the FPA did not handle
96 1.1 matt * the instruction so must be absent.
97 1.1 matt */
98 1.1 matt
99 1.1 matt int
100 1.15 bjh21 fpa_test(u_int address, u_int instruction, trapframe_t *frame, int fault_code)
101 1.1 matt {
102 1.1 matt
103 1.1 matt frame->tf_pc += INSN_SIZE;
104 1.1 matt ++undefined_test;
105 1.1 matt return(0);
106 1.1 matt }
107 1.1 matt
108 1.1 matt /*
109 1.1 matt * If an FPA was found then this function is installed as the coproc1 handler
110 1.1 matt * on the undefined instruction vector. Currently we don't support FPA's
111 1.1 matt * so this just triggers an exception.
112 1.1 matt */
113 1.1 matt
114 1.1 matt int
115 1.15 bjh21 fpa_handler(u_int address, u_int instruction, trapframe_t *frame,
116 1.15 bjh21 int fault_code)
117 1.1 matt {
118 1.1 matt u_int fpsr;
119 1.1 matt
120 1.21 bjh21 __asm __volatile("rfs %0" : "=r" (fpsr));
121 1.1 matt
122 1.1 matt printf("FPA exception: fpsr = %08x\n", fpsr);
123 1.1 matt
124 1.1 matt return(1);
125 1.1 matt }
126 1.1 matt
127 1.1 matt
128 1.1 matt /*
129 1.1 matt * Identify the master (boot) CPU
130 1.1 matt * This also probes for an FPU and will install an FPE if necessary
131 1.1 matt */
132 1.1 matt
133 1.1 matt void
134 1.15 bjh21 identify_master_cpu(struct device *dv, int cpu_number)
135 1.1 matt {
136 1.1 matt u_int fpsr;
137 1.1 matt void *uh;
138 1.23 bjh21
139 1.23 bjh21 curcpu()->ci_dev = dv;
140 1.1 matt
141 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
142 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
143 1.17 bjh21
144 1.1 matt /* Get the cpu ID from coprocessor 15 */
145 1.1 matt
146 1.18 bjh21 curcpu()->ci_cpuid = cpu_id();
147 1.1 matt
148 1.18 bjh21 identify_arm_cpu(dv, cpu_number, curcpu());
149 1.1 matt
150 1.19 bjh21 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_SA110
151 1.18 bjh21 && (curcpu()->ci_cpuid & CPU_ID_REVISION_MASK) < 3) {
152 1.1 matt printf("%s: SA-110 with bugged STM^ instruction\n",
153 1.1 matt dv->dv_xname);
154 1.1 matt }
155 1.1 matt
156 1.1 matt #ifdef CPU_ARM8
157 1.18 bjh21 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
158 1.1 matt int clock = arm8_clock_config(0, 0);
159 1.1 matt char *fclk;
160 1.1 matt printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
161 1.1 matt printf(" clock:%s", (clock & 1) ? " dynamic" : "");
162 1.1 matt printf("%s", (clock & 2) ? " sync" : "");
163 1.1 matt switch ((clock >> 2) & 3) {
164 1.15 bjh21 case 0:
165 1.1 matt fclk = "bus clock";
166 1.1 matt break;
167 1.15 bjh21 case 1:
168 1.1 matt fclk = "ref clock";
169 1.1 matt break;
170 1.15 bjh21 case 3:
171 1.1 matt fclk = "pll";
172 1.1 matt break;
173 1.15 bjh21 default:
174 1.1 matt fclk = "illegal";
175 1.1 matt break;
176 1.1 matt }
177 1.1 matt printf(" fclk source=%s\n", fclk);
178 1.1 matt }
179 1.1 matt #endif
180 1.1 matt
181 1.1 matt /*
182 1.1 matt * Ok now we test for an FPA
183 1.1 matt * At this point no floating point emulator has been installed.
184 1.1 matt * This means any FP instruction will cause undefined exception.
185 1.1 matt * We install a temporay coproc 1 handler which will modify
186 1.1 matt * undefined_test if it is called.
187 1.1 matt * We then try to read the FP status register. If undefined_test
188 1.1 matt * has been decremented then the instruction was not handled by
189 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
190 1.1 matt * still 1 then we know the instruction was handled by an FPA.
191 1.1 matt * We then remove our test handler and look at the
192 1.1 matt * FP status register for identification.
193 1.1 matt */
194 1.1 matt
195 1.1 matt uh = install_coproc_handler(FP_COPROC, fpa_test);
196 1.1 matt
197 1.1 matt undefined_test = 0;
198 1.1 matt
199 1.21 bjh21 __asm __volatile("rfs %0" : "=r" (fpsr));
200 1.1 matt
201 1.1 matt remove_coproc_handler(uh);
202 1.1 matt
203 1.1 matt if (undefined_test == 0) {
204 1.1 matt cpus[cpu_number].fpu_type = (fpsr >> 24);
205 1.1 matt switch (fpsr >> 24) {
206 1.15 bjh21 case 0x81:
207 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
208 1.1 matt break;
209 1.1 matt
210 1.15 bjh21 default:
211 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
212 1.1 matt break;
213 1.1 matt }
214 1.1 matt install_coproc_handler(FP_COPROC, fpa_handler);
215 1.1 matt } else {
216 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
217 1.1 matt
218 1.1 matt /*
219 1.1 matt * Ok if ARMFPE is defined and the boot options request the
220 1.1 matt * ARM FPE then it will be installed as the FPE.
221 1.1 matt * This is just while I work on integrating the new FPE.
222 1.1 matt * It means the new FPE gets installed if compiled int (ARMFPE
223 1.1 matt * defined) and also gives me a on/off option when I boot in
224 1.1 matt * case the new FPE is causing panics.
225 1.1 matt */
226 1.1 matt
227 1.1 matt #ifdef ARMFPE
228 1.1 matt if (boot_args) {
229 1.2 bjh21 int usearmfpe = 1;
230 1.1 matt
231 1.2 bjh21 get_bootconf_option(boot_args, "armfpe",
232 1.2 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
233 1.2 bjh21 if (usearmfpe) {
234 1.1 matt if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
235 1.1 matt identify_arm_fpu(dv, cpu_number);
236 1.1 matt }
237 1.1 matt }
238 1.1 matt
239 1.1 matt #endif
240 1.1 matt }
241 1.1 matt
242 1.1 matt identify_arm_fpu(dv, cpu_number);
243 1.1 matt }
244 1.1 matt
245 1.19 bjh21 enum cpu_class {
246 1.19 bjh21 CPU_CLASS_NONE,
247 1.19 bjh21 CPU_CLASS_ARM2,
248 1.19 bjh21 CPU_CLASS_ARM2AS,
249 1.19 bjh21 CPU_CLASS_ARM3,
250 1.19 bjh21 CPU_CLASS_ARM6,
251 1.19 bjh21 CPU_CLASS_ARM7,
252 1.19 bjh21 CPU_CLASS_ARM7TDMI,
253 1.19 bjh21 CPU_CLASS_ARM8,
254 1.19 bjh21 CPU_CLASS_ARM9TDMI,
255 1.19 bjh21 CPU_CLASS_ARM9ES,
256 1.19 bjh21 CPU_CLASS_SA1,
257 1.19 bjh21 CPU_CLASS_XSCALE,
258 1.19 bjh21 };
259 1.19 bjh21
260 1.13 thorpej static const char *generic_steppings[16] = {
261 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
262 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
263 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
264 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
265 1.14 bjh21 };
266 1.14 bjh21
267 1.14 bjh21 static const char *sa110_steppings[16] = {
268 1.14 bjh21 "rev 0", "step J", "step K", "step S",
269 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
270 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
271 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
272 1.14 bjh21 };
273 1.14 bjh21
274 1.14 bjh21 static const char *sa1100_steppings[16] = {
275 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
276 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
277 1.14 bjh21 "step D", "step E", "rev 10" "step G",
278 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
279 1.14 bjh21 };
280 1.14 bjh21
281 1.14 bjh21 static const char *sa1110_steppings[16] = {
282 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
283 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
284 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
285 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
286 1.13 thorpej };
287 1.13 thorpej
288 1.13 thorpej static const char *i80200_steppings[16] = {
289 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
290 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
291 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
292 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
293 1.13 thorpej };
294 1.13 thorpej
295 1.1 matt struct cpuidtab {
296 1.1 matt u_int32_t cpuid;
297 1.1 matt enum cpu_class cpu_class;
298 1.9 thorpej const char *cpu_name;
299 1.13 thorpej const char **cpu_steppings;
300 1.1 matt };
301 1.1 matt
302 1.1 matt const struct cpuidtab cpuids[] = {
303 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
304 1.13 thorpej generic_steppings },
305 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
306 1.13 thorpej generic_steppings },
307 1.13 thorpej
308 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
309 1.13 thorpej generic_steppings },
310 1.13 thorpej
311 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
312 1.13 thorpej generic_steppings },
313 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
314 1.13 thorpej generic_steppings },
315 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
316 1.13 thorpej generic_steppings },
317 1.13 thorpej
318 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
319 1.13 thorpej generic_steppings },
320 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
321 1.13 thorpej generic_steppings },
322 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
323 1.13 thorpej generic_steppings },
324 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
325 1.13 thorpej generic_steppings },
326 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
327 1.13 thorpej generic_steppings },
328 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
329 1.13 thorpej generic_steppings },
330 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
331 1.13 thorpej generic_steppings },
332 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
333 1.13 thorpej generic_steppings },
334 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
335 1.13 thorpej generic_steppings },
336 1.13 thorpej
337 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
338 1.13 thorpej generic_steppings },
339 1.13 thorpej
340 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
341 1.13 thorpej generic_steppings },
342 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
343 1.13 thorpej generic_steppings },
344 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
345 1.13 thorpej generic_steppings },
346 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
347 1.13 thorpej generic_steppings },
348 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
349 1.13 thorpej generic_steppings },
350 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
351 1.13 thorpej generic_steppings },
352 1.13 thorpej
353 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
354 1.14 bjh21 sa110_steppings },
355 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
356 1.14 bjh21 sa1100_steppings },
357 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
358 1.14 bjh21 sa1110_steppings },
359 1.13 thorpej
360 1.13 thorpej { CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
361 1.13 thorpej i80200_steppings },
362 1.13 thorpej
363 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
364 1.1 matt };
365 1.1 matt
366 1.1 matt struct cpu_classtab {
367 1.9 thorpej const char *class_name;
368 1.9 thorpej const char *class_option;
369 1.1 matt };
370 1.1 matt
371 1.1 matt const struct cpu_classtab cpu_classes[] = {
372 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
373 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
374 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
375 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
376 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
377 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
378 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
379 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
380 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
381 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
382 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
383 1.7 thorpej { "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
384 1.1 matt };
385 1.1 matt
386 1.1 matt /*
387 1.1 matt * Report the type of the specifed arm processor. This uses the generic and
388 1.1 matt * arm specific information in the cpu structure to identify the processor.
389 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
390 1.1 matt */
391 1.1 matt
392 1.12 thorpej static const char *wtnames[] = {
393 1.12 thorpej "write-through",
394 1.12 thorpej "write-back",
395 1.12 thorpej "write-back",
396 1.12 thorpej "**unknown 3**",
397 1.12 thorpej "**unknown 4**",
398 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
399 1.12 thorpej "write-back-locking-A",
400 1.12 thorpej "write-back-locking-B",
401 1.12 thorpej "**unknown 8**",
402 1.12 thorpej "**unknown 9**",
403 1.12 thorpej "**unknown 10**",
404 1.12 thorpej "**unknown 11**",
405 1.12 thorpej "**unknown 12**",
406 1.12 thorpej "**unknown 13**",
407 1.12 thorpej "**unknown 14**",
408 1.12 thorpej "**unknown 15**",
409 1.12 thorpej };
410 1.12 thorpej
411 1.1 matt void
412 1.18 bjh21 identify_arm_cpu(struct device *dv, int cpu_number, struct cpu_info *ci)
413 1.1 matt {
414 1.1 matt cpu_t *cpu;
415 1.1 matt u_int cpuid;
416 1.19 bjh21 enum cpu_class cpu_class;
417 1.1 matt int i;
418 1.1 matt
419 1.1 matt cpu = &cpus[cpu_number];
420 1.18 bjh21 cpuid = ci->ci_cpuid;
421 1.1 matt
422 1.1 matt if (cpuid == 0) {
423 1.1 matt printf("Processor failed probe - no CPU ID\n");
424 1.1 matt return;
425 1.1 matt }
426 1.1 matt
427 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
428 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
429 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
430 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
431 1.13 thorpej cpuids[i].cpu_name,
432 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
433 1.13 thorpej CPU_ID_REVISION_MASK],
434 1.19 bjh21 cpu_classes[cpu_class].class_name);
435 1.1 matt break;
436 1.1 matt }
437 1.1 matt
438 1.1 matt if (cpuids[i].cpuid == 0)
439 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
440 1.1 matt
441 1.19 bjh21 switch (cpu_class) {
442 1.1 matt case CPU_CLASS_ARM6:
443 1.1 matt case CPU_CLASS_ARM7:
444 1.3 chris case CPU_CLASS_ARM7TDMI:
445 1.1 matt case CPU_CLASS_ARM8:
446 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
447 1.20 bjh21 strcat(cpu_model, " IDC disabled");
448 1.1 matt else
449 1.20 bjh21 strcat(cpu_model, " IDC enabled");
450 1.1 matt break;
451 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
452 1.1 matt case CPU_CLASS_SA1:
453 1.4 matt case CPU_CLASS_XSCALE:
454 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
455 1.20 bjh21 strcat(cpu_model, " DC disabled");
456 1.1 matt else
457 1.20 bjh21 strcat(cpu_model, " DC enabled");
458 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
459 1.20 bjh21 strcat(cpu_model, " IC disabled");
460 1.1 matt else
461 1.20 bjh21 strcat(cpu_model, " IC enabled");
462 1.1 matt break;
463 1.19 bjh21 default:
464 1.19 bjh21 break;
465 1.1 matt }
466 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
467 1.20 bjh21 strcat(cpu_model, " WB disabled");
468 1.1 matt else
469 1.20 bjh21 strcat(cpu_model, " WB enabled");
470 1.1 matt
471 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
472 1.20 bjh21 strcat(cpu_model, " LABT");
473 1.1 matt else
474 1.20 bjh21 strcat(cpu_model, " EABT");
475 1.1 matt
476 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
477 1.20 bjh21 strcat(cpu_model, " branch prediction enabled");
478 1.1 matt
479 1.1 matt /* Print the info */
480 1.20 bjh21 printf(": %s\n", cpu_model);
481 1.1 matt
482 1.12 thorpej /* Print cache info. */
483 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
484 1.12 thorpej goto skip_pcache;
485 1.12 thorpej
486 1.12 thorpej if (arm_pcache_unified) {
487 1.12 thorpej printf("%s: %dKB/%dB %d-way %s unified cache\n",
488 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
489 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
490 1.12 thorpej wtnames[arm_pcache_type]);
491 1.12 thorpej } else {
492 1.12 thorpej printf("%s: %dKB/%dB %d-way Instruction cache\n",
493 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
494 1.12 thorpej arm_picache_line_size, arm_picache_ways);
495 1.12 thorpej printf("%s: %dKB/%dB %d-way %s Data cache\n",
496 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
497 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
498 1.12 thorpej wtnames[arm_pcache_type]);
499 1.12 thorpej }
500 1.12 thorpej
501 1.12 thorpej skip_pcache:
502 1.1 matt
503 1.19 bjh21 switch (cpu_class) {
504 1.1 matt #ifdef CPU_ARM2
505 1.1 matt case CPU_CLASS_ARM2:
506 1.1 matt #endif
507 1.1 matt #ifdef CPU_ARM250
508 1.1 matt case CPU_CLASS_ARM2AS:
509 1.1 matt #endif
510 1.1 matt #ifdef CPU_ARM3
511 1.1 matt case CPU_CLASS_ARM3:
512 1.1 matt #endif
513 1.1 matt #ifdef CPU_ARM6
514 1.1 matt case CPU_CLASS_ARM6:
515 1.1 matt #endif
516 1.1 matt #ifdef CPU_ARM7
517 1.1 matt case CPU_CLASS_ARM7:
518 1.1 matt #endif
519 1.3 chris #ifdef CPU_ARM7TDMI
520 1.3 chris case CPU_CLASS_ARM7TDMI:
521 1.3 chris #endif
522 1.1 matt #ifdef CPU_ARM8
523 1.1 matt case CPU_CLASS_ARM8:
524 1.6 rearnsha #endif
525 1.6 rearnsha #ifdef CPU_ARM9
526 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
527 1.1 matt #endif
528 1.1 matt #ifdef CPU_SA110
529 1.1 matt case CPU_CLASS_SA1:
530 1.4 matt #endif
531 1.4 matt #ifdef CPU_XSCALE
532 1.4 matt case CPU_CLASS_XSCALE:
533 1.1 matt #endif
534 1.1 matt break;
535 1.1 matt default:
536 1.19 bjh21 if (cpu_classes[cpu_class].class_option != NULL)
537 1.1 matt printf("%s: %s does not fully support this CPU."
538 1.1 matt "\n", dv->dv_xname, ostype);
539 1.1 matt else {
540 1.1 matt printf("%s: This kernel does not fully support "
541 1.1 matt "this CPU.\n", dv->dv_xname);
542 1.1 matt printf("%s: Recompile with \"options %s\" to "
543 1.1 matt "correct this.\n", dv->dv_xname,
544 1.19 bjh21 cpu_classes[cpu_class].class_option);
545 1.1 matt }
546 1.1 matt break;
547 1.1 matt }
548 1.1 matt
549 1.1 matt }
550 1.1 matt
551 1.1 matt
552 1.1 matt /*
553 1.1 matt * Report the type of the specifed arm fpu. This uses the generic and arm
554 1.1 matt * specific information in the cpu structure to identify the fpu. The
555 1.1 matt * remaining fields in the cpu structure are filled in appropriately.
556 1.1 matt */
557 1.1 matt
558 1.1 matt void
559 1.15 bjh21 identify_arm_fpu(struct device *dv, int cpu_number)
560 1.1 matt {
561 1.1 matt cpu_t *cpu;
562 1.1 matt
563 1.1 matt cpu = &cpus[cpu_number];
564 1.1 matt
565 1.1 matt /* Now for the FP info */
566 1.1 matt
567 1.1 matt switch (cpu->fpu_class) {
568 1.1 matt case FPU_CLASS_NONE :
569 1.1 matt strcpy(cpu->fpu_model, "None");
570 1.1 matt break;
571 1.1 matt case FPU_CLASS_FPE :
572 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
573 1.1 matt printf("%s: no FP hardware found\n", dv->dv_xname);
574 1.1 matt break;
575 1.1 matt case FPU_CLASS_FPA :
576 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
577 1.1 matt if (cpu->fpu_type == FPU_TYPE_FPA11) {
578 1.1 matt strcpy(cpu->fpu_model, "FPA11");
579 1.1 matt printf("%s: FPA11 found\n", dv->dv_xname);
580 1.1 matt } else {
581 1.1 matt strcpy(cpu->fpu_model, "FPA");
582 1.1 matt printf("%s: FPA10 found\n", dv->dv_xname);
583 1.1 matt }
584 1.1 matt case FPU_CLASS_FPU :
585 1.1 matt sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
586 1.1 matt cpu->fpu_type);
587 1.1 matt printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
588 1.1 matt break;
589 1.1 matt }
590 1.1 matt }
591 1.1 matt
592 1.1 matt /* End of cpu.c */
593