cpu.c revision 1.25 1 1.25 bjh21 /* $NetBSD: cpu.c,v 1.25 2002/03/10 15:29:53 bjh21 Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt #include "opt_cputypes.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.25 bjh21 __RCSID("$NetBSD: cpu.c,v 1.25 2002/03/10 15:29:53 bjh21 Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.1 matt #include <sys/malloc.h>
53 1.1 matt #include <sys/device.h>
54 1.1 matt #include <sys/proc.h>
55 1.1 matt #include <uvm/uvm_extern.h>
56 1.1 matt #include <machine/conf.h>
57 1.1 matt #include <machine/cpu.h>
58 1.10 thorpej #include <arm/undefined.h>
59 1.10 thorpej
60 1.1 matt #ifdef ARMFPE
61 1.1 matt #include <machine/bootconfig.h> /* For boot args */
62 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
63 1.11 thorpej #endif
64 1.1 matt
65 1.20 bjh21 char cpu_model[256];
66 1.1 matt
67 1.1 matt /* Prototypes */
68 1.25 bjh21 void identify_arm_cpu(struct device *dv, struct cpu_info *);
69 1.1 matt
70 1.1 matt /*
71 1.25 bjh21 * Identify the master (boot) CPU
72 1.1 matt */
73 1.1 matt
74 1.1 matt void
75 1.15 bjh21 cpu_attach(struct device *dv)
76 1.1 matt {
77 1.25 bjh21 int usearmfpe = 1;
78 1.23 bjh21
79 1.23 bjh21 curcpu()->ci_dev = dv;
80 1.1 matt
81 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
82 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
83 1.17 bjh21
84 1.1 matt /* Get the cpu ID from coprocessor 15 */
85 1.1 matt
86 1.18 bjh21 curcpu()->ci_cpuid = cpu_id();
87 1.1 matt
88 1.25 bjh21 identify_arm_cpu(dv, curcpu());
89 1.1 matt
90 1.19 bjh21 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_SA110
91 1.18 bjh21 && (curcpu()->ci_cpuid & CPU_ID_REVISION_MASK) < 3) {
92 1.1 matt printf("%s: SA-110 with bugged STM^ instruction\n",
93 1.1 matt dv->dv_xname);
94 1.1 matt }
95 1.1 matt
96 1.1 matt #ifdef CPU_ARM8
97 1.18 bjh21 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
98 1.1 matt int clock = arm8_clock_config(0, 0);
99 1.1 matt char *fclk;
100 1.1 matt printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
101 1.1 matt printf(" clock:%s", (clock & 1) ? " dynamic" : "");
102 1.1 matt printf("%s", (clock & 2) ? " sync" : "");
103 1.1 matt switch ((clock >> 2) & 3) {
104 1.15 bjh21 case 0:
105 1.1 matt fclk = "bus clock";
106 1.1 matt break;
107 1.15 bjh21 case 1:
108 1.1 matt fclk = "ref clock";
109 1.1 matt break;
110 1.15 bjh21 case 3:
111 1.1 matt fclk = "pll";
112 1.1 matt break;
113 1.15 bjh21 default:
114 1.1 matt fclk = "illegal";
115 1.1 matt break;
116 1.1 matt }
117 1.1 matt printf(" fclk source=%s\n", fclk);
118 1.1 matt }
119 1.1 matt #endif
120 1.1 matt
121 1.25 bjh21 #ifdef ARMFPE
122 1.1 matt /*
123 1.1 matt * Ok now we test for an FPA
124 1.1 matt * At this point no floating point emulator has been installed.
125 1.1 matt * This means any FP instruction will cause undefined exception.
126 1.1 matt * We install a temporay coproc 1 handler which will modify
127 1.1 matt * undefined_test if it is called.
128 1.1 matt * We then try to read the FP status register. If undefined_test
129 1.1 matt * has been decremented then the instruction was not handled by
130 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
131 1.1 matt * still 1 then we know the instruction was handled by an FPA.
132 1.1 matt * We then remove our test handler and look at the
133 1.1 matt * FP status register for identification.
134 1.1 matt */
135 1.1 matt
136 1.25 bjh21 /*
137 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
138 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
139 1.25 bjh21 * This is just while I work on integrating the new FPE.
140 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
141 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
142 1.25 bjh21 * case the new FPE is causing panics.
143 1.25 bjh21 */
144 1.1 matt
145 1.1 matt
146 1.25 bjh21 if (boot_args)
147 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
148 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
149 1.25 bjh21 if (usearmfpe)
150 1.25 bjh21 initialise_arm_fpe();
151 1.1 matt #endif
152 1.1 matt }
153 1.1 matt
154 1.19 bjh21 enum cpu_class {
155 1.19 bjh21 CPU_CLASS_NONE,
156 1.19 bjh21 CPU_CLASS_ARM2,
157 1.19 bjh21 CPU_CLASS_ARM2AS,
158 1.19 bjh21 CPU_CLASS_ARM3,
159 1.19 bjh21 CPU_CLASS_ARM6,
160 1.19 bjh21 CPU_CLASS_ARM7,
161 1.19 bjh21 CPU_CLASS_ARM7TDMI,
162 1.19 bjh21 CPU_CLASS_ARM8,
163 1.19 bjh21 CPU_CLASS_ARM9TDMI,
164 1.19 bjh21 CPU_CLASS_ARM9ES,
165 1.19 bjh21 CPU_CLASS_SA1,
166 1.19 bjh21 CPU_CLASS_XSCALE,
167 1.19 bjh21 };
168 1.19 bjh21
169 1.13 thorpej static const char *generic_steppings[16] = {
170 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
171 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
172 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
173 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
174 1.14 bjh21 };
175 1.14 bjh21
176 1.14 bjh21 static const char *sa110_steppings[16] = {
177 1.14 bjh21 "rev 0", "step J", "step K", "step S",
178 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
179 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
180 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
181 1.14 bjh21 };
182 1.14 bjh21
183 1.14 bjh21 static const char *sa1100_steppings[16] = {
184 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
185 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
186 1.14 bjh21 "step D", "step E", "rev 10" "step G",
187 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
188 1.14 bjh21 };
189 1.14 bjh21
190 1.14 bjh21 static const char *sa1110_steppings[16] = {
191 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
192 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
193 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
194 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
195 1.13 thorpej };
196 1.13 thorpej
197 1.13 thorpej static const char *i80200_steppings[16] = {
198 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
199 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
200 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
201 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
202 1.13 thorpej };
203 1.13 thorpej
204 1.1 matt struct cpuidtab {
205 1.1 matt u_int32_t cpuid;
206 1.1 matt enum cpu_class cpu_class;
207 1.9 thorpej const char *cpu_name;
208 1.13 thorpej const char **cpu_steppings;
209 1.1 matt };
210 1.1 matt
211 1.1 matt const struct cpuidtab cpuids[] = {
212 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
213 1.13 thorpej generic_steppings },
214 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
215 1.13 thorpej generic_steppings },
216 1.13 thorpej
217 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
218 1.13 thorpej generic_steppings },
219 1.13 thorpej
220 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
221 1.13 thorpej generic_steppings },
222 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
223 1.13 thorpej generic_steppings },
224 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
225 1.13 thorpej generic_steppings },
226 1.13 thorpej
227 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
228 1.13 thorpej generic_steppings },
229 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
230 1.13 thorpej generic_steppings },
231 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
232 1.13 thorpej generic_steppings },
233 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
234 1.13 thorpej generic_steppings },
235 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
236 1.13 thorpej generic_steppings },
237 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
238 1.13 thorpej generic_steppings },
239 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
240 1.13 thorpej generic_steppings },
241 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
242 1.13 thorpej generic_steppings },
243 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
244 1.13 thorpej generic_steppings },
245 1.13 thorpej
246 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
247 1.13 thorpej generic_steppings },
248 1.13 thorpej
249 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
250 1.13 thorpej generic_steppings },
251 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
252 1.13 thorpej generic_steppings },
253 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
254 1.13 thorpej generic_steppings },
255 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
256 1.13 thorpej generic_steppings },
257 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
258 1.13 thorpej generic_steppings },
259 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
260 1.13 thorpej generic_steppings },
261 1.13 thorpej
262 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
263 1.14 bjh21 sa110_steppings },
264 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
265 1.14 bjh21 sa1100_steppings },
266 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
267 1.14 bjh21 sa1110_steppings },
268 1.13 thorpej
269 1.13 thorpej { CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
270 1.13 thorpej i80200_steppings },
271 1.13 thorpej
272 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
273 1.1 matt };
274 1.1 matt
275 1.1 matt struct cpu_classtab {
276 1.9 thorpej const char *class_name;
277 1.9 thorpej const char *class_option;
278 1.1 matt };
279 1.1 matt
280 1.1 matt const struct cpu_classtab cpu_classes[] = {
281 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
282 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
283 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
284 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
285 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
286 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
287 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
288 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
289 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
290 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
291 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
292 1.7 thorpej { "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
293 1.1 matt };
294 1.1 matt
295 1.1 matt /*
296 1.1 matt * Report the type of the specifed arm processor. This uses the generic and
297 1.1 matt * arm specific information in the cpu structure to identify the processor.
298 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
299 1.1 matt */
300 1.1 matt
301 1.12 thorpej static const char *wtnames[] = {
302 1.12 thorpej "write-through",
303 1.12 thorpej "write-back",
304 1.12 thorpej "write-back",
305 1.12 thorpej "**unknown 3**",
306 1.12 thorpej "**unknown 4**",
307 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
308 1.12 thorpej "write-back-locking-A",
309 1.12 thorpej "write-back-locking-B",
310 1.12 thorpej "**unknown 8**",
311 1.12 thorpej "**unknown 9**",
312 1.12 thorpej "**unknown 10**",
313 1.12 thorpej "**unknown 11**",
314 1.12 thorpej "**unknown 12**",
315 1.12 thorpej "**unknown 13**",
316 1.12 thorpej "**unknown 14**",
317 1.12 thorpej "**unknown 15**",
318 1.12 thorpej };
319 1.12 thorpej
320 1.1 matt void
321 1.25 bjh21 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
322 1.1 matt {
323 1.1 matt u_int cpuid;
324 1.19 bjh21 enum cpu_class cpu_class;
325 1.1 matt int i;
326 1.1 matt
327 1.18 bjh21 cpuid = ci->ci_cpuid;
328 1.1 matt
329 1.1 matt if (cpuid == 0) {
330 1.1 matt printf("Processor failed probe - no CPU ID\n");
331 1.1 matt return;
332 1.1 matt }
333 1.1 matt
334 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
335 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
336 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
337 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
338 1.13 thorpej cpuids[i].cpu_name,
339 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
340 1.13 thorpej CPU_ID_REVISION_MASK],
341 1.19 bjh21 cpu_classes[cpu_class].class_name);
342 1.1 matt break;
343 1.1 matt }
344 1.1 matt
345 1.1 matt if (cpuids[i].cpuid == 0)
346 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
347 1.1 matt
348 1.19 bjh21 switch (cpu_class) {
349 1.1 matt case CPU_CLASS_ARM6:
350 1.1 matt case CPU_CLASS_ARM7:
351 1.3 chris case CPU_CLASS_ARM7TDMI:
352 1.1 matt case CPU_CLASS_ARM8:
353 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
354 1.20 bjh21 strcat(cpu_model, " IDC disabled");
355 1.1 matt else
356 1.20 bjh21 strcat(cpu_model, " IDC enabled");
357 1.1 matt break;
358 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
359 1.1 matt case CPU_CLASS_SA1:
360 1.4 matt case CPU_CLASS_XSCALE:
361 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
362 1.20 bjh21 strcat(cpu_model, " DC disabled");
363 1.1 matt else
364 1.20 bjh21 strcat(cpu_model, " DC enabled");
365 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
366 1.20 bjh21 strcat(cpu_model, " IC disabled");
367 1.1 matt else
368 1.20 bjh21 strcat(cpu_model, " IC enabled");
369 1.1 matt break;
370 1.19 bjh21 default:
371 1.19 bjh21 break;
372 1.1 matt }
373 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
374 1.20 bjh21 strcat(cpu_model, " WB disabled");
375 1.1 matt else
376 1.20 bjh21 strcat(cpu_model, " WB enabled");
377 1.1 matt
378 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
379 1.20 bjh21 strcat(cpu_model, " LABT");
380 1.1 matt else
381 1.20 bjh21 strcat(cpu_model, " EABT");
382 1.1 matt
383 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
384 1.20 bjh21 strcat(cpu_model, " branch prediction enabled");
385 1.1 matt
386 1.1 matt /* Print the info */
387 1.20 bjh21 printf(": %s\n", cpu_model);
388 1.1 matt
389 1.12 thorpej /* Print cache info. */
390 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
391 1.12 thorpej goto skip_pcache;
392 1.12 thorpej
393 1.12 thorpej if (arm_pcache_unified) {
394 1.12 thorpej printf("%s: %dKB/%dB %d-way %s unified cache\n",
395 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
396 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
397 1.12 thorpej wtnames[arm_pcache_type]);
398 1.12 thorpej } else {
399 1.12 thorpej printf("%s: %dKB/%dB %d-way Instruction cache\n",
400 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
401 1.12 thorpej arm_picache_line_size, arm_picache_ways);
402 1.12 thorpej printf("%s: %dKB/%dB %d-way %s Data cache\n",
403 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
404 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
405 1.12 thorpej wtnames[arm_pcache_type]);
406 1.12 thorpej }
407 1.12 thorpej
408 1.12 thorpej skip_pcache:
409 1.1 matt
410 1.19 bjh21 switch (cpu_class) {
411 1.1 matt #ifdef CPU_ARM2
412 1.1 matt case CPU_CLASS_ARM2:
413 1.1 matt #endif
414 1.1 matt #ifdef CPU_ARM250
415 1.1 matt case CPU_CLASS_ARM2AS:
416 1.1 matt #endif
417 1.1 matt #ifdef CPU_ARM3
418 1.1 matt case CPU_CLASS_ARM3:
419 1.1 matt #endif
420 1.1 matt #ifdef CPU_ARM6
421 1.1 matt case CPU_CLASS_ARM6:
422 1.1 matt #endif
423 1.1 matt #ifdef CPU_ARM7
424 1.1 matt case CPU_CLASS_ARM7:
425 1.1 matt #endif
426 1.3 chris #ifdef CPU_ARM7TDMI
427 1.3 chris case CPU_CLASS_ARM7TDMI:
428 1.3 chris #endif
429 1.1 matt #ifdef CPU_ARM8
430 1.1 matt case CPU_CLASS_ARM8:
431 1.6 rearnsha #endif
432 1.6 rearnsha #ifdef CPU_ARM9
433 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
434 1.1 matt #endif
435 1.1 matt #ifdef CPU_SA110
436 1.1 matt case CPU_CLASS_SA1:
437 1.4 matt #endif
438 1.4 matt #ifdef CPU_XSCALE
439 1.4 matt case CPU_CLASS_XSCALE:
440 1.1 matt #endif
441 1.1 matt break;
442 1.1 matt default:
443 1.19 bjh21 if (cpu_classes[cpu_class].class_option != NULL)
444 1.1 matt printf("%s: %s does not fully support this CPU."
445 1.1 matt "\n", dv->dv_xname, ostype);
446 1.1 matt else {
447 1.1 matt printf("%s: This kernel does not fully support "
448 1.1 matt "this CPU.\n", dv->dv_xname);
449 1.1 matt printf("%s: Recompile with \"options %s\" to "
450 1.1 matt "correct this.\n", dv->dv_xname,
451 1.19 bjh21 cpu_classes[cpu_class].class_option);
452 1.1 matt }
453 1.1 matt break;
454 1.1 matt }
455 1.1 matt
456 1.1 matt }
457 1.1 matt
458 1.1 matt /* End of cpu.c */
459