cpu.c revision 1.41 1 1.41 gehenna /* $NetBSD: cpu.c,v 1.41 2002/09/06 13:18:43 gehenna Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt
46 1.1 matt #include <sys/param.h>
47 1.20 bjh21
48 1.41 gehenna __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.41 2002/09/06 13:18:43 gehenna Exp $");
49 1.20 bjh21
50 1.1 matt #include <sys/systm.h>
51 1.1 matt #include <sys/malloc.h>
52 1.1 matt #include <sys/device.h>
53 1.1 matt #include <sys/proc.h>
54 1.41 gehenna #include <sys/conf.h>
55 1.1 matt #include <uvm/uvm_extern.h>
56 1.1 matt #include <machine/cpu.h>
57 1.33 thorpej
58 1.33 thorpej #include <arm/cpuconf.h>
59 1.10 thorpej #include <arm/undefined.h>
60 1.10 thorpej
61 1.1 matt #ifdef ARMFPE
62 1.1 matt #include <machine/bootconfig.h> /* For boot args */
63 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
64 1.11 thorpej #endif
65 1.1 matt
66 1.20 bjh21 char cpu_model[256];
67 1.1 matt
68 1.1 matt /* Prototypes */
69 1.25 bjh21 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70 1.1 matt
71 1.1 matt /*
72 1.25 bjh21 * Identify the master (boot) CPU
73 1.1 matt */
74 1.1 matt
75 1.1 matt void
76 1.15 bjh21 cpu_attach(struct device *dv)
77 1.1 matt {
78 1.27 reinoud int usearmfpe;
79 1.27 reinoud
80 1.27 reinoud usearmfpe = 1; /* when compiled in, its enabled by default */
81 1.23 bjh21
82 1.23 bjh21 curcpu()->ci_dev = dv;
83 1.1 matt
84 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
86 1.17 bjh21
87 1.1 matt /* Get the cpu ID from coprocessor 15 */
88 1.1 matt
89 1.18 bjh21 curcpu()->ci_cpuid = cpu_id();
90 1.30 thorpej curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
91 1.30 thorpej curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
92 1.1 matt
93 1.25 bjh21 identify_arm_cpu(dv, curcpu());
94 1.1 matt
95 1.30 thorpej if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
96 1.1 matt printf("%s: SA-110 with bugged STM^ instruction\n",
97 1.1 matt dv->dv_xname);
98 1.1 matt }
99 1.1 matt
100 1.1 matt #ifdef CPU_ARM8
101 1.18 bjh21 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
102 1.1 matt int clock = arm8_clock_config(0, 0);
103 1.1 matt char *fclk;
104 1.1 matt printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
105 1.1 matt printf(" clock:%s", (clock & 1) ? " dynamic" : "");
106 1.1 matt printf("%s", (clock & 2) ? " sync" : "");
107 1.1 matt switch ((clock >> 2) & 3) {
108 1.15 bjh21 case 0:
109 1.1 matt fclk = "bus clock";
110 1.1 matt break;
111 1.15 bjh21 case 1:
112 1.1 matt fclk = "ref clock";
113 1.1 matt break;
114 1.15 bjh21 case 3:
115 1.1 matt fclk = "pll";
116 1.1 matt break;
117 1.15 bjh21 default:
118 1.1 matt fclk = "illegal";
119 1.1 matt break;
120 1.1 matt }
121 1.1 matt printf(" fclk source=%s\n", fclk);
122 1.1 matt }
123 1.1 matt #endif
124 1.1 matt
125 1.25 bjh21 #ifdef ARMFPE
126 1.1 matt /*
127 1.1 matt * Ok now we test for an FPA
128 1.1 matt * At this point no floating point emulator has been installed.
129 1.1 matt * This means any FP instruction will cause undefined exception.
130 1.1 matt * We install a temporay coproc 1 handler which will modify
131 1.1 matt * undefined_test if it is called.
132 1.1 matt * We then try to read the FP status register. If undefined_test
133 1.1 matt * has been decremented then the instruction was not handled by
134 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
135 1.1 matt * still 1 then we know the instruction was handled by an FPA.
136 1.1 matt * We then remove our test handler and look at the
137 1.1 matt * FP status register for identification.
138 1.1 matt */
139 1.1 matt
140 1.25 bjh21 /*
141 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
142 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
143 1.25 bjh21 * This is just while I work on integrating the new FPE.
144 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
145 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
146 1.25 bjh21 * case the new FPE is causing panics.
147 1.25 bjh21 */
148 1.1 matt
149 1.1 matt
150 1.25 bjh21 if (boot_args)
151 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
152 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
153 1.25 bjh21 if (usearmfpe)
154 1.25 bjh21 initialise_arm_fpe();
155 1.1 matt #endif
156 1.1 matt }
157 1.1 matt
158 1.19 bjh21 enum cpu_class {
159 1.19 bjh21 CPU_CLASS_NONE,
160 1.19 bjh21 CPU_CLASS_ARM2,
161 1.19 bjh21 CPU_CLASS_ARM2AS,
162 1.19 bjh21 CPU_CLASS_ARM3,
163 1.19 bjh21 CPU_CLASS_ARM6,
164 1.19 bjh21 CPU_CLASS_ARM7,
165 1.19 bjh21 CPU_CLASS_ARM7TDMI,
166 1.19 bjh21 CPU_CLASS_ARM8,
167 1.19 bjh21 CPU_CLASS_ARM9TDMI,
168 1.19 bjh21 CPU_CLASS_ARM9ES,
169 1.19 bjh21 CPU_CLASS_SA1,
170 1.19 bjh21 CPU_CLASS_XSCALE,
171 1.28 bjh21 CPU_CLASS_ARM10E
172 1.19 bjh21 };
173 1.19 bjh21
174 1.13 thorpej static const char *generic_steppings[16] = {
175 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
176 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
177 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
178 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
179 1.14 bjh21 };
180 1.14 bjh21
181 1.14 bjh21 static const char *sa110_steppings[16] = {
182 1.14 bjh21 "rev 0", "step J", "step K", "step S",
183 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
184 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
185 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
186 1.14 bjh21 };
187 1.14 bjh21
188 1.14 bjh21 static const char *sa1100_steppings[16] = {
189 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
190 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
191 1.14 bjh21 "step D", "step E", "rev 10" "step G",
192 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
193 1.14 bjh21 };
194 1.14 bjh21
195 1.14 bjh21 static const char *sa1110_steppings[16] = {
196 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
197 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
198 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
199 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
200 1.13 thorpej };
201 1.13 thorpej
202 1.37 ichiro static const char *ixp12x0_steppings[16] = {
203 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
204 1.37 ichiro "rev 2", "(IXP1200 step C)",
205 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
206 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
207 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
208 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
209 1.36 thorpej };
210 1.36 thorpej
211 1.31 thorpej static const char *xscale_steppings[16] = {
212 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
213 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
214 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
215 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
216 1.40 briggs };
217 1.40 briggs
218 1.40 briggs static const char *i80321_steppings[16] = {
219 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
220 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
221 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
222 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
223 1.13 thorpej };
224 1.13 thorpej
225 1.35 thorpej static const char *pxa2x0_steppings[16] = {
226 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
227 1.35 thorpej "rev 4", "rev 5", "rev 6", "rev 7",
228 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
229 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
230 1.35 thorpej };
231 1.35 thorpej
232 1.1 matt struct cpuidtab {
233 1.1 matt u_int32_t cpuid;
234 1.1 matt enum cpu_class cpu_class;
235 1.9 thorpej const char *cpu_name;
236 1.13 thorpej const char **cpu_steppings;
237 1.1 matt };
238 1.1 matt
239 1.1 matt const struct cpuidtab cpuids[] = {
240 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
241 1.13 thorpej generic_steppings },
242 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
243 1.13 thorpej generic_steppings },
244 1.13 thorpej
245 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
246 1.13 thorpej generic_steppings },
247 1.13 thorpej
248 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
249 1.13 thorpej generic_steppings },
250 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
251 1.13 thorpej generic_steppings },
252 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
253 1.13 thorpej generic_steppings },
254 1.13 thorpej
255 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
256 1.13 thorpej generic_steppings },
257 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
258 1.13 thorpej generic_steppings },
259 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
260 1.13 thorpej generic_steppings },
261 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
262 1.13 thorpej generic_steppings },
263 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
264 1.13 thorpej generic_steppings },
265 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
266 1.13 thorpej generic_steppings },
267 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
268 1.13 thorpej generic_steppings },
269 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
270 1.13 thorpej generic_steppings },
271 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
272 1.13 thorpej generic_steppings },
273 1.13 thorpej
274 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
275 1.13 thorpej generic_steppings },
276 1.13 thorpej
277 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
278 1.13 thorpej generic_steppings },
279 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
280 1.13 thorpej generic_steppings },
281 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
282 1.13 thorpej generic_steppings },
283 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
284 1.13 thorpej generic_steppings },
285 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
286 1.13 thorpej generic_steppings },
287 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
288 1.13 thorpej generic_steppings },
289 1.13 thorpej
290 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
291 1.14 bjh21 sa110_steppings },
292 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
293 1.14 bjh21 sa1100_steppings },
294 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
295 1.14 bjh21 sa1110_steppings },
296 1.36 thorpej
297 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
298 1.37 ichiro ixp12x0_steppings },
299 1.13 thorpej
300 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
301 1.32 thorpej xscale_steppings },
302 1.32 thorpej
303 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
304 1.40 briggs i80321_steppings },
305 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
306 1.40 briggs i80321_steppings },
307 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
308 1.40 briggs i80321_steppings },
309 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
310 1.40 briggs i80321_steppings },
311 1.13 thorpej
312 1.39 ichiro { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250(1st ver core)",
313 1.39 ichiro pxa2x0_steppings },
314 1.39 ichiro { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210(1st ver core)",
315 1.39 ichiro pxa2x0_steppings },
316 1.39 ichiro { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250(3rd ver core)",
317 1.39 ichiro pxa2x0_steppings },
318 1.39 ichiro { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210(3rd ver core)",
319 1.35 thorpej pxa2x0_steppings },
320 1.35 thorpej
321 1.28 bjh21 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
322 1.28 bjh21 generic_steppings },
323 1.28 bjh21
324 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
325 1.1 matt };
326 1.1 matt
327 1.1 matt struct cpu_classtab {
328 1.9 thorpej const char *class_name;
329 1.9 thorpej const char *class_option;
330 1.1 matt };
331 1.1 matt
332 1.1 matt const struct cpu_classtab cpu_classes[] = {
333 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
334 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
335 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
336 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
337 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
338 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
339 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
340 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
341 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
342 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
343 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
344 1.31 thorpej { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
345 1.28 bjh21 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
346 1.1 matt };
347 1.1 matt
348 1.1 matt /*
349 1.1 matt * Report the type of the specifed arm processor. This uses the generic and
350 1.1 matt * arm specific information in the cpu structure to identify the processor.
351 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
352 1.1 matt */
353 1.1 matt
354 1.12 thorpej static const char *wtnames[] = {
355 1.12 thorpej "write-through",
356 1.12 thorpej "write-back",
357 1.12 thorpej "write-back",
358 1.12 thorpej "**unknown 3**",
359 1.12 thorpej "**unknown 4**",
360 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
361 1.12 thorpej "write-back-locking-A",
362 1.12 thorpej "write-back-locking-B",
363 1.12 thorpej "**unknown 8**",
364 1.12 thorpej "**unknown 9**",
365 1.12 thorpej "**unknown 10**",
366 1.12 thorpej "**unknown 11**",
367 1.12 thorpej "**unknown 12**",
368 1.12 thorpej "**unknown 13**",
369 1.12 thorpej "**unknown 14**",
370 1.12 thorpej "**unknown 15**",
371 1.12 thorpej };
372 1.12 thorpej
373 1.1 matt void
374 1.25 bjh21 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
375 1.1 matt {
376 1.1 matt u_int cpuid;
377 1.19 bjh21 enum cpu_class cpu_class;
378 1.1 matt int i;
379 1.1 matt
380 1.18 bjh21 cpuid = ci->ci_cpuid;
381 1.1 matt
382 1.1 matt if (cpuid == 0) {
383 1.1 matt printf("Processor failed probe - no CPU ID\n");
384 1.1 matt return;
385 1.1 matt }
386 1.1 matt
387 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
388 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
389 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
390 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
391 1.13 thorpej cpuids[i].cpu_name,
392 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
393 1.13 thorpej CPU_ID_REVISION_MASK],
394 1.19 bjh21 cpu_classes[cpu_class].class_name);
395 1.1 matt break;
396 1.1 matt }
397 1.1 matt
398 1.1 matt if (cpuids[i].cpuid == 0)
399 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
400 1.1 matt
401 1.29 bjh21 printf(": %s\n", cpu_model);
402 1.29 bjh21
403 1.29 bjh21 printf("%s:", dv->dv_xname);
404 1.29 bjh21
405 1.19 bjh21 switch (cpu_class) {
406 1.1 matt case CPU_CLASS_ARM6:
407 1.1 matt case CPU_CLASS_ARM7:
408 1.3 chris case CPU_CLASS_ARM7TDMI:
409 1.1 matt case CPU_CLASS_ARM8:
410 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
411 1.29 bjh21 printf(" IDC disabled");
412 1.1 matt else
413 1.29 bjh21 printf(" IDC enabled");
414 1.1 matt break;
415 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
416 1.1 matt case CPU_CLASS_SA1:
417 1.4 matt case CPU_CLASS_XSCALE:
418 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
419 1.29 bjh21 printf(" DC disabled");
420 1.1 matt else
421 1.29 bjh21 printf(" DC enabled");
422 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
423 1.29 bjh21 printf(" IC disabled");
424 1.1 matt else
425 1.29 bjh21 printf(" IC enabled");
426 1.1 matt break;
427 1.19 bjh21 default:
428 1.19 bjh21 break;
429 1.1 matt }
430 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
431 1.29 bjh21 printf(" WB disabled");
432 1.1 matt else
433 1.29 bjh21 printf(" WB enabled");
434 1.1 matt
435 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
436 1.29 bjh21 printf(" LABT");
437 1.1 matt else
438 1.29 bjh21 printf(" EABT");
439 1.1 matt
440 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
441 1.29 bjh21 printf(" branch prediction enabled");
442 1.1 matt
443 1.29 bjh21 printf("\n");
444 1.1 matt
445 1.12 thorpej /* Print cache info. */
446 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
447 1.12 thorpej goto skip_pcache;
448 1.12 thorpej
449 1.12 thorpej if (arm_pcache_unified) {
450 1.12 thorpej printf("%s: %dKB/%dB %d-way %s unified cache\n",
451 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
452 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
453 1.12 thorpej wtnames[arm_pcache_type]);
454 1.12 thorpej } else {
455 1.12 thorpej printf("%s: %dKB/%dB %d-way Instruction cache\n",
456 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
457 1.12 thorpej arm_picache_line_size, arm_picache_ways);
458 1.12 thorpej printf("%s: %dKB/%dB %d-way %s Data cache\n",
459 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
460 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
461 1.12 thorpej wtnames[arm_pcache_type]);
462 1.12 thorpej }
463 1.12 thorpej
464 1.12 thorpej skip_pcache:
465 1.1 matt
466 1.19 bjh21 switch (cpu_class) {
467 1.1 matt #ifdef CPU_ARM2
468 1.1 matt case CPU_CLASS_ARM2:
469 1.1 matt #endif
470 1.1 matt #ifdef CPU_ARM250
471 1.1 matt case CPU_CLASS_ARM2AS:
472 1.1 matt #endif
473 1.1 matt #ifdef CPU_ARM3
474 1.1 matt case CPU_CLASS_ARM3:
475 1.1 matt #endif
476 1.1 matt #ifdef CPU_ARM6
477 1.1 matt case CPU_CLASS_ARM6:
478 1.1 matt #endif
479 1.1 matt #ifdef CPU_ARM7
480 1.1 matt case CPU_CLASS_ARM7:
481 1.1 matt #endif
482 1.3 chris #ifdef CPU_ARM7TDMI
483 1.3 chris case CPU_CLASS_ARM7TDMI:
484 1.3 chris #endif
485 1.1 matt #ifdef CPU_ARM8
486 1.1 matt case CPU_CLASS_ARM8:
487 1.6 rearnsha #endif
488 1.6 rearnsha #ifdef CPU_ARM9
489 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
490 1.1 matt #endif
491 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
492 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
493 1.1 matt case CPU_CLASS_SA1:
494 1.4 matt #endif
495 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
496 1.35 thorpej defined(CPU_XSCALE_PXA2X0)
497 1.4 matt case CPU_CLASS_XSCALE:
498 1.1 matt #endif
499 1.1 matt break;
500 1.1 matt default:
501 1.19 bjh21 if (cpu_classes[cpu_class].class_option != NULL)
502 1.1 matt printf("%s: %s does not fully support this CPU."
503 1.1 matt "\n", dv->dv_xname, ostype);
504 1.1 matt else {
505 1.1 matt printf("%s: This kernel does not fully support "
506 1.1 matt "this CPU.\n", dv->dv_xname);
507 1.1 matt printf("%s: Recompile with \"options %s\" to "
508 1.1 matt "correct this.\n", dv->dv_xname,
509 1.19 bjh21 cpu_classes[cpu_class].class_option);
510 1.1 matt }
511 1.1 matt break;
512 1.1 matt }
513 1.1 matt
514 1.1 matt }
515 1.1 matt
516 1.1 matt /* End of cpu.c */
517