cpu.c revision 1.45.2.1 1 1.45.2.1 bjh21 /* $NetBSD: cpu.c,v 1.45.2.1 2002/10/19 15:12:52 bjh21 Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt
46 1.1 matt #include <sys/param.h>
47 1.20 bjh21
48 1.45.2.1 bjh21 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.45.2.1 2002/10/19 15:12:52 bjh21 Exp $");
49 1.20 bjh21
50 1.1 matt #include <sys/systm.h>
51 1.1 matt #include <sys/malloc.h>
52 1.1 matt #include <sys/device.h>
53 1.1 matt #include <sys/proc.h>
54 1.41 gehenna #include <sys/conf.h>
55 1.1 matt #include <uvm/uvm_extern.h>
56 1.1 matt #include <machine/cpu.h>
57 1.33 thorpej
58 1.33 thorpej #include <arm/cpuconf.h>
59 1.10 thorpej #include <arm/undefined.h>
60 1.10 thorpej
61 1.1 matt #ifdef ARMFPE
62 1.1 matt #include <machine/bootconfig.h> /* For boot args */
63 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
64 1.11 thorpej #endif
65 1.1 matt
66 1.20 bjh21 char cpu_model[256];
67 1.1 matt
68 1.1 matt /* Prototypes */
69 1.25 bjh21 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70 1.1 matt
71 1.1 matt /*
72 1.25 bjh21 * Identify the master (boot) CPU
73 1.1 matt */
74 1.1 matt
75 1.1 matt void
76 1.15 bjh21 cpu_attach(struct device *dv)
77 1.1 matt {
78 1.27 reinoud int usearmfpe;
79 1.27 reinoud
80 1.27 reinoud usearmfpe = 1; /* when compiled in, its enabled by default */
81 1.45.2.1 bjh21
82 1.45.2.1 bjh21 #ifdef MULTIPROCESSOR
83 1.45.2.1 bjh21 if (curcpu()->ci_idlepcb == NULL)
84 1.45.2.1 bjh21 cpu_alloc_idlepcb(curcpu());
85 1.45.2.1 bjh21 #endif
86 1.23 bjh21
87 1.23 bjh21 curcpu()->ci_dev = dv;
88 1.1 matt
89 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
91 1.17 bjh21
92 1.1 matt /* Get the cpu ID from coprocessor 15 */
93 1.1 matt
94 1.44 bjh21 curcpu()->ci_arm_cpuid = cpu_id();
95 1.44 bjh21 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 1.44 bjh21 curcpu()->ci_arm_cpurev =
97 1.44 bjh21 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98 1.1 matt
99 1.25 bjh21 identify_arm_cpu(dv, curcpu());
100 1.1 matt
101 1.44 bjh21 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 1.44 bjh21 curcpu()->ci_arm_cpurev < 3) {
103 1.1 matt printf("%s: SA-110 with bugged STM^ instruction\n",
104 1.1 matt dv->dv_xname);
105 1.1 matt }
106 1.1 matt
107 1.1 matt #ifdef CPU_ARM8
108 1.44 bjh21 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 1.1 matt int clock = arm8_clock_config(0, 0);
110 1.1 matt char *fclk;
111 1.1 matt printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 1.1 matt printf(" clock:%s", (clock & 1) ? " dynamic" : "");
113 1.1 matt printf("%s", (clock & 2) ? " sync" : "");
114 1.1 matt switch ((clock >> 2) & 3) {
115 1.15 bjh21 case 0:
116 1.1 matt fclk = "bus clock";
117 1.1 matt break;
118 1.15 bjh21 case 1:
119 1.1 matt fclk = "ref clock";
120 1.1 matt break;
121 1.15 bjh21 case 3:
122 1.1 matt fclk = "pll";
123 1.1 matt break;
124 1.15 bjh21 default:
125 1.1 matt fclk = "illegal";
126 1.1 matt break;
127 1.1 matt }
128 1.1 matt printf(" fclk source=%s\n", fclk);
129 1.1 matt }
130 1.1 matt #endif
131 1.1 matt
132 1.25 bjh21 #ifdef ARMFPE
133 1.1 matt /*
134 1.1 matt * Ok now we test for an FPA
135 1.1 matt * At this point no floating point emulator has been installed.
136 1.1 matt * This means any FP instruction will cause undefined exception.
137 1.1 matt * We install a temporay coproc 1 handler which will modify
138 1.1 matt * undefined_test if it is called.
139 1.1 matt * We then try to read the FP status register. If undefined_test
140 1.1 matt * has been decremented then the instruction was not handled by
141 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
142 1.1 matt * still 1 then we know the instruction was handled by an FPA.
143 1.1 matt * We then remove our test handler and look at the
144 1.1 matt * FP status register for identification.
145 1.1 matt */
146 1.1 matt
147 1.25 bjh21 /*
148 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
149 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
150 1.25 bjh21 * This is just while I work on integrating the new FPE.
151 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
152 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
153 1.25 bjh21 * case the new FPE is causing panics.
154 1.25 bjh21 */
155 1.1 matt
156 1.1 matt
157 1.25 bjh21 if (boot_args)
158 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
159 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 1.25 bjh21 if (usearmfpe)
161 1.25 bjh21 initialise_arm_fpe();
162 1.1 matt #endif
163 1.1 matt }
164 1.1 matt
165 1.19 bjh21 enum cpu_class {
166 1.19 bjh21 CPU_CLASS_NONE,
167 1.19 bjh21 CPU_CLASS_ARM2,
168 1.19 bjh21 CPU_CLASS_ARM2AS,
169 1.19 bjh21 CPU_CLASS_ARM3,
170 1.19 bjh21 CPU_CLASS_ARM6,
171 1.19 bjh21 CPU_CLASS_ARM7,
172 1.19 bjh21 CPU_CLASS_ARM7TDMI,
173 1.19 bjh21 CPU_CLASS_ARM8,
174 1.19 bjh21 CPU_CLASS_ARM9TDMI,
175 1.19 bjh21 CPU_CLASS_ARM9ES,
176 1.19 bjh21 CPU_CLASS_SA1,
177 1.19 bjh21 CPU_CLASS_XSCALE,
178 1.28 bjh21 CPU_CLASS_ARM10E
179 1.19 bjh21 };
180 1.19 bjh21
181 1.42 bjh21 static const char * const generic_steppings[16] = {
182 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
183 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
184 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
185 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
186 1.14 bjh21 };
187 1.14 bjh21
188 1.42 bjh21 static const char * const sa110_steppings[16] = {
189 1.14 bjh21 "rev 0", "step J", "step K", "step S",
190 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
191 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
192 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
193 1.14 bjh21 };
194 1.14 bjh21
195 1.42 bjh21 static const char * const sa1100_steppings[16] = {
196 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
197 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
198 1.14 bjh21 "step D", "step E", "rev 10" "step G",
199 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
200 1.14 bjh21 };
201 1.14 bjh21
202 1.42 bjh21 static const char * const sa1110_steppings[16] = {
203 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
204 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
205 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
206 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
207 1.13 thorpej };
208 1.13 thorpej
209 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
210 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
211 1.37 ichiro "rev 2", "(IXP1200 step C)",
212 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
213 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
214 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
215 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
216 1.36 thorpej };
217 1.36 thorpej
218 1.42 bjh21 static const char * const xscale_steppings[16] = {
219 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
220 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
221 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
222 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
223 1.40 briggs };
224 1.40 briggs
225 1.42 bjh21 static const char * const i80321_steppings[16] = {
226 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
227 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
228 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
229 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
230 1.13 thorpej };
231 1.13 thorpej
232 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
233 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
234 1.35 thorpej "rev 4", "rev 5", "rev 6", "rev 7",
235 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
236 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
237 1.35 thorpej };
238 1.35 thorpej
239 1.1 matt struct cpuidtab {
240 1.1 matt u_int32_t cpuid;
241 1.1 matt enum cpu_class cpu_class;
242 1.9 thorpej const char *cpu_name;
243 1.42 bjh21 const char * const *cpu_steppings;
244 1.1 matt };
245 1.1 matt
246 1.1 matt const struct cpuidtab cpuids[] = {
247 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
248 1.13 thorpej generic_steppings },
249 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
250 1.13 thorpej generic_steppings },
251 1.13 thorpej
252 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
253 1.13 thorpej generic_steppings },
254 1.13 thorpej
255 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
256 1.13 thorpej generic_steppings },
257 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
258 1.13 thorpej generic_steppings },
259 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
260 1.13 thorpej generic_steppings },
261 1.13 thorpej
262 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
263 1.13 thorpej generic_steppings },
264 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
265 1.13 thorpej generic_steppings },
266 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
267 1.13 thorpej generic_steppings },
268 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
269 1.13 thorpej generic_steppings },
270 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
271 1.13 thorpej generic_steppings },
272 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
273 1.13 thorpej generic_steppings },
274 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
275 1.13 thorpej generic_steppings },
276 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
277 1.13 thorpej generic_steppings },
278 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
279 1.13 thorpej generic_steppings },
280 1.13 thorpej
281 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
282 1.13 thorpej generic_steppings },
283 1.13 thorpej
284 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
285 1.13 thorpej generic_steppings },
286 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
287 1.13 thorpej generic_steppings },
288 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
289 1.13 thorpej generic_steppings },
290 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
291 1.13 thorpej generic_steppings },
292 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
293 1.13 thorpej generic_steppings },
294 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
295 1.13 thorpej generic_steppings },
296 1.13 thorpej
297 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
298 1.14 bjh21 sa110_steppings },
299 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
300 1.14 bjh21 sa1100_steppings },
301 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
302 1.14 bjh21 sa1110_steppings },
303 1.36 thorpej
304 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
305 1.37 ichiro ixp12x0_steppings },
306 1.13 thorpej
307 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
308 1.32 thorpej xscale_steppings },
309 1.32 thorpej
310 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
311 1.40 briggs i80321_steppings },
312 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
313 1.40 briggs i80321_steppings },
314 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
315 1.40 briggs i80321_steppings },
316 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
317 1.40 briggs i80321_steppings },
318 1.13 thorpej
319 1.39 ichiro { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250(1st ver core)",
320 1.39 ichiro pxa2x0_steppings },
321 1.39 ichiro { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210(1st ver core)",
322 1.39 ichiro pxa2x0_steppings },
323 1.39 ichiro { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250(3rd ver core)",
324 1.39 ichiro pxa2x0_steppings },
325 1.39 ichiro { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210(3rd ver core)",
326 1.35 thorpej pxa2x0_steppings },
327 1.35 thorpej
328 1.28 bjh21 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
329 1.28 bjh21 generic_steppings },
330 1.28 bjh21
331 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
332 1.1 matt };
333 1.1 matt
334 1.1 matt struct cpu_classtab {
335 1.9 thorpej const char *class_name;
336 1.9 thorpej const char *class_option;
337 1.1 matt };
338 1.1 matt
339 1.1 matt const struct cpu_classtab cpu_classes[] = {
340 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
341 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
342 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
343 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
344 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
345 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
346 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
347 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
348 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
349 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
350 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
351 1.31 thorpej { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
352 1.28 bjh21 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
353 1.1 matt };
354 1.1 matt
355 1.1 matt /*
356 1.1 matt * Report the type of the specifed arm processor. This uses the generic and
357 1.1 matt * arm specific information in the cpu structure to identify the processor.
358 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
359 1.1 matt */
360 1.1 matt
361 1.42 bjh21 static const char * const wtnames[] = {
362 1.12 thorpej "write-through",
363 1.12 thorpej "write-back",
364 1.12 thorpej "write-back",
365 1.12 thorpej "**unknown 3**",
366 1.12 thorpej "**unknown 4**",
367 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
368 1.12 thorpej "write-back-locking-A",
369 1.12 thorpej "write-back-locking-B",
370 1.12 thorpej "**unknown 8**",
371 1.12 thorpej "**unknown 9**",
372 1.12 thorpej "**unknown 10**",
373 1.12 thorpej "**unknown 11**",
374 1.12 thorpej "**unknown 12**",
375 1.12 thorpej "**unknown 13**",
376 1.12 thorpej "**unknown 14**",
377 1.12 thorpej "**unknown 15**",
378 1.12 thorpej };
379 1.12 thorpej
380 1.1 matt void
381 1.25 bjh21 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
382 1.1 matt {
383 1.1 matt u_int cpuid;
384 1.19 bjh21 enum cpu_class cpu_class;
385 1.1 matt int i;
386 1.1 matt
387 1.44 bjh21 cpuid = ci->ci_arm_cpuid;
388 1.1 matt
389 1.1 matt if (cpuid == 0) {
390 1.1 matt printf("Processor failed probe - no CPU ID\n");
391 1.1 matt return;
392 1.1 matt }
393 1.1 matt
394 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
395 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
396 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
397 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
398 1.13 thorpej cpuids[i].cpu_name,
399 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
400 1.13 thorpej CPU_ID_REVISION_MASK],
401 1.19 bjh21 cpu_classes[cpu_class].class_name);
402 1.1 matt break;
403 1.1 matt }
404 1.1 matt
405 1.1 matt if (cpuids[i].cpuid == 0)
406 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
407 1.1 matt
408 1.29 bjh21 printf(": %s\n", cpu_model);
409 1.29 bjh21
410 1.29 bjh21 printf("%s:", dv->dv_xname);
411 1.29 bjh21
412 1.19 bjh21 switch (cpu_class) {
413 1.1 matt case CPU_CLASS_ARM6:
414 1.1 matt case CPU_CLASS_ARM7:
415 1.3 chris case CPU_CLASS_ARM7TDMI:
416 1.1 matt case CPU_CLASS_ARM8:
417 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
418 1.29 bjh21 printf(" IDC disabled");
419 1.1 matt else
420 1.29 bjh21 printf(" IDC enabled");
421 1.1 matt break;
422 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
423 1.1 matt case CPU_CLASS_SA1:
424 1.4 matt case CPU_CLASS_XSCALE:
425 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
426 1.29 bjh21 printf(" DC disabled");
427 1.1 matt else
428 1.29 bjh21 printf(" DC enabled");
429 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
430 1.29 bjh21 printf(" IC disabled");
431 1.1 matt else
432 1.29 bjh21 printf(" IC enabled");
433 1.1 matt break;
434 1.19 bjh21 default:
435 1.19 bjh21 break;
436 1.1 matt }
437 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
438 1.29 bjh21 printf(" WB disabled");
439 1.1 matt else
440 1.29 bjh21 printf(" WB enabled");
441 1.1 matt
442 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
443 1.29 bjh21 printf(" LABT");
444 1.1 matt else
445 1.29 bjh21 printf(" EABT");
446 1.1 matt
447 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
448 1.29 bjh21 printf(" branch prediction enabled");
449 1.1 matt
450 1.29 bjh21 printf("\n");
451 1.1 matt
452 1.12 thorpej /* Print cache info. */
453 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
454 1.12 thorpej goto skip_pcache;
455 1.12 thorpej
456 1.12 thorpej if (arm_pcache_unified) {
457 1.12 thorpej printf("%s: %dKB/%dB %d-way %s unified cache\n",
458 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
459 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
460 1.12 thorpej wtnames[arm_pcache_type]);
461 1.12 thorpej } else {
462 1.12 thorpej printf("%s: %dKB/%dB %d-way Instruction cache\n",
463 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
464 1.12 thorpej arm_picache_line_size, arm_picache_ways);
465 1.12 thorpej printf("%s: %dKB/%dB %d-way %s Data cache\n",
466 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
467 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
468 1.12 thorpej wtnames[arm_pcache_type]);
469 1.12 thorpej }
470 1.12 thorpej
471 1.12 thorpej skip_pcache:
472 1.1 matt
473 1.19 bjh21 switch (cpu_class) {
474 1.1 matt #ifdef CPU_ARM2
475 1.1 matt case CPU_CLASS_ARM2:
476 1.1 matt #endif
477 1.1 matt #ifdef CPU_ARM250
478 1.1 matt case CPU_CLASS_ARM2AS:
479 1.1 matt #endif
480 1.1 matt #ifdef CPU_ARM3
481 1.1 matt case CPU_CLASS_ARM3:
482 1.1 matt #endif
483 1.1 matt #ifdef CPU_ARM6
484 1.1 matt case CPU_CLASS_ARM6:
485 1.1 matt #endif
486 1.1 matt #ifdef CPU_ARM7
487 1.1 matt case CPU_CLASS_ARM7:
488 1.1 matt #endif
489 1.3 chris #ifdef CPU_ARM7TDMI
490 1.3 chris case CPU_CLASS_ARM7TDMI:
491 1.3 chris #endif
492 1.1 matt #ifdef CPU_ARM8
493 1.1 matt case CPU_CLASS_ARM8:
494 1.6 rearnsha #endif
495 1.6 rearnsha #ifdef CPU_ARM9
496 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
497 1.1 matt #endif
498 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
499 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
500 1.1 matt case CPU_CLASS_SA1:
501 1.4 matt #endif
502 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
503 1.35 thorpej defined(CPU_XSCALE_PXA2X0)
504 1.4 matt case CPU_CLASS_XSCALE:
505 1.1 matt #endif
506 1.1 matt break;
507 1.1 matt default:
508 1.19 bjh21 if (cpu_classes[cpu_class].class_option != NULL)
509 1.1 matt printf("%s: %s does not fully support this CPU."
510 1.1 matt "\n", dv->dv_xname, ostype);
511 1.1 matt else {
512 1.1 matt printf("%s: This kernel does not fully support "
513 1.1 matt "this CPU.\n", dv->dv_xname);
514 1.1 matt printf("%s: Recompile with \"options %s\" to "
515 1.1 matt "correct this.\n", dv->dv_xname,
516 1.19 bjh21 cpu_classes[cpu_class].class_option);
517 1.1 matt }
518 1.1 matt break;
519 1.1 matt }
520 1.1 matt
521 1.43 bjh21 }
522 1.45 chris #ifdef MULTIPROCESSOR
523 1.43 bjh21 int
524 1.43 bjh21 cpu_alloc_idlepcb(struct cpu_info *ci)
525 1.43 bjh21 {
526 1.43 bjh21 vaddr_t uaddr;
527 1.43 bjh21 struct pcb *pcb;
528 1.43 bjh21 struct trapframe *tf;
529 1.43 bjh21 int error;
530 1.43 bjh21
531 1.43 bjh21 /*
532 1.43 bjh21 * Generate a kernel stack and PCB (in essence, a u-area) for the
533 1.43 bjh21 * new CPU.
534 1.43 bjh21 */
535 1.43 bjh21 uaddr = uvm_uarea_alloc();
536 1.43 bjh21 error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
537 1.43 bjh21 VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
538 1.43 bjh21 if (error)
539 1.43 bjh21 return error;
540 1.43 bjh21 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
541 1.43 bjh21
542 1.43 bjh21 /*
543 1.43 bjh21 * This code is largely derived from cpu_fork(), with which it
544 1.43 bjh21 * should perhaps be shared.
545 1.43 bjh21 */
546 1.43 bjh21
547 1.43 bjh21 /* Copy the pcb */
548 1.43 bjh21 *pcb = proc0.p_addr->u_pcb;
549 1.43 bjh21
550 1.43 bjh21 /* Set up the undefined stack for the process. */
551 1.43 bjh21 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
552 1.43 bjh21 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
553 1.43 bjh21
554 1.43 bjh21 #ifdef STACKCHECKS
555 1.43 bjh21 /* Fill the undefined stack with a known pattern */
556 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
557 1.43 bjh21 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
558 1.43 bjh21 /* Fill the kernel stack with a known pattern */
559 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
560 1.43 bjh21 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
561 1.43 bjh21 #endif /* STACKCHECKS */
562 1.43 bjh21
563 1.43 bjh21 pcb->pcb_tf = tf =
564 1.43 bjh21 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
565 1.43 bjh21 *tf = *proc0.p_addr->u_pcb.pcb_tf;
566 1.43 bjh21 return 0;
567 1.1 matt }
568 1.45 chris #endif /* MULTIPROCESSOR */
569 1.1 matt
570 1.1 matt /* End of cpu.c */
571