cpu.c revision 1.49 1 1.49 thorpej /* $NetBSD: cpu.c,v 1.49 2003/04/29 01:07:30 thorpej Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt
46 1.1 matt #include <sys/param.h>
47 1.20 bjh21
48 1.49 thorpej __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.49 2003/04/29 01:07:30 thorpej Exp $");
49 1.20 bjh21
50 1.1 matt #include <sys/systm.h>
51 1.1 matt #include <sys/malloc.h>
52 1.1 matt #include <sys/device.h>
53 1.1 matt #include <sys/proc.h>
54 1.41 gehenna #include <sys/conf.h>
55 1.1 matt #include <uvm/uvm_extern.h>
56 1.1 matt #include <machine/cpu.h>
57 1.33 thorpej
58 1.33 thorpej #include <arm/cpuconf.h>
59 1.10 thorpej #include <arm/undefined.h>
60 1.10 thorpej
61 1.1 matt #ifdef ARMFPE
62 1.1 matt #include <machine/bootconfig.h> /* For boot args */
63 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
64 1.11 thorpej #endif
65 1.1 matt
66 1.20 bjh21 char cpu_model[256];
67 1.1 matt
68 1.1 matt /* Prototypes */
69 1.25 bjh21 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70 1.1 matt
71 1.1 matt /*
72 1.25 bjh21 * Identify the master (boot) CPU
73 1.1 matt */
74 1.1 matt
75 1.1 matt void
76 1.15 bjh21 cpu_attach(struct device *dv)
77 1.1 matt {
78 1.27 reinoud int usearmfpe;
79 1.27 reinoud
80 1.27 reinoud usearmfpe = 1; /* when compiled in, its enabled by default */
81 1.23 bjh21
82 1.23 bjh21 curcpu()->ci_dev = dv;
83 1.1 matt
84 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
86 1.17 bjh21
87 1.1 matt /* Get the cpu ID from coprocessor 15 */
88 1.1 matt
89 1.44 bjh21 curcpu()->ci_arm_cpuid = cpu_id();
90 1.44 bjh21 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
91 1.44 bjh21 curcpu()->ci_arm_cpurev =
92 1.44 bjh21 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
93 1.1 matt
94 1.25 bjh21 identify_arm_cpu(dv, curcpu());
95 1.1 matt
96 1.44 bjh21 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
97 1.44 bjh21 curcpu()->ci_arm_cpurev < 3) {
98 1.49 thorpej aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
99 1.1 matt dv->dv_xname);
100 1.1 matt }
101 1.1 matt
102 1.1 matt #ifdef CPU_ARM8
103 1.44 bjh21 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
104 1.1 matt int clock = arm8_clock_config(0, 0);
105 1.1 matt char *fclk;
106 1.49 thorpej aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
107 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
108 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
109 1.1 matt switch ((clock >> 2) & 3) {
110 1.15 bjh21 case 0:
111 1.1 matt fclk = "bus clock";
112 1.1 matt break;
113 1.15 bjh21 case 1:
114 1.1 matt fclk = "ref clock";
115 1.1 matt break;
116 1.15 bjh21 case 3:
117 1.1 matt fclk = "pll";
118 1.1 matt break;
119 1.15 bjh21 default:
120 1.1 matt fclk = "illegal";
121 1.1 matt break;
122 1.1 matt }
123 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
124 1.1 matt }
125 1.1 matt #endif
126 1.1 matt
127 1.25 bjh21 #ifdef ARMFPE
128 1.1 matt /*
129 1.1 matt * Ok now we test for an FPA
130 1.1 matt * At this point no floating point emulator has been installed.
131 1.1 matt * This means any FP instruction will cause undefined exception.
132 1.1 matt * We install a temporay coproc 1 handler which will modify
133 1.1 matt * undefined_test if it is called.
134 1.1 matt * We then try to read the FP status register. If undefined_test
135 1.1 matt * has been decremented then the instruction was not handled by
136 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
137 1.1 matt * still 1 then we know the instruction was handled by an FPA.
138 1.1 matt * We then remove our test handler and look at the
139 1.1 matt * FP status register for identification.
140 1.1 matt */
141 1.1 matt
142 1.25 bjh21 /*
143 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
144 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
145 1.25 bjh21 * This is just while I work on integrating the new FPE.
146 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
147 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
148 1.25 bjh21 * case the new FPE is causing panics.
149 1.25 bjh21 */
150 1.1 matt
151 1.1 matt
152 1.25 bjh21 if (boot_args)
153 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
154 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
155 1.25 bjh21 if (usearmfpe)
156 1.25 bjh21 initialise_arm_fpe();
157 1.1 matt #endif
158 1.1 matt }
159 1.1 matt
160 1.19 bjh21 enum cpu_class {
161 1.19 bjh21 CPU_CLASS_NONE,
162 1.19 bjh21 CPU_CLASS_ARM2,
163 1.19 bjh21 CPU_CLASS_ARM2AS,
164 1.19 bjh21 CPU_CLASS_ARM3,
165 1.19 bjh21 CPU_CLASS_ARM6,
166 1.19 bjh21 CPU_CLASS_ARM7,
167 1.19 bjh21 CPU_CLASS_ARM7TDMI,
168 1.19 bjh21 CPU_CLASS_ARM8,
169 1.19 bjh21 CPU_CLASS_ARM9TDMI,
170 1.19 bjh21 CPU_CLASS_ARM9ES,
171 1.19 bjh21 CPU_CLASS_SA1,
172 1.19 bjh21 CPU_CLASS_XSCALE,
173 1.28 bjh21 CPU_CLASS_ARM10E
174 1.19 bjh21 };
175 1.19 bjh21
176 1.42 bjh21 static const char * const generic_steppings[16] = {
177 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
178 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
179 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
180 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
181 1.14 bjh21 };
182 1.14 bjh21
183 1.42 bjh21 static const char * const sa110_steppings[16] = {
184 1.14 bjh21 "rev 0", "step J", "step K", "step S",
185 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
186 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
187 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
188 1.14 bjh21 };
189 1.14 bjh21
190 1.42 bjh21 static const char * const sa1100_steppings[16] = {
191 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
192 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
193 1.14 bjh21 "step D", "step E", "rev 10" "step G",
194 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
195 1.14 bjh21 };
196 1.14 bjh21
197 1.42 bjh21 static const char * const sa1110_steppings[16] = {
198 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
199 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
200 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
201 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
202 1.13 thorpej };
203 1.13 thorpej
204 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
205 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
206 1.37 ichiro "rev 2", "(IXP1200 step C)",
207 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
208 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
209 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
210 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
211 1.36 thorpej };
212 1.36 thorpej
213 1.42 bjh21 static const char * const xscale_steppings[16] = {
214 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
215 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
216 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
217 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
218 1.40 briggs };
219 1.40 briggs
220 1.42 bjh21 static const char * const i80321_steppings[16] = {
221 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
222 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
223 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
224 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
225 1.13 thorpej };
226 1.13 thorpej
227 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
228 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
229 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
230 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
231 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
232 1.35 thorpej };
233 1.35 thorpej
234 1.1 matt struct cpuidtab {
235 1.1 matt u_int32_t cpuid;
236 1.1 matt enum cpu_class cpu_class;
237 1.9 thorpej const char *cpu_name;
238 1.42 bjh21 const char * const *cpu_steppings;
239 1.1 matt };
240 1.1 matt
241 1.1 matt const struct cpuidtab cpuids[] = {
242 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
243 1.13 thorpej generic_steppings },
244 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
245 1.13 thorpej generic_steppings },
246 1.13 thorpej
247 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
248 1.13 thorpej generic_steppings },
249 1.13 thorpej
250 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
251 1.13 thorpej generic_steppings },
252 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
253 1.13 thorpej generic_steppings },
254 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
255 1.13 thorpej generic_steppings },
256 1.13 thorpej
257 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
258 1.13 thorpej generic_steppings },
259 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
260 1.13 thorpej generic_steppings },
261 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
262 1.13 thorpej generic_steppings },
263 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
264 1.13 thorpej generic_steppings },
265 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
266 1.13 thorpej generic_steppings },
267 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
268 1.13 thorpej generic_steppings },
269 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
270 1.13 thorpej generic_steppings },
271 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
272 1.13 thorpej generic_steppings },
273 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
274 1.13 thorpej generic_steppings },
275 1.13 thorpej
276 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
277 1.13 thorpej generic_steppings },
278 1.13 thorpej
279 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
280 1.13 thorpej generic_steppings },
281 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
282 1.13 thorpej generic_steppings },
283 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
284 1.13 thorpej generic_steppings },
285 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
286 1.13 thorpej generic_steppings },
287 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
288 1.13 thorpej generic_steppings },
289 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
290 1.13 thorpej generic_steppings },
291 1.13 thorpej
292 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
293 1.14 bjh21 sa110_steppings },
294 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
295 1.14 bjh21 sa1100_steppings },
296 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
297 1.14 bjh21 sa1110_steppings },
298 1.36 thorpej
299 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
300 1.37 ichiro ixp12x0_steppings },
301 1.13 thorpej
302 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
303 1.32 thorpej xscale_steppings },
304 1.32 thorpej
305 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
306 1.40 briggs i80321_steppings },
307 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
308 1.40 briggs i80321_steppings },
309 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
310 1.40 briggs i80321_steppings },
311 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
312 1.40 briggs i80321_steppings },
313 1.13 thorpej
314 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
315 1.48 rjs pxa2x0_steppings },
316 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
317 1.48 rjs pxa2x0_steppings },
318 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
319 1.39 ichiro pxa2x0_steppings },
320 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
321 1.39 ichiro pxa2x0_steppings },
322 1.48 rjs { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA250",
323 1.39 ichiro pxa2x0_steppings },
324 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
325 1.35 thorpej pxa2x0_steppings },
326 1.35 thorpej
327 1.28 bjh21 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
328 1.28 bjh21 generic_steppings },
329 1.28 bjh21
330 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
331 1.1 matt };
332 1.1 matt
333 1.1 matt struct cpu_classtab {
334 1.9 thorpej const char *class_name;
335 1.9 thorpej const char *class_option;
336 1.1 matt };
337 1.1 matt
338 1.1 matt const struct cpu_classtab cpu_classes[] = {
339 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
340 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
341 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
342 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
343 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
344 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
345 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
346 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
347 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
348 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
349 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
350 1.31 thorpej { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
351 1.28 bjh21 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
352 1.1 matt };
353 1.1 matt
354 1.1 matt /*
355 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
356 1.1 matt * arm specific information in the cpu structure to identify the processor.
357 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
358 1.1 matt */
359 1.1 matt
360 1.42 bjh21 static const char * const wtnames[] = {
361 1.12 thorpej "write-through",
362 1.12 thorpej "write-back",
363 1.12 thorpej "write-back",
364 1.12 thorpej "**unknown 3**",
365 1.12 thorpej "**unknown 4**",
366 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
367 1.12 thorpej "write-back-locking-A",
368 1.12 thorpej "write-back-locking-B",
369 1.12 thorpej "**unknown 8**",
370 1.12 thorpej "**unknown 9**",
371 1.12 thorpej "**unknown 10**",
372 1.12 thorpej "**unknown 11**",
373 1.12 thorpej "**unknown 12**",
374 1.12 thorpej "**unknown 13**",
375 1.12 thorpej "**unknown 14**",
376 1.12 thorpej "**unknown 15**",
377 1.12 thorpej };
378 1.12 thorpej
379 1.1 matt void
380 1.25 bjh21 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
381 1.1 matt {
382 1.1 matt u_int cpuid;
383 1.19 bjh21 enum cpu_class cpu_class;
384 1.1 matt int i;
385 1.1 matt
386 1.44 bjh21 cpuid = ci->ci_arm_cpuid;
387 1.1 matt
388 1.1 matt if (cpuid == 0) {
389 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
390 1.1 matt return;
391 1.1 matt }
392 1.1 matt
393 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
394 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
395 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
396 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
397 1.13 thorpej cpuids[i].cpu_name,
398 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
399 1.13 thorpej CPU_ID_REVISION_MASK],
400 1.19 bjh21 cpu_classes[cpu_class].class_name);
401 1.1 matt break;
402 1.1 matt }
403 1.1 matt
404 1.1 matt if (cpuids[i].cpuid == 0)
405 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
406 1.1 matt
407 1.49 thorpej aprint_naive(": %s\n", cpu_model);
408 1.49 thorpej aprint_normal(": %s\n", cpu_model);
409 1.29 bjh21
410 1.49 thorpej aprint_normal("%s:", dv->dv_xname);
411 1.29 bjh21
412 1.19 bjh21 switch (cpu_class) {
413 1.1 matt case CPU_CLASS_ARM6:
414 1.1 matt case CPU_CLASS_ARM7:
415 1.3 chris case CPU_CLASS_ARM7TDMI:
416 1.1 matt case CPU_CLASS_ARM8:
417 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
418 1.49 thorpej aprint_normal(" IDC disabled");
419 1.1 matt else
420 1.49 thorpej aprint_normal(" IDC enabled");
421 1.1 matt break;
422 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
423 1.1 matt case CPU_CLASS_SA1:
424 1.4 matt case CPU_CLASS_XSCALE:
425 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
426 1.49 thorpej aprint_normal(" DC disabled");
427 1.1 matt else
428 1.49 thorpej aprint_normal(" DC enabled");
429 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
430 1.49 thorpej aprint_normal(" IC disabled");
431 1.1 matt else
432 1.49 thorpej aprint_normal(" IC enabled");
433 1.1 matt break;
434 1.19 bjh21 default:
435 1.19 bjh21 break;
436 1.1 matt }
437 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
438 1.49 thorpej aprint_normal(" WB disabled");
439 1.1 matt else
440 1.49 thorpej aprint_normal(" WB enabled");
441 1.1 matt
442 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
443 1.49 thorpej aprint_normal(" LABT");
444 1.1 matt else
445 1.49 thorpej aprint_normal(" EABT");
446 1.1 matt
447 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
448 1.49 thorpej aprint_normal(" branch prediction enabled");
449 1.1 matt
450 1.49 thorpej aprint_normal("\n");
451 1.1 matt
452 1.12 thorpej /* Print cache info. */
453 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
454 1.12 thorpej goto skip_pcache;
455 1.12 thorpej
456 1.12 thorpej if (arm_pcache_unified) {
457 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
458 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
459 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
460 1.12 thorpej wtnames[arm_pcache_type]);
461 1.12 thorpej } else {
462 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
463 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
464 1.12 thorpej arm_picache_line_size, arm_picache_ways);
465 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
466 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
467 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
468 1.12 thorpej wtnames[arm_pcache_type]);
469 1.12 thorpej }
470 1.12 thorpej
471 1.12 thorpej skip_pcache:
472 1.1 matt
473 1.19 bjh21 switch (cpu_class) {
474 1.1 matt #ifdef CPU_ARM2
475 1.1 matt case CPU_CLASS_ARM2:
476 1.1 matt #endif
477 1.1 matt #ifdef CPU_ARM250
478 1.1 matt case CPU_CLASS_ARM2AS:
479 1.1 matt #endif
480 1.1 matt #ifdef CPU_ARM3
481 1.1 matt case CPU_CLASS_ARM3:
482 1.1 matt #endif
483 1.1 matt #ifdef CPU_ARM6
484 1.1 matt case CPU_CLASS_ARM6:
485 1.1 matt #endif
486 1.1 matt #ifdef CPU_ARM7
487 1.1 matt case CPU_CLASS_ARM7:
488 1.1 matt #endif
489 1.3 chris #ifdef CPU_ARM7TDMI
490 1.3 chris case CPU_CLASS_ARM7TDMI:
491 1.3 chris #endif
492 1.1 matt #ifdef CPU_ARM8
493 1.1 matt case CPU_CLASS_ARM8:
494 1.6 rearnsha #endif
495 1.6 rearnsha #ifdef CPU_ARM9
496 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
497 1.1 matt #endif
498 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
499 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
500 1.1 matt case CPU_CLASS_SA1:
501 1.4 matt #endif
502 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
503 1.35 thorpej defined(CPU_XSCALE_PXA2X0)
504 1.4 matt case CPU_CLASS_XSCALE:
505 1.1 matt #endif
506 1.1 matt break;
507 1.1 matt default:
508 1.19 bjh21 if (cpu_classes[cpu_class].class_option != NULL)
509 1.49 thorpej aprint_error("%s: %s does not fully support this CPU."
510 1.1 matt "\n", dv->dv_xname, ostype);
511 1.1 matt else {
512 1.49 thorpej aprint_error("%s: This kernel does not fully support "
513 1.1 matt "this CPU.\n", dv->dv_xname);
514 1.49 thorpej aprint_normal("%s: Recompile with \"options %s\" to "
515 1.1 matt "correct this.\n", dv->dv_xname,
516 1.19 bjh21 cpu_classes[cpu_class].class_option);
517 1.1 matt }
518 1.1 matt break;
519 1.1 matt }
520 1.1 matt
521 1.43 bjh21 }
522 1.45 chris #ifdef MULTIPROCESSOR
523 1.43 bjh21 int
524 1.43 bjh21 cpu_alloc_idlepcb(struct cpu_info *ci)
525 1.43 bjh21 {
526 1.43 bjh21 vaddr_t uaddr;
527 1.43 bjh21 struct pcb *pcb;
528 1.43 bjh21 struct trapframe *tf;
529 1.43 bjh21 int error;
530 1.43 bjh21
531 1.43 bjh21 /*
532 1.43 bjh21 * Generate a kernel stack and PCB (in essence, a u-area) for the
533 1.43 bjh21 * new CPU.
534 1.43 bjh21 */
535 1.46 chs if (uvm_uarea_alloc(&uaddr)) {
536 1.46 chs error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
537 1.46 chs VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
538 1.46 chs if (error)
539 1.46 chs return error;
540 1.46 chs }
541 1.43 bjh21 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
542 1.43 bjh21
543 1.43 bjh21 /*
544 1.43 bjh21 * This code is largely derived from cpu_fork(), with which it
545 1.43 bjh21 * should perhaps be shared.
546 1.43 bjh21 */
547 1.43 bjh21
548 1.43 bjh21 /* Copy the pcb */
549 1.43 bjh21 *pcb = proc0.p_addr->u_pcb;
550 1.43 bjh21
551 1.43 bjh21 /* Set up the undefined stack for the process. */
552 1.43 bjh21 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
553 1.43 bjh21 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
554 1.43 bjh21
555 1.43 bjh21 #ifdef STACKCHECKS
556 1.43 bjh21 /* Fill the undefined stack with a known pattern */
557 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
558 1.43 bjh21 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
559 1.43 bjh21 /* Fill the kernel stack with a known pattern */
560 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
561 1.43 bjh21 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
562 1.43 bjh21 #endif /* STACKCHECKS */
563 1.43 bjh21
564 1.43 bjh21 pcb->pcb_tf = tf =
565 1.43 bjh21 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
566 1.43 bjh21 *tf = *proc0.p_addr->u_pcb.pcb_tf;
567 1.43 bjh21 return 0;
568 1.1 matt }
569 1.45 chris #endif /* MULTIPROCESSOR */
570 1.1 matt
571 1.1 matt /* End of cpu.c */
572