cpu.c revision 1.5 1 1.5 chris /* $NetBSD: cpu.c,v 1.5 2001/09/28 09:53:41 chris Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.1 matt * Probing and configuration for the master cpu
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.1 matt #include "opt_cputypes.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.1 matt #include <sys/systm.h>
49 1.1 matt #include <sys/malloc.h>
50 1.1 matt #include <sys/device.h>
51 1.1 matt #include <sys/proc.h>
52 1.1 matt #include <uvm/uvm_extern.h>
53 1.1 matt #include <machine/conf.h>
54 1.1 matt #include <machine/cpu.h>
55 1.1 matt #include <machine/cpus.h>
56 1.1 matt #include <machine/undefined.h>
57 1.1 matt
58 1.1 matt #ifdef ARMFPE
59 1.1 matt #include <machine/bootconfig.h> /* For boot args */
60 1.1 matt #include <arm32/fpe-arm/armfpe.h>
61 1.1 matt #endif /* ARMFPE */
62 1.1 matt
63 1.1 matt cpu_t cpus[MAX_CPUS];
64 1.1 matt
65 1.1 matt char cpu_model[64];
66 1.1 matt volatile int undefined_test; /* Used for FPA test */
67 1.1 matt extern int cpuctrl; /* cpu control register value */
68 1.1 matt
69 1.1 matt /* Prototypes */
70 1.1 matt void identify_master_cpu __P((struct device *dv, int cpu_number));
71 1.1 matt void identify_arm_cpu __P((struct device *dv, int cpu_number));
72 1.1 matt void identify_arm_fpu __P((struct device *dv, int cpu_number));
73 1.5 chris int fpa_test __P((u_int, u_int, trapframe_t *, int));
74 1.5 chris int fpa_handler __P((u_int, u_int, trapframe_t *, int));
75 1.1 matt
76 1.1 matt /*
77 1.1 matt * void cpusattach(struct device *parent, struct device *dev, void *aux)
78 1.1 matt *
79 1.1 matt * Attach the main cpu
80 1.1 matt */
81 1.1 matt
82 1.1 matt void
83 1.1 matt cpu_attach(dv)
84 1.1 matt struct device *dv;
85 1.1 matt {
86 1.1 matt identify_master_cpu(dv, CPU_MASTER);
87 1.1 matt }
88 1.1 matt
89 1.1 matt /*
90 1.1 matt * Used to test for an FPA. The following function is installed as a coproc1
91 1.1 matt * handler on the undefined instruction vector and then we issue a FPA
92 1.1 matt * instruction. If undefined_test is non zero then the FPA did not handle
93 1.1 matt * the instruction so must be absent.
94 1.1 matt */
95 1.1 matt
96 1.1 matt int
97 1.5 chris fpa_test(address, instruction, frame, fault_code)
98 1.1 matt u_int address;
99 1.1 matt u_int instruction;
100 1.1 matt trapframe_t *frame;
101 1.5 chris int fault_code;
102 1.1 matt {
103 1.1 matt
104 1.1 matt frame->tf_pc += INSN_SIZE;
105 1.1 matt ++undefined_test;
106 1.1 matt return(0);
107 1.1 matt }
108 1.1 matt
109 1.1 matt /*
110 1.1 matt * If an FPA was found then this function is installed as the coproc1 handler
111 1.1 matt * on the undefined instruction vector. Currently we don't support FPA's
112 1.1 matt * so this just triggers an exception.
113 1.1 matt */
114 1.1 matt
115 1.1 matt int
116 1.1 matt fpa_handler(address, instruction, frame, fault_code)
117 1.1 matt u_int address;
118 1.1 matt u_int instruction;
119 1.1 matt trapframe_t *frame;
120 1.1 matt int fault_code;
121 1.1 matt {
122 1.1 matt u_int fpsr;
123 1.1 matt
124 1.1 matt __asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
125 1.1 matt
126 1.1 matt printf("FPA exception: fpsr = %08x\n", fpsr);
127 1.1 matt
128 1.1 matt return(1);
129 1.1 matt }
130 1.1 matt
131 1.1 matt
132 1.1 matt /*
133 1.1 matt * Identify the master (boot) CPU
134 1.1 matt * This also probes for an FPU and will install an FPE if necessary
135 1.1 matt */
136 1.1 matt
137 1.1 matt void
138 1.1 matt identify_master_cpu(dv, cpu_number)
139 1.1 matt struct device *dv;
140 1.1 matt int cpu_number;
141 1.1 matt {
142 1.1 matt u_int fpsr;
143 1.1 matt void *uh;
144 1.1 matt
145 1.1 matt cpus[cpu_number].cpu_ctrl = cpuctrl;
146 1.1 matt
147 1.1 matt /* Get the cpu ID from coprocessor 15 */
148 1.1 matt
149 1.1 matt cpus[cpu_number].cpu_id = cpu_id();
150 1.1 matt
151 1.1 matt identify_arm_cpu(dv, cpu_number);
152 1.1 matt strcpy(cpu_model, cpus[cpu_number].cpu_model);
153 1.1 matt
154 1.1 matt if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
155 1.1 matt && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
156 1.1 matt printf("%s: SA-110 with bugged STM^ instruction\n",
157 1.1 matt dv->dv_xname);
158 1.1 matt }
159 1.1 matt
160 1.1 matt #ifdef CPU_ARM8
161 1.1 matt if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
162 1.1 matt int clock = arm8_clock_config(0, 0);
163 1.1 matt char *fclk;
164 1.1 matt printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
165 1.1 matt printf(" clock:%s", (clock & 1) ? " dynamic" : "");
166 1.1 matt printf("%s", (clock & 2) ? " sync" : "");
167 1.1 matt switch ((clock >> 2) & 3) {
168 1.1 matt case 0 :
169 1.1 matt fclk = "bus clock";
170 1.1 matt break;
171 1.1 matt case 1 :
172 1.1 matt fclk = "ref clock";
173 1.1 matt break;
174 1.1 matt case 3 :
175 1.1 matt fclk = "pll";
176 1.1 matt break;
177 1.1 matt default :
178 1.1 matt fclk = "illegal";
179 1.1 matt break;
180 1.1 matt }
181 1.1 matt printf(" fclk source=%s\n", fclk);
182 1.1 matt }
183 1.1 matt #endif
184 1.1 matt
185 1.1 matt /*
186 1.1 matt * Ok now we test for an FPA
187 1.1 matt * At this point no floating point emulator has been installed.
188 1.1 matt * This means any FP instruction will cause undefined exception.
189 1.1 matt * We install a temporay coproc 1 handler which will modify
190 1.1 matt * undefined_test if it is called.
191 1.1 matt * We then try to read the FP status register. If undefined_test
192 1.1 matt * has been decremented then the instruction was not handled by
193 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
194 1.1 matt * still 1 then we know the instruction was handled by an FPA.
195 1.1 matt * We then remove our test handler and look at the
196 1.1 matt * FP status register for identification.
197 1.1 matt */
198 1.1 matt
199 1.1 matt uh = install_coproc_handler(FP_COPROC, fpa_test);
200 1.1 matt
201 1.1 matt undefined_test = 0;
202 1.1 matt
203 1.1 matt __asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
204 1.1 matt
205 1.1 matt remove_coproc_handler(uh);
206 1.1 matt
207 1.1 matt if (undefined_test == 0) {
208 1.1 matt cpus[cpu_number].fpu_type = (fpsr >> 24);
209 1.1 matt switch (fpsr >> 24) {
210 1.1 matt case 0x81 :
211 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
212 1.1 matt break;
213 1.1 matt
214 1.1 matt default :
215 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
216 1.1 matt break;
217 1.1 matt }
218 1.1 matt cpus[cpu_number].fpu_flags = 0;
219 1.1 matt install_coproc_handler(FP_COPROC, fpa_handler);
220 1.1 matt } else {
221 1.1 matt cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
222 1.1 matt cpus[cpu_number].fpu_flags = 0;
223 1.1 matt
224 1.1 matt /*
225 1.1 matt * Ok if ARMFPE is defined and the boot options request the
226 1.1 matt * ARM FPE then it will be installed as the FPE.
227 1.1 matt * This is just while I work on integrating the new FPE.
228 1.1 matt * It means the new FPE gets installed if compiled int (ARMFPE
229 1.1 matt * defined) and also gives me a on/off option when I boot in
230 1.1 matt * case the new FPE is causing panics.
231 1.1 matt */
232 1.1 matt
233 1.1 matt #ifdef ARMFPE
234 1.1 matt if (boot_args) {
235 1.2 bjh21 int usearmfpe = 1;
236 1.1 matt
237 1.2 bjh21 get_bootconf_option(boot_args, "armfpe",
238 1.2 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
239 1.2 bjh21 if (usearmfpe) {
240 1.1 matt if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
241 1.1 matt identify_arm_fpu(dv, cpu_number);
242 1.1 matt }
243 1.1 matt }
244 1.1 matt
245 1.1 matt #endif
246 1.1 matt }
247 1.1 matt
248 1.1 matt identify_arm_fpu(dv, cpu_number);
249 1.1 matt }
250 1.1 matt
251 1.1 matt struct cpuidtab {
252 1.1 matt u_int32_t cpuid;
253 1.1 matt enum cpu_class cpu_class;
254 1.1 matt char * cpu_name;
255 1.1 matt };
256 1.1 matt
257 1.1 matt const struct cpuidtab cpuids[] = {
258 1.1 matt { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2" },
259 1.1 matt { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250" },
260 1.1 matt { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3" },
261 1.1 matt { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600" },
262 1.1 matt { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610" },
263 1.1 matt { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620" },
264 1.1 matt { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700" },
265 1.1 matt { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710" },
266 1.1 matt { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500" },
267 1.1 matt { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a" },
268 1.1 matt { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE" },
269 1.1 matt { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T" },
270 1.1 matt { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T" },
271 1.1 matt { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
272 1.1 matt { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
273 1.1 matt { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810" },
274 1.1 matt { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T" },
275 1.1 matt { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T" },
276 1.1 matt { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T" },
277 1.1 matt { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S" },
278 1.1 matt { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S" },
279 1.1 matt { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S (Rev 1)" },
280 1.1 matt { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110" },
281 1.1 matt { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100" },
282 1.1 matt { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110" },
283 1.1 matt { CPU_ID_I80200, CPU_CLASS_XSCALE, "80200" },
284 1.1 matt { 0, CPU_CLASS_NONE, NULL }
285 1.1 matt };
286 1.1 matt
287 1.1 matt struct cpu_classtab {
288 1.1 matt char *class_name;
289 1.1 matt char *class_option;
290 1.1 matt };
291 1.1 matt
292 1.1 matt const struct cpu_classtab cpu_classes[] = {
293 1.1 matt { "unknown", NULL }, /* CPU_CLASS_NONE */
294 1.1 matt { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
295 1.1 matt { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
296 1.1 matt { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
297 1.1 matt { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
298 1.1 matt { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
299 1.3 chris { "ARM7TDMI", "CPU_ARM7TDMI" },/* CPU_CLASS_ARM7TDMI */
300 1.1 matt { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
301 1.1 matt { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
302 1.1 matt { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
303 1.1 matt { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
304 1.4 matt { "Xscale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
305 1.1 matt };
306 1.1 matt
307 1.1 matt /*
308 1.1 matt * Report the type of the specifed arm processor. This uses the generic and
309 1.1 matt * arm specific information in the cpu structure to identify the processor.
310 1.1 matt * The remaining fields in the cpu structure are filled in appropriately.
311 1.1 matt */
312 1.1 matt
313 1.1 matt void
314 1.1 matt identify_arm_cpu(dv, cpu_number)
315 1.1 matt struct device *dv;
316 1.1 matt int cpu_number;
317 1.1 matt {
318 1.1 matt cpu_t *cpu;
319 1.1 matt u_int cpuid;
320 1.1 matt int i;
321 1.1 matt
322 1.1 matt cpu = &cpus[cpu_number];
323 1.1 matt cpuid = cpu->cpu_id;
324 1.1 matt
325 1.1 matt if (cpuid == 0) {
326 1.1 matt printf("Processor failed probe - no CPU ID\n");
327 1.1 matt return;
328 1.1 matt }
329 1.1 matt
330 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
331 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
332 1.1 matt cpu->cpu_class = cpuids[i].cpu_class;
333 1.1 matt sprintf(cpu->cpu_model, "%s rev %d (%s core)",
334 1.1 matt cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
335 1.1 matt cpu_classes[cpu->cpu_class].class_name);
336 1.1 matt break;
337 1.1 matt }
338 1.1 matt
339 1.1 matt if (cpuids[i].cpuid == 0)
340 1.1 matt sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
341 1.1 matt
342 1.1 matt switch (cpu->cpu_class) {
343 1.1 matt case CPU_CLASS_ARM6:
344 1.1 matt case CPU_CLASS_ARM7:
345 1.3 chris case CPU_CLASS_ARM7TDMI:
346 1.1 matt case CPU_CLASS_ARM8:
347 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
348 1.1 matt strcat(cpu->cpu_model, " IDC disabled");
349 1.1 matt else
350 1.1 matt strcat(cpu->cpu_model, " IDC enabled");
351 1.1 matt break;
352 1.1 matt case CPU_CLASS_SA1:
353 1.4 matt case CPU_CLASS_XSCALE:
354 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
355 1.1 matt strcat(cpu->cpu_model, " DC disabled");
356 1.1 matt else
357 1.1 matt strcat(cpu->cpu_model, " DC enabled");
358 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
359 1.1 matt strcat(cpu->cpu_model, " IC disabled");
360 1.1 matt else
361 1.1 matt strcat(cpu->cpu_model, " IC enabled");
362 1.1 matt break;
363 1.1 matt }
364 1.1 matt if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
365 1.1 matt strcat(cpu->cpu_model, " WB disabled");
366 1.1 matt else
367 1.1 matt strcat(cpu->cpu_model, " WB enabled");
368 1.1 matt
369 1.1 matt if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
370 1.1 matt strcat(cpu->cpu_model, " LABT");
371 1.1 matt else
372 1.1 matt strcat(cpu->cpu_model, " EABT");
373 1.1 matt
374 1.1 matt if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
375 1.1 matt strcat(cpu->cpu_model, " branch prediction enabled");
376 1.1 matt
377 1.1 matt /* Print the info */
378 1.1 matt
379 1.1 matt printf(": %s\n", cpu->cpu_model);
380 1.1 matt
381 1.1 matt switch (cpu->cpu_class) {
382 1.1 matt #ifdef CPU_ARM2
383 1.1 matt case CPU_CLASS_ARM2:
384 1.1 matt #endif
385 1.1 matt #ifdef CPU_ARM250
386 1.1 matt case CPU_CLASS_ARM2AS:
387 1.1 matt #endif
388 1.1 matt #ifdef CPU_ARM3
389 1.1 matt case CPU_CLASS_ARM3:
390 1.1 matt #endif
391 1.1 matt #ifdef CPU_ARM6
392 1.1 matt case CPU_CLASS_ARM6:
393 1.1 matt #endif
394 1.1 matt #ifdef CPU_ARM7
395 1.1 matt case CPU_CLASS_ARM7:
396 1.1 matt #endif
397 1.3 chris #ifdef CPU_ARM7TDMI
398 1.3 chris case CPU_CLASS_ARM7TDMI:
399 1.3 chris #endif
400 1.1 matt #ifdef CPU_ARM8
401 1.1 matt case CPU_CLASS_ARM8:
402 1.1 matt #endif
403 1.1 matt #ifdef CPU_SA110
404 1.1 matt case CPU_CLASS_SA1:
405 1.4 matt #endif
406 1.4 matt #ifdef CPU_XSCALE
407 1.4 matt case CPU_CLASS_XSCALE:
408 1.1 matt #endif
409 1.1 matt break;
410 1.1 matt default:
411 1.1 matt if (cpu_classes[cpu->cpu_class].class_option != NULL)
412 1.1 matt printf("%s: %s does not fully support this CPU."
413 1.1 matt "\n", dv->dv_xname, ostype);
414 1.1 matt else {
415 1.1 matt printf("%s: This kernel does not fully support "
416 1.1 matt "this CPU.\n", dv->dv_xname);
417 1.1 matt printf("%s: Recompile with \"options %s\" to "
418 1.1 matt "correct this.\n", dv->dv_xname,
419 1.1 matt cpu_classes[cpu->cpu_class].class_option);
420 1.1 matt }
421 1.1 matt break;
422 1.1 matt }
423 1.1 matt
424 1.1 matt }
425 1.1 matt
426 1.1 matt
427 1.1 matt /*
428 1.1 matt * Report the type of the specifed arm fpu. This uses the generic and arm
429 1.1 matt * specific information in the cpu structure to identify the fpu. The
430 1.1 matt * remaining fields in the cpu structure are filled in appropriately.
431 1.1 matt */
432 1.1 matt
433 1.1 matt void
434 1.1 matt identify_arm_fpu(dv, cpu_number)
435 1.1 matt struct device *dv;
436 1.1 matt int cpu_number;
437 1.1 matt {
438 1.1 matt cpu_t *cpu;
439 1.1 matt
440 1.1 matt cpu = &cpus[cpu_number];
441 1.1 matt
442 1.1 matt /* Now for the FP info */
443 1.1 matt
444 1.1 matt switch (cpu->fpu_class) {
445 1.1 matt case FPU_CLASS_NONE :
446 1.1 matt strcpy(cpu->fpu_model, "None");
447 1.1 matt break;
448 1.1 matt case FPU_CLASS_FPE :
449 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
450 1.1 matt printf("%s: no FP hardware found\n", dv->dv_xname);
451 1.1 matt break;
452 1.1 matt case FPU_CLASS_FPA :
453 1.1 matt printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
454 1.1 matt if (cpu->fpu_type == FPU_TYPE_FPA11) {
455 1.1 matt strcpy(cpu->fpu_model, "FPA11");
456 1.1 matt printf("%s: FPA11 found\n", dv->dv_xname);
457 1.1 matt } else {
458 1.1 matt strcpy(cpu->fpu_model, "FPA");
459 1.1 matt printf("%s: FPA10 found\n", dv->dv_xname);
460 1.1 matt }
461 1.1 matt if ((cpu->fpu_flags & 4) == 0)
462 1.1 matt strcat(cpu->fpu_model, "");
463 1.1 matt else
464 1.1 matt strcat(cpu->fpu_model, " clk/2");
465 1.1 matt break;
466 1.1 matt case FPU_CLASS_FPU :
467 1.1 matt sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
468 1.1 matt cpu->fpu_type);
469 1.1 matt printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
470 1.1 matt break;
471 1.1 matt }
472 1.1 matt }
473 1.1 matt
474 1.1 matt /* End of cpu.c */
475