cpu.c revision 1.56 1 1.56 bsh /* $NetBSD: cpu.c,v 1.56 2004/04/14 04:01:49 bsh Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.55 wiz * Probing and configuration for the master CPU
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.51 martin #include "opt_multiprocessor.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.56 bsh __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56 2004/04/14 04:01:49 bsh Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.1 matt #include <sys/malloc.h>
53 1.1 matt #include <sys/device.h>
54 1.1 matt #include <sys/proc.h>
55 1.41 gehenna #include <sys/conf.h>
56 1.1 matt #include <uvm/uvm_extern.h>
57 1.1 matt #include <machine/cpu.h>
58 1.33 thorpej
59 1.33 thorpej #include <arm/cpuconf.h>
60 1.10 thorpej #include <arm/undefined.h>
61 1.10 thorpej
62 1.1 matt #ifdef ARMFPE
63 1.1 matt #include <machine/bootconfig.h> /* For boot args */
64 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
65 1.11 thorpej #endif
66 1.1 matt
67 1.20 bjh21 char cpu_model[256];
68 1.1 matt
69 1.1 matt /* Prototypes */
70 1.25 bjh21 void identify_arm_cpu(struct device *dv, struct cpu_info *);
71 1.1 matt
72 1.1 matt /*
73 1.25 bjh21 * Identify the master (boot) CPU
74 1.1 matt */
75 1.1 matt
76 1.1 matt void
77 1.15 bjh21 cpu_attach(struct device *dv)
78 1.1 matt {
79 1.27 reinoud int usearmfpe;
80 1.27 reinoud
81 1.27 reinoud usearmfpe = 1; /* when compiled in, its enabled by default */
82 1.23 bjh21
83 1.23 bjh21 curcpu()->ci_dev = dv;
84 1.1 matt
85 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
86 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
87 1.17 bjh21
88 1.55 wiz /* Get the CPU ID from coprocessor 15 */
89 1.1 matt
90 1.44 bjh21 curcpu()->ci_arm_cpuid = cpu_id();
91 1.44 bjh21 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
92 1.44 bjh21 curcpu()->ci_arm_cpurev =
93 1.44 bjh21 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
94 1.1 matt
95 1.25 bjh21 identify_arm_cpu(dv, curcpu());
96 1.1 matt
97 1.44 bjh21 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
98 1.44 bjh21 curcpu()->ci_arm_cpurev < 3) {
99 1.49 thorpej aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
100 1.1 matt dv->dv_xname);
101 1.1 matt }
102 1.1 matt
103 1.1 matt #ifdef CPU_ARM8
104 1.44 bjh21 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
105 1.1 matt int clock = arm8_clock_config(0, 0);
106 1.1 matt char *fclk;
107 1.49 thorpej aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
108 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
109 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
110 1.1 matt switch ((clock >> 2) & 3) {
111 1.15 bjh21 case 0:
112 1.1 matt fclk = "bus clock";
113 1.1 matt break;
114 1.15 bjh21 case 1:
115 1.1 matt fclk = "ref clock";
116 1.1 matt break;
117 1.15 bjh21 case 3:
118 1.1 matt fclk = "pll";
119 1.1 matt break;
120 1.15 bjh21 default:
121 1.1 matt fclk = "illegal";
122 1.1 matt break;
123 1.1 matt }
124 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
125 1.1 matt }
126 1.1 matt #endif
127 1.1 matt
128 1.25 bjh21 #ifdef ARMFPE
129 1.1 matt /*
130 1.1 matt * Ok now we test for an FPA
131 1.1 matt * At this point no floating point emulator has been installed.
132 1.1 matt * This means any FP instruction will cause undefined exception.
133 1.1 matt * We install a temporay coproc 1 handler which will modify
134 1.1 matt * undefined_test if it is called.
135 1.1 matt * We then try to read the FP status register. If undefined_test
136 1.1 matt * has been decremented then the instruction was not handled by
137 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
138 1.1 matt * still 1 then we know the instruction was handled by an FPA.
139 1.1 matt * We then remove our test handler and look at the
140 1.1 matt * FP status register for identification.
141 1.1 matt */
142 1.1 matt
143 1.25 bjh21 /*
144 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
145 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
146 1.25 bjh21 * This is just while I work on integrating the new FPE.
147 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
148 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
149 1.25 bjh21 * case the new FPE is causing panics.
150 1.25 bjh21 */
151 1.1 matt
152 1.1 matt
153 1.25 bjh21 if (boot_args)
154 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
155 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
156 1.25 bjh21 if (usearmfpe)
157 1.25 bjh21 initialise_arm_fpe();
158 1.1 matt #endif
159 1.1 matt }
160 1.1 matt
161 1.19 bjh21 enum cpu_class {
162 1.19 bjh21 CPU_CLASS_NONE,
163 1.19 bjh21 CPU_CLASS_ARM2,
164 1.19 bjh21 CPU_CLASS_ARM2AS,
165 1.19 bjh21 CPU_CLASS_ARM3,
166 1.19 bjh21 CPU_CLASS_ARM6,
167 1.19 bjh21 CPU_CLASS_ARM7,
168 1.19 bjh21 CPU_CLASS_ARM7TDMI,
169 1.19 bjh21 CPU_CLASS_ARM8,
170 1.19 bjh21 CPU_CLASS_ARM9TDMI,
171 1.19 bjh21 CPU_CLASS_ARM9ES,
172 1.53 rearnsha CPU_CLASS_ARM10E,
173 1.19 bjh21 CPU_CLASS_SA1,
174 1.53 rearnsha CPU_CLASS_XSCALE
175 1.19 bjh21 };
176 1.19 bjh21
177 1.42 bjh21 static const char * const generic_steppings[16] = {
178 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
179 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
180 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
181 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
182 1.14 bjh21 };
183 1.14 bjh21
184 1.42 bjh21 static const char * const sa110_steppings[16] = {
185 1.14 bjh21 "rev 0", "step J", "step K", "step S",
186 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
187 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
188 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
189 1.14 bjh21 };
190 1.14 bjh21
191 1.42 bjh21 static const char * const sa1100_steppings[16] = {
192 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
193 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
194 1.14 bjh21 "step D", "step E", "rev 10" "step G",
195 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
196 1.14 bjh21 };
197 1.14 bjh21
198 1.42 bjh21 static const char * const sa1110_steppings[16] = {
199 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
200 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
201 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
202 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
203 1.13 thorpej };
204 1.13 thorpej
205 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
206 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
207 1.37 ichiro "rev 2", "(IXP1200 step C)",
208 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
209 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
210 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
211 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
212 1.36 thorpej };
213 1.36 thorpej
214 1.42 bjh21 static const char * const xscale_steppings[16] = {
215 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
216 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
217 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
218 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
219 1.40 briggs };
220 1.40 briggs
221 1.42 bjh21 static const char * const i80321_steppings[16] = {
222 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
223 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
224 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
225 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
226 1.13 thorpej };
227 1.13 thorpej
228 1.56 bsh /* Steppings for PXA2[15]0 */
229 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
230 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
231 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
232 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
233 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
234 1.35 thorpej };
235 1.35 thorpej
236 1.56 bsh /* Steppings for PXA255/26x.
237 1.56 bsh * rev 5: PXA26x B0, rev 6: PXA255 A0
238 1.56 bsh */
239 1.56 bsh static const char * const pxa255_steppings[16] = {
240 1.56 bsh "rev 0", "rev 1", "rev 2", "step A-0",
241 1.56 bsh "rev 4", "step B-0", "step A-0", "rev 7",
242 1.56 bsh "rev 8", "rev 9", "rev 10", "rev 11",
243 1.56 bsh "rev 12", "rev 13", "rev 14", "rev 15",
244 1.56 bsh };
245 1.56 bsh
246 1.50 ichiro static const char * const ixp425_steppings[16] = {
247 1.50 ichiro "step 0", "rev 1", "rev 2", "rev 3",
248 1.50 ichiro "rev 4", "rev 5", "rev 6", "rev 7",
249 1.50 ichiro "rev 8", "rev 9", "rev 10", "rev 11",
250 1.50 ichiro "rev 12", "rev 13", "rev 14", "rev 15",
251 1.50 ichiro };
252 1.50 ichiro
253 1.1 matt struct cpuidtab {
254 1.1 matt u_int32_t cpuid;
255 1.1 matt enum cpu_class cpu_class;
256 1.9 thorpej const char *cpu_name;
257 1.42 bjh21 const char * const *cpu_steppings;
258 1.1 matt };
259 1.1 matt
260 1.1 matt const struct cpuidtab cpuids[] = {
261 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
262 1.13 thorpej generic_steppings },
263 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
264 1.13 thorpej generic_steppings },
265 1.13 thorpej
266 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
267 1.13 thorpej generic_steppings },
268 1.13 thorpej
269 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
270 1.13 thorpej generic_steppings },
271 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
272 1.13 thorpej generic_steppings },
273 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
274 1.13 thorpej generic_steppings },
275 1.13 thorpej
276 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
277 1.13 thorpej generic_steppings },
278 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
279 1.13 thorpej generic_steppings },
280 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
281 1.13 thorpej generic_steppings },
282 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
283 1.13 thorpej generic_steppings },
284 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
285 1.13 thorpej generic_steppings },
286 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
287 1.13 thorpej generic_steppings },
288 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
289 1.13 thorpej generic_steppings },
290 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
291 1.13 thorpej generic_steppings },
292 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
293 1.13 thorpej generic_steppings },
294 1.13 thorpej
295 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
296 1.13 thorpej generic_steppings },
297 1.13 thorpej
298 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
299 1.13 thorpej generic_steppings },
300 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
301 1.13 thorpej generic_steppings },
302 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
303 1.13 thorpej generic_steppings },
304 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
305 1.13 thorpej generic_steppings },
306 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
307 1.13 thorpej generic_steppings },
308 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
309 1.52 mycroft generic_steppings },
310 1.52 mycroft { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
311 1.13 thorpej generic_steppings },
312 1.13 thorpej
313 1.53 rearnsha { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
314 1.53 rearnsha generic_steppings },
315 1.53 rearnsha { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
316 1.53 rearnsha generic_steppings },
317 1.53 rearnsha
318 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
319 1.14 bjh21 sa110_steppings },
320 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
321 1.14 bjh21 sa1100_steppings },
322 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
323 1.14 bjh21 sa1110_steppings },
324 1.36 thorpej
325 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
326 1.37 ichiro ixp12x0_steppings },
327 1.13 thorpej
328 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
329 1.32 thorpej xscale_steppings },
330 1.32 thorpej
331 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
332 1.40 briggs i80321_steppings },
333 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
334 1.40 briggs i80321_steppings },
335 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
336 1.40 briggs i80321_steppings },
337 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
338 1.40 briggs i80321_steppings },
339 1.13 thorpej
340 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
341 1.48 rjs pxa2x0_steppings },
342 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
343 1.48 rjs pxa2x0_steppings },
344 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
345 1.39 ichiro pxa2x0_steppings },
346 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
347 1.39 ichiro pxa2x0_steppings },
348 1.56 bsh { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
349 1.56 bsh pxa255_steppings },
350 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
351 1.35 thorpej pxa2x0_steppings },
352 1.35 thorpej
353 1.50 ichiro { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
354 1.50 ichiro ixp425_steppings },
355 1.50 ichiro { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
356 1.50 ichiro ixp425_steppings },
357 1.50 ichiro { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
358 1.50 ichiro ixp425_steppings },
359 1.50 ichiro
360 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
361 1.1 matt };
362 1.1 matt
363 1.1 matt struct cpu_classtab {
364 1.9 thorpej const char *class_name;
365 1.9 thorpej const char *class_option;
366 1.1 matt };
367 1.1 matt
368 1.1 matt const struct cpu_classtab cpu_classes[] = {
369 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
370 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
371 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
372 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
373 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
374 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
375 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
376 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
377 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
378 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
379 1.53 rearnsha { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */
380 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
381 1.31 thorpej { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
382 1.1 matt };
383 1.1 matt
384 1.1 matt /*
385 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
386 1.55 wiz * arm specific information in the CPU structure to identify the processor.
387 1.55 wiz * The remaining fields in the CPU structure are filled in appropriately.
388 1.1 matt */
389 1.1 matt
390 1.42 bjh21 static const char * const wtnames[] = {
391 1.12 thorpej "write-through",
392 1.12 thorpej "write-back",
393 1.12 thorpej "write-back",
394 1.12 thorpej "**unknown 3**",
395 1.12 thorpej "**unknown 4**",
396 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
397 1.12 thorpej "write-back-locking-A",
398 1.12 thorpej "write-back-locking-B",
399 1.12 thorpej "**unknown 8**",
400 1.12 thorpej "**unknown 9**",
401 1.12 thorpej "**unknown 10**",
402 1.12 thorpej "**unknown 11**",
403 1.12 thorpej "**unknown 12**",
404 1.12 thorpej "**unknown 13**",
405 1.12 thorpej "**unknown 14**",
406 1.12 thorpej "**unknown 15**",
407 1.12 thorpej };
408 1.12 thorpej
409 1.1 matt void
410 1.25 bjh21 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
411 1.1 matt {
412 1.1 matt u_int cpuid;
413 1.54 chris enum cpu_class cpu_class = CPU_CLASS_NONE;
414 1.1 matt int i;
415 1.1 matt
416 1.44 bjh21 cpuid = ci->ci_arm_cpuid;
417 1.1 matt
418 1.1 matt if (cpuid == 0) {
419 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
420 1.1 matt return;
421 1.1 matt }
422 1.1 matt
423 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
424 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
425 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
426 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
427 1.13 thorpej cpuids[i].cpu_name,
428 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
429 1.13 thorpej CPU_ID_REVISION_MASK],
430 1.19 bjh21 cpu_classes[cpu_class].class_name);
431 1.1 matt break;
432 1.1 matt }
433 1.1 matt
434 1.1 matt if (cpuids[i].cpuid == 0)
435 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
436 1.1 matt
437 1.49 thorpej aprint_naive(": %s\n", cpu_model);
438 1.49 thorpej aprint_normal(": %s\n", cpu_model);
439 1.29 bjh21
440 1.49 thorpej aprint_normal("%s:", dv->dv_xname);
441 1.29 bjh21
442 1.19 bjh21 switch (cpu_class) {
443 1.1 matt case CPU_CLASS_ARM6:
444 1.1 matt case CPU_CLASS_ARM7:
445 1.3 chris case CPU_CLASS_ARM7TDMI:
446 1.1 matt case CPU_CLASS_ARM8:
447 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
448 1.49 thorpej aprint_normal(" IDC disabled");
449 1.1 matt else
450 1.49 thorpej aprint_normal(" IDC enabled");
451 1.1 matt break;
452 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
453 1.53 rearnsha case CPU_CLASS_ARM10E:
454 1.1 matt case CPU_CLASS_SA1:
455 1.4 matt case CPU_CLASS_XSCALE:
456 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
457 1.49 thorpej aprint_normal(" DC disabled");
458 1.1 matt else
459 1.49 thorpej aprint_normal(" DC enabled");
460 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
461 1.49 thorpej aprint_normal(" IC disabled");
462 1.1 matt else
463 1.49 thorpej aprint_normal(" IC enabled");
464 1.1 matt break;
465 1.19 bjh21 default:
466 1.19 bjh21 break;
467 1.1 matt }
468 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
469 1.49 thorpej aprint_normal(" WB disabled");
470 1.1 matt else
471 1.49 thorpej aprint_normal(" WB enabled");
472 1.1 matt
473 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
474 1.49 thorpej aprint_normal(" LABT");
475 1.1 matt else
476 1.49 thorpej aprint_normal(" EABT");
477 1.1 matt
478 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
479 1.49 thorpej aprint_normal(" branch prediction enabled");
480 1.1 matt
481 1.49 thorpej aprint_normal("\n");
482 1.1 matt
483 1.12 thorpej /* Print cache info. */
484 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
485 1.12 thorpej goto skip_pcache;
486 1.12 thorpej
487 1.12 thorpej if (arm_pcache_unified) {
488 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
489 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
490 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
491 1.12 thorpej wtnames[arm_pcache_type]);
492 1.12 thorpej } else {
493 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
494 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
495 1.12 thorpej arm_picache_line_size, arm_picache_ways);
496 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
497 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
498 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
499 1.12 thorpej wtnames[arm_pcache_type]);
500 1.12 thorpej }
501 1.12 thorpej
502 1.12 thorpej skip_pcache:
503 1.1 matt
504 1.19 bjh21 switch (cpu_class) {
505 1.1 matt #ifdef CPU_ARM2
506 1.1 matt case CPU_CLASS_ARM2:
507 1.1 matt #endif
508 1.1 matt #ifdef CPU_ARM250
509 1.1 matt case CPU_CLASS_ARM2AS:
510 1.1 matt #endif
511 1.1 matt #ifdef CPU_ARM3
512 1.1 matt case CPU_CLASS_ARM3:
513 1.1 matt #endif
514 1.1 matt #ifdef CPU_ARM6
515 1.1 matt case CPU_CLASS_ARM6:
516 1.1 matt #endif
517 1.1 matt #ifdef CPU_ARM7
518 1.1 matt case CPU_CLASS_ARM7:
519 1.1 matt #endif
520 1.3 chris #ifdef CPU_ARM7TDMI
521 1.3 chris case CPU_CLASS_ARM7TDMI:
522 1.3 chris #endif
523 1.1 matt #ifdef CPU_ARM8
524 1.1 matt case CPU_CLASS_ARM8:
525 1.6 rearnsha #endif
526 1.6 rearnsha #ifdef CPU_ARM9
527 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
528 1.53 rearnsha #endif
529 1.53 rearnsha #ifdef CPU_ARM10
530 1.53 rearnsha case CPU_CLASS_ARM10E:
531 1.1 matt #endif
532 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
533 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
534 1.1 matt case CPU_CLASS_SA1:
535 1.4 matt #endif
536 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
537 1.50 ichiro defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425)
538 1.4 matt case CPU_CLASS_XSCALE:
539 1.1 matt #endif
540 1.1 matt break;
541 1.1 matt default:
542 1.19 bjh21 if (cpu_classes[cpu_class].class_option != NULL)
543 1.49 thorpej aprint_error("%s: %s does not fully support this CPU."
544 1.1 matt "\n", dv->dv_xname, ostype);
545 1.1 matt else {
546 1.49 thorpej aprint_error("%s: This kernel does not fully support "
547 1.1 matt "this CPU.\n", dv->dv_xname);
548 1.49 thorpej aprint_normal("%s: Recompile with \"options %s\" to "
549 1.1 matt "correct this.\n", dv->dv_xname,
550 1.19 bjh21 cpu_classes[cpu_class].class_option);
551 1.1 matt }
552 1.1 matt break;
553 1.1 matt }
554 1.1 matt
555 1.43 bjh21 }
556 1.45 chris #ifdef MULTIPROCESSOR
557 1.43 bjh21 int
558 1.43 bjh21 cpu_alloc_idlepcb(struct cpu_info *ci)
559 1.43 bjh21 {
560 1.43 bjh21 vaddr_t uaddr;
561 1.43 bjh21 struct pcb *pcb;
562 1.43 bjh21 struct trapframe *tf;
563 1.43 bjh21 int error;
564 1.43 bjh21
565 1.43 bjh21 /*
566 1.43 bjh21 * Generate a kernel stack and PCB (in essence, a u-area) for the
567 1.43 bjh21 * new CPU.
568 1.43 bjh21 */
569 1.46 chs if (uvm_uarea_alloc(&uaddr)) {
570 1.46 chs error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
571 1.46 chs VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
572 1.46 chs if (error)
573 1.46 chs return error;
574 1.46 chs }
575 1.43 bjh21 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
576 1.43 bjh21
577 1.43 bjh21 /*
578 1.43 bjh21 * This code is largely derived from cpu_fork(), with which it
579 1.43 bjh21 * should perhaps be shared.
580 1.43 bjh21 */
581 1.43 bjh21
582 1.43 bjh21 /* Copy the pcb */
583 1.43 bjh21 *pcb = proc0.p_addr->u_pcb;
584 1.43 bjh21
585 1.43 bjh21 /* Set up the undefined stack for the process. */
586 1.43 bjh21 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
587 1.43 bjh21 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
588 1.43 bjh21
589 1.43 bjh21 #ifdef STACKCHECKS
590 1.43 bjh21 /* Fill the undefined stack with a known pattern */
591 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
592 1.43 bjh21 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
593 1.43 bjh21 /* Fill the kernel stack with a known pattern */
594 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
595 1.43 bjh21 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
596 1.43 bjh21 #endif /* STACKCHECKS */
597 1.43 bjh21
598 1.43 bjh21 pcb->pcb_tf = tf =
599 1.43 bjh21 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
600 1.43 bjh21 *tf = *proc0.p_addr->u_pcb.pcb_tf;
601 1.43 bjh21 return 0;
602 1.1 matt }
603 1.45 chris #endif /* MULTIPROCESSOR */
604 1.1 matt
605 1.1 matt /* End of cpu.c */
606