cpu.c revision 1.58 1 1.58 rearnsha /* $NetBSD: cpu.c,v 1.58 2005/06/03 15:55:55 rearnsha Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.55 wiz * Probing and configuration for the master CPU
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.51 martin #include "opt_multiprocessor.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.58 rearnsha __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.58 2005/06/03 15:55:55 rearnsha Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.1 matt #include <sys/malloc.h>
53 1.1 matt #include <sys/device.h>
54 1.1 matt #include <sys/proc.h>
55 1.41 gehenna #include <sys/conf.h>
56 1.1 matt #include <uvm/uvm_extern.h>
57 1.1 matt #include <machine/cpu.h>
58 1.33 thorpej
59 1.33 thorpej #include <arm/cpuconf.h>
60 1.10 thorpej #include <arm/undefined.h>
61 1.10 thorpej
62 1.1 matt #ifdef ARMFPE
63 1.1 matt #include <machine/bootconfig.h> /* For boot args */
64 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
65 1.11 thorpej #endif
66 1.1 matt
67 1.20 bjh21 char cpu_model[256];
68 1.1 matt
69 1.1 matt /* Prototypes */
70 1.25 bjh21 void identify_arm_cpu(struct device *dv, struct cpu_info *);
71 1.1 matt
72 1.1 matt /*
73 1.25 bjh21 * Identify the master (boot) CPU
74 1.1 matt */
75 1.1 matt
76 1.1 matt void
77 1.15 bjh21 cpu_attach(struct device *dv)
78 1.1 matt {
79 1.27 reinoud int usearmfpe;
80 1.27 reinoud
81 1.27 reinoud usearmfpe = 1; /* when compiled in, its enabled by default */
82 1.23 bjh21
83 1.23 bjh21 curcpu()->ci_dev = dv;
84 1.1 matt
85 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
86 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
87 1.17 bjh21
88 1.55 wiz /* Get the CPU ID from coprocessor 15 */
89 1.1 matt
90 1.44 bjh21 curcpu()->ci_arm_cpuid = cpu_id();
91 1.44 bjh21 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
92 1.44 bjh21 curcpu()->ci_arm_cpurev =
93 1.44 bjh21 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
94 1.1 matt
95 1.25 bjh21 identify_arm_cpu(dv, curcpu());
96 1.1 matt
97 1.44 bjh21 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
98 1.44 bjh21 curcpu()->ci_arm_cpurev < 3) {
99 1.49 thorpej aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
100 1.1 matt dv->dv_xname);
101 1.1 matt }
102 1.1 matt
103 1.1 matt #ifdef CPU_ARM8
104 1.44 bjh21 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
105 1.1 matt int clock = arm8_clock_config(0, 0);
106 1.1 matt char *fclk;
107 1.49 thorpej aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
108 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
109 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
110 1.1 matt switch ((clock >> 2) & 3) {
111 1.15 bjh21 case 0:
112 1.1 matt fclk = "bus clock";
113 1.1 matt break;
114 1.15 bjh21 case 1:
115 1.1 matt fclk = "ref clock";
116 1.1 matt break;
117 1.15 bjh21 case 3:
118 1.1 matt fclk = "pll";
119 1.1 matt break;
120 1.15 bjh21 default:
121 1.1 matt fclk = "illegal";
122 1.1 matt break;
123 1.1 matt }
124 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
125 1.1 matt }
126 1.1 matt #endif
127 1.1 matt
128 1.25 bjh21 #ifdef ARMFPE
129 1.1 matt /*
130 1.1 matt * Ok now we test for an FPA
131 1.1 matt * At this point no floating point emulator has been installed.
132 1.1 matt * This means any FP instruction will cause undefined exception.
133 1.1 matt * We install a temporay coproc 1 handler which will modify
134 1.1 matt * undefined_test if it is called.
135 1.1 matt * We then try to read the FP status register. If undefined_test
136 1.1 matt * has been decremented then the instruction was not handled by
137 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
138 1.1 matt * still 1 then we know the instruction was handled by an FPA.
139 1.1 matt * We then remove our test handler and look at the
140 1.1 matt * FP status register for identification.
141 1.1 matt */
142 1.1 matt
143 1.25 bjh21 /*
144 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
145 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
146 1.25 bjh21 * This is just while I work on integrating the new FPE.
147 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
148 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
149 1.25 bjh21 * case the new FPE is causing panics.
150 1.25 bjh21 */
151 1.1 matt
152 1.1 matt
153 1.25 bjh21 if (boot_args)
154 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
155 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
156 1.25 bjh21 if (usearmfpe)
157 1.25 bjh21 initialise_arm_fpe();
158 1.1 matt #endif
159 1.1 matt }
160 1.1 matt
161 1.19 bjh21 enum cpu_class {
162 1.19 bjh21 CPU_CLASS_NONE,
163 1.19 bjh21 CPU_CLASS_ARM2,
164 1.19 bjh21 CPU_CLASS_ARM2AS,
165 1.19 bjh21 CPU_CLASS_ARM3,
166 1.19 bjh21 CPU_CLASS_ARM6,
167 1.19 bjh21 CPU_CLASS_ARM7,
168 1.19 bjh21 CPU_CLASS_ARM7TDMI,
169 1.19 bjh21 CPU_CLASS_ARM8,
170 1.19 bjh21 CPU_CLASS_ARM9TDMI,
171 1.19 bjh21 CPU_CLASS_ARM9ES,
172 1.53 rearnsha CPU_CLASS_ARM10E,
173 1.57 rearnsha CPU_CLASS_ARM10EJ,
174 1.19 bjh21 CPU_CLASS_SA1,
175 1.58 rearnsha CPU_CLASS_XSCALE,
176 1.58 rearnsha CPU_CLASS_ARM11J
177 1.19 bjh21 };
178 1.19 bjh21
179 1.42 bjh21 static const char * const generic_steppings[16] = {
180 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
181 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
182 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
183 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
184 1.14 bjh21 };
185 1.14 bjh21
186 1.42 bjh21 static const char * const sa110_steppings[16] = {
187 1.14 bjh21 "rev 0", "step J", "step K", "step S",
188 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
189 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
190 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
191 1.14 bjh21 };
192 1.14 bjh21
193 1.42 bjh21 static const char * const sa1100_steppings[16] = {
194 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
195 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
196 1.14 bjh21 "step D", "step E", "rev 10" "step G",
197 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
198 1.14 bjh21 };
199 1.14 bjh21
200 1.42 bjh21 static const char * const sa1110_steppings[16] = {
201 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
202 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
203 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
204 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
205 1.13 thorpej };
206 1.13 thorpej
207 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
208 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
209 1.37 ichiro "rev 2", "(IXP1200 step C)",
210 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
211 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
212 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
213 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
214 1.36 thorpej };
215 1.36 thorpej
216 1.42 bjh21 static const char * const xscale_steppings[16] = {
217 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
218 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
219 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
220 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
221 1.40 briggs };
222 1.40 briggs
223 1.42 bjh21 static const char * const i80321_steppings[16] = {
224 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
225 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
226 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
227 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
228 1.13 thorpej };
229 1.13 thorpej
230 1.56 bsh /* Steppings for PXA2[15]0 */
231 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
232 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
233 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
234 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
235 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
236 1.35 thorpej };
237 1.35 thorpej
238 1.56 bsh /* Steppings for PXA255/26x.
239 1.56 bsh * rev 5: PXA26x B0, rev 6: PXA255 A0
240 1.56 bsh */
241 1.56 bsh static const char * const pxa255_steppings[16] = {
242 1.56 bsh "rev 0", "rev 1", "rev 2", "step A-0",
243 1.56 bsh "rev 4", "step B-0", "step A-0", "rev 7",
244 1.56 bsh "rev 8", "rev 9", "rev 10", "rev 11",
245 1.56 bsh "rev 12", "rev 13", "rev 14", "rev 15",
246 1.56 bsh };
247 1.56 bsh
248 1.50 ichiro static const char * const ixp425_steppings[16] = {
249 1.50 ichiro "step 0", "rev 1", "rev 2", "rev 3",
250 1.50 ichiro "rev 4", "rev 5", "rev 6", "rev 7",
251 1.50 ichiro "rev 8", "rev 9", "rev 10", "rev 11",
252 1.50 ichiro "rev 12", "rev 13", "rev 14", "rev 15",
253 1.50 ichiro };
254 1.50 ichiro
255 1.1 matt struct cpuidtab {
256 1.1 matt u_int32_t cpuid;
257 1.1 matt enum cpu_class cpu_class;
258 1.9 thorpej const char *cpu_name;
259 1.42 bjh21 const char * const *cpu_steppings;
260 1.1 matt };
261 1.1 matt
262 1.1 matt const struct cpuidtab cpuids[] = {
263 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
264 1.13 thorpej generic_steppings },
265 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
266 1.13 thorpej generic_steppings },
267 1.13 thorpej
268 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
269 1.13 thorpej generic_steppings },
270 1.13 thorpej
271 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
272 1.13 thorpej generic_steppings },
273 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
274 1.13 thorpej generic_steppings },
275 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
276 1.13 thorpej generic_steppings },
277 1.13 thorpej
278 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
279 1.13 thorpej generic_steppings },
280 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
281 1.13 thorpej generic_steppings },
282 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
283 1.13 thorpej generic_steppings },
284 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
285 1.13 thorpej generic_steppings },
286 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
287 1.13 thorpej generic_steppings },
288 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
289 1.13 thorpej generic_steppings },
290 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
291 1.13 thorpej generic_steppings },
292 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
293 1.13 thorpej generic_steppings },
294 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
295 1.13 thorpej generic_steppings },
296 1.13 thorpej
297 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
298 1.13 thorpej generic_steppings },
299 1.13 thorpej
300 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
301 1.13 thorpej generic_steppings },
302 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
303 1.13 thorpej generic_steppings },
304 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
305 1.13 thorpej generic_steppings },
306 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
307 1.13 thorpej generic_steppings },
308 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
309 1.13 thorpej generic_steppings },
310 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
311 1.52 mycroft generic_steppings },
312 1.52 mycroft { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
313 1.13 thorpej generic_steppings },
314 1.13 thorpej
315 1.53 rearnsha { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
316 1.53 rearnsha generic_steppings },
317 1.53 rearnsha { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
318 1.53 rearnsha generic_steppings },
319 1.57 rearnsha { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
320 1.57 rearnsha generic_steppings },
321 1.53 rearnsha
322 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
323 1.14 bjh21 sa110_steppings },
324 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
325 1.14 bjh21 sa1100_steppings },
326 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
327 1.14 bjh21 sa1110_steppings },
328 1.36 thorpej
329 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
330 1.37 ichiro ixp12x0_steppings },
331 1.13 thorpej
332 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
333 1.32 thorpej xscale_steppings },
334 1.32 thorpej
335 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
336 1.40 briggs i80321_steppings },
337 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
338 1.40 briggs i80321_steppings },
339 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
340 1.40 briggs i80321_steppings },
341 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
342 1.40 briggs i80321_steppings },
343 1.13 thorpej
344 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
345 1.48 rjs pxa2x0_steppings },
346 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
347 1.48 rjs pxa2x0_steppings },
348 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
349 1.39 ichiro pxa2x0_steppings },
350 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
351 1.39 ichiro pxa2x0_steppings },
352 1.56 bsh { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
353 1.56 bsh pxa255_steppings },
354 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
355 1.35 thorpej pxa2x0_steppings },
356 1.35 thorpej
357 1.50 ichiro { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
358 1.50 ichiro ixp425_steppings },
359 1.50 ichiro { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
360 1.50 ichiro ixp425_steppings },
361 1.50 ichiro { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
362 1.50 ichiro ixp425_steppings },
363 1.50 ichiro
364 1.58 rearnsha { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S",
365 1.58 rearnsha generic_steppings },
366 1.58 rearnsha { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S R1",
367 1.58 rearnsha generic_steppings },
368 1.58 rearnsha
369 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
370 1.1 matt };
371 1.1 matt
372 1.1 matt struct cpu_classtab {
373 1.9 thorpej const char *class_name;
374 1.9 thorpej const char *class_option;
375 1.1 matt };
376 1.1 matt
377 1.1 matt const struct cpu_classtab cpu_classes[] = {
378 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
379 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
380 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
381 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
382 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
383 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
384 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
385 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
386 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
387 1.6 rearnsha { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
388 1.53 rearnsha { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */
389 1.57 rearnsha { "ARM10EJ", "CPU_ARM10" }, /* CPU_CLASS_ARM10EJ */
390 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
391 1.31 thorpej { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
392 1.58 rearnsha { "ARM11J", "CPU_ARM11" }, /* CPU_CLASS_ARM11J */
393 1.1 matt };
394 1.1 matt
395 1.1 matt /*
396 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
397 1.55 wiz * arm specific information in the CPU structure to identify the processor.
398 1.55 wiz * The remaining fields in the CPU structure are filled in appropriately.
399 1.1 matt */
400 1.1 matt
401 1.42 bjh21 static const char * const wtnames[] = {
402 1.12 thorpej "write-through",
403 1.12 thorpej "write-back",
404 1.12 thorpej "write-back",
405 1.12 thorpej "**unknown 3**",
406 1.12 thorpej "**unknown 4**",
407 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
408 1.12 thorpej "write-back-locking-A",
409 1.12 thorpej "write-back-locking-B",
410 1.12 thorpej "**unknown 8**",
411 1.12 thorpej "**unknown 9**",
412 1.12 thorpej "**unknown 10**",
413 1.12 thorpej "**unknown 11**",
414 1.12 thorpej "**unknown 12**",
415 1.12 thorpej "**unknown 13**",
416 1.57 rearnsha "write-back-locking-C",
417 1.12 thorpej "**unknown 15**",
418 1.12 thorpej };
419 1.12 thorpej
420 1.1 matt void
421 1.25 bjh21 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
422 1.1 matt {
423 1.1 matt u_int cpuid;
424 1.54 chris enum cpu_class cpu_class = CPU_CLASS_NONE;
425 1.1 matt int i;
426 1.1 matt
427 1.44 bjh21 cpuid = ci->ci_arm_cpuid;
428 1.1 matt
429 1.1 matt if (cpuid == 0) {
430 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
431 1.1 matt return;
432 1.1 matt }
433 1.1 matt
434 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
435 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
436 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
437 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
438 1.13 thorpej cpuids[i].cpu_name,
439 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
440 1.13 thorpej CPU_ID_REVISION_MASK],
441 1.19 bjh21 cpu_classes[cpu_class].class_name);
442 1.1 matt break;
443 1.1 matt }
444 1.1 matt
445 1.1 matt if (cpuids[i].cpuid == 0)
446 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
447 1.1 matt
448 1.49 thorpej aprint_naive(": %s\n", cpu_model);
449 1.49 thorpej aprint_normal(": %s\n", cpu_model);
450 1.29 bjh21
451 1.49 thorpej aprint_normal("%s:", dv->dv_xname);
452 1.29 bjh21
453 1.19 bjh21 switch (cpu_class) {
454 1.1 matt case CPU_CLASS_ARM6:
455 1.1 matt case CPU_CLASS_ARM7:
456 1.3 chris case CPU_CLASS_ARM7TDMI:
457 1.1 matt case CPU_CLASS_ARM8:
458 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
459 1.49 thorpej aprint_normal(" IDC disabled");
460 1.1 matt else
461 1.49 thorpej aprint_normal(" IDC enabled");
462 1.1 matt break;
463 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
464 1.53 rearnsha case CPU_CLASS_ARM10E:
465 1.57 rearnsha case CPU_CLASS_ARM10EJ:
466 1.1 matt case CPU_CLASS_SA1:
467 1.4 matt case CPU_CLASS_XSCALE:
468 1.58 rearnsha case CPU_CLASS_ARM11J:
469 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
470 1.49 thorpej aprint_normal(" DC disabled");
471 1.1 matt else
472 1.49 thorpej aprint_normal(" DC enabled");
473 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
474 1.49 thorpej aprint_normal(" IC disabled");
475 1.1 matt else
476 1.49 thorpej aprint_normal(" IC enabled");
477 1.1 matt break;
478 1.19 bjh21 default:
479 1.19 bjh21 break;
480 1.1 matt }
481 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
482 1.49 thorpej aprint_normal(" WB disabled");
483 1.1 matt else
484 1.49 thorpej aprint_normal(" WB enabled");
485 1.1 matt
486 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
487 1.49 thorpej aprint_normal(" LABT");
488 1.1 matt else
489 1.49 thorpej aprint_normal(" EABT");
490 1.1 matt
491 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
492 1.49 thorpej aprint_normal(" branch prediction enabled");
493 1.1 matt
494 1.49 thorpej aprint_normal("\n");
495 1.1 matt
496 1.12 thorpej /* Print cache info. */
497 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
498 1.12 thorpej goto skip_pcache;
499 1.12 thorpej
500 1.12 thorpej if (arm_pcache_unified) {
501 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
502 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
503 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
504 1.12 thorpej wtnames[arm_pcache_type]);
505 1.12 thorpej } else {
506 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
507 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
508 1.12 thorpej arm_picache_line_size, arm_picache_ways);
509 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
510 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
511 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
512 1.12 thorpej wtnames[arm_pcache_type]);
513 1.12 thorpej }
514 1.12 thorpej
515 1.12 thorpej skip_pcache:
516 1.1 matt
517 1.19 bjh21 switch (cpu_class) {
518 1.1 matt #ifdef CPU_ARM2
519 1.1 matt case CPU_CLASS_ARM2:
520 1.1 matt #endif
521 1.1 matt #ifdef CPU_ARM250
522 1.1 matt case CPU_CLASS_ARM2AS:
523 1.1 matt #endif
524 1.1 matt #ifdef CPU_ARM3
525 1.1 matt case CPU_CLASS_ARM3:
526 1.1 matt #endif
527 1.1 matt #ifdef CPU_ARM6
528 1.1 matt case CPU_CLASS_ARM6:
529 1.1 matt #endif
530 1.1 matt #ifdef CPU_ARM7
531 1.1 matt case CPU_CLASS_ARM7:
532 1.1 matt #endif
533 1.3 chris #ifdef CPU_ARM7TDMI
534 1.3 chris case CPU_CLASS_ARM7TDMI:
535 1.3 chris #endif
536 1.1 matt #ifdef CPU_ARM8
537 1.1 matt case CPU_CLASS_ARM8:
538 1.6 rearnsha #endif
539 1.6 rearnsha #ifdef CPU_ARM9
540 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
541 1.53 rearnsha #endif
542 1.53 rearnsha #ifdef CPU_ARM10
543 1.53 rearnsha case CPU_CLASS_ARM10E:
544 1.57 rearnsha case CPU_CLASS_ARM10EJ:
545 1.1 matt #endif
546 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
547 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
548 1.1 matt case CPU_CLASS_SA1:
549 1.4 matt #endif
550 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
551 1.50 ichiro defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425)
552 1.4 matt case CPU_CLASS_XSCALE:
553 1.1 matt #endif
554 1.58 rearnsha #ifdef CPU_ARM11
555 1.58 rearnsha case CPU_CLASS_ARM11J:
556 1.58 rearnsha #endif
557 1.1 matt break;
558 1.1 matt default:
559 1.19 bjh21 if (cpu_classes[cpu_class].class_option != NULL)
560 1.49 thorpej aprint_error("%s: %s does not fully support this CPU."
561 1.1 matt "\n", dv->dv_xname, ostype);
562 1.1 matt else {
563 1.49 thorpej aprint_error("%s: This kernel does not fully support "
564 1.1 matt "this CPU.\n", dv->dv_xname);
565 1.49 thorpej aprint_normal("%s: Recompile with \"options %s\" to "
566 1.1 matt "correct this.\n", dv->dv_xname,
567 1.19 bjh21 cpu_classes[cpu_class].class_option);
568 1.1 matt }
569 1.1 matt break;
570 1.1 matt }
571 1.1 matt
572 1.43 bjh21 }
573 1.45 chris #ifdef MULTIPROCESSOR
574 1.43 bjh21 int
575 1.43 bjh21 cpu_alloc_idlepcb(struct cpu_info *ci)
576 1.43 bjh21 {
577 1.43 bjh21 vaddr_t uaddr;
578 1.43 bjh21 struct pcb *pcb;
579 1.43 bjh21 struct trapframe *tf;
580 1.43 bjh21 int error;
581 1.43 bjh21
582 1.43 bjh21 /*
583 1.43 bjh21 * Generate a kernel stack and PCB (in essence, a u-area) for the
584 1.43 bjh21 * new CPU.
585 1.43 bjh21 */
586 1.46 chs if (uvm_uarea_alloc(&uaddr)) {
587 1.46 chs error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
588 1.46 chs VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
589 1.46 chs if (error)
590 1.46 chs return error;
591 1.46 chs }
592 1.43 bjh21 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
593 1.43 bjh21
594 1.43 bjh21 /*
595 1.43 bjh21 * This code is largely derived from cpu_fork(), with which it
596 1.43 bjh21 * should perhaps be shared.
597 1.43 bjh21 */
598 1.43 bjh21
599 1.43 bjh21 /* Copy the pcb */
600 1.43 bjh21 *pcb = proc0.p_addr->u_pcb;
601 1.43 bjh21
602 1.43 bjh21 /* Set up the undefined stack for the process. */
603 1.43 bjh21 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
604 1.43 bjh21 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
605 1.43 bjh21
606 1.43 bjh21 #ifdef STACKCHECKS
607 1.43 bjh21 /* Fill the undefined stack with a known pattern */
608 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
609 1.43 bjh21 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
610 1.43 bjh21 /* Fill the kernel stack with a known pattern */
611 1.43 bjh21 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
612 1.43 bjh21 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
613 1.43 bjh21 #endif /* STACKCHECKS */
614 1.43 bjh21
615 1.43 bjh21 pcb->pcb_tf = tf =
616 1.43 bjh21 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
617 1.43 bjh21 *tf = *proc0.p_addr->u_pcb.pcb_tf;
618 1.43 bjh21 return 0;
619 1.1 matt }
620 1.45 chris #endif /* MULTIPROCESSOR */
621 1.1 matt
622 1.1 matt /* End of cpu.c */
623