cpu.c revision 1.67 1 1.67 rearnsha /* $NetBSD: cpu.c,v 1.67 2008/03/15 10:19:40 rearnsha Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.55 wiz * Probing and configuration for the master CPU
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.51 martin #include "opt_multiprocessor.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.67 rearnsha __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.67 2008/03/15 10:19:40 rearnsha Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.1 matt #include <sys/malloc.h>
53 1.1 matt #include <sys/device.h>
54 1.1 matt #include <sys/proc.h>
55 1.41 gehenna #include <sys/conf.h>
56 1.1 matt #include <uvm/uvm_extern.h>
57 1.1 matt #include <machine/cpu.h>
58 1.33 thorpej
59 1.33 thorpej #include <arm/cpuconf.h>
60 1.10 thorpej #include <arm/undefined.h>
61 1.10 thorpej
62 1.1 matt #ifdef ARMFPE
63 1.1 matt #include <machine/bootconfig.h> /* For boot args */
64 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
65 1.11 thorpej #endif
66 1.1 matt
67 1.67 rearnsha #ifdef FPU_VFP
68 1.67 rearnsha #include <arm/vfpvar.h>
69 1.67 rearnsha #endif
70 1.67 rearnsha
71 1.20 bjh21 char cpu_model[256];
72 1.1 matt
73 1.1 matt /* Prototypes */
74 1.25 bjh21 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75 1.1 matt
76 1.1 matt /*
77 1.25 bjh21 * Identify the master (boot) CPU
78 1.1 matt */
79 1.1 matt
80 1.1 matt void
81 1.15 bjh21 cpu_attach(struct device *dv)
82 1.1 matt {
83 1.27 reinoud int usearmfpe;
84 1.27 reinoud
85 1.27 reinoud usearmfpe = 1; /* when compiled in, its enabled by default */
86 1.23 bjh21
87 1.23 bjh21 curcpu()->ci_dev = dv;
88 1.1 matt
89 1.17 bjh21 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 1.17 bjh21 NULL, dv->dv_xname, "arm700swibug");
91 1.17 bjh21
92 1.55 wiz /* Get the CPU ID from coprocessor 15 */
93 1.1 matt
94 1.44 bjh21 curcpu()->ci_arm_cpuid = cpu_id();
95 1.44 bjh21 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 1.44 bjh21 curcpu()->ci_arm_cpurev =
97 1.44 bjh21 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98 1.1 matt
99 1.25 bjh21 identify_arm_cpu(dv, curcpu());
100 1.1 matt
101 1.44 bjh21 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 1.44 bjh21 curcpu()->ci_arm_cpurev < 3) {
103 1.49 thorpej aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 1.1 matt dv->dv_xname);
105 1.1 matt }
106 1.1 matt
107 1.1 matt #ifdef CPU_ARM8
108 1.44 bjh21 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 1.1 matt int clock = arm8_clock_config(0, 0);
110 1.1 matt char *fclk;
111 1.49 thorpej aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
114 1.1 matt switch ((clock >> 2) & 3) {
115 1.15 bjh21 case 0:
116 1.1 matt fclk = "bus clock";
117 1.1 matt break;
118 1.15 bjh21 case 1:
119 1.1 matt fclk = "ref clock";
120 1.1 matt break;
121 1.15 bjh21 case 3:
122 1.1 matt fclk = "pll";
123 1.1 matt break;
124 1.15 bjh21 default:
125 1.1 matt fclk = "illegal";
126 1.1 matt break;
127 1.1 matt }
128 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
129 1.1 matt }
130 1.1 matt #endif
131 1.1 matt
132 1.25 bjh21 #ifdef ARMFPE
133 1.1 matt /*
134 1.1 matt * Ok now we test for an FPA
135 1.1 matt * At this point no floating point emulator has been installed.
136 1.1 matt * This means any FP instruction will cause undefined exception.
137 1.1 matt * We install a temporay coproc 1 handler which will modify
138 1.1 matt * undefined_test if it is called.
139 1.1 matt * We then try to read the FP status register. If undefined_test
140 1.1 matt * has been decremented then the instruction was not handled by
141 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
142 1.1 matt * still 1 then we know the instruction was handled by an FPA.
143 1.1 matt * We then remove our test handler and look at the
144 1.1 matt * FP status register for identification.
145 1.1 matt */
146 1.1 matt
147 1.25 bjh21 /*
148 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
149 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
150 1.25 bjh21 * This is just while I work on integrating the new FPE.
151 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
152 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
153 1.25 bjh21 * case the new FPE is causing panics.
154 1.25 bjh21 */
155 1.1 matt
156 1.1 matt
157 1.25 bjh21 if (boot_args)
158 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
159 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 1.25 bjh21 if (usearmfpe)
161 1.25 bjh21 initialise_arm_fpe();
162 1.1 matt #endif
163 1.67 rearnsha
164 1.67 rearnsha #ifdef FPU_VFP
165 1.67 rearnsha vfp_attach();
166 1.67 rearnsha #endif
167 1.1 matt }
168 1.1 matt
169 1.19 bjh21 enum cpu_class {
170 1.19 bjh21 CPU_CLASS_NONE,
171 1.19 bjh21 CPU_CLASS_ARM2,
172 1.19 bjh21 CPU_CLASS_ARM2AS,
173 1.19 bjh21 CPU_CLASS_ARM3,
174 1.19 bjh21 CPU_CLASS_ARM6,
175 1.19 bjh21 CPU_CLASS_ARM7,
176 1.19 bjh21 CPU_CLASS_ARM7TDMI,
177 1.19 bjh21 CPU_CLASS_ARM8,
178 1.19 bjh21 CPU_CLASS_ARM9TDMI,
179 1.19 bjh21 CPU_CLASS_ARM9ES,
180 1.64 christos CPU_CLASS_ARM9EJS,
181 1.53 rearnsha CPU_CLASS_ARM10E,
182 1.57 rearnsha CPU_CLASS_ARM10EJ,
183 1.19 bjh21 CPU_CLASS_SA1,
184 1.58 rearnsha CPU_CLASS_XSCALE,
185 1.58 rearnsha CPU_CLASS_ARM11J
186 1.19 bjh21 };
187 1.19 bjh21
188 1.42 bjh21 static const char * const generic_steppings[16] = {
189 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
190 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
191 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
192 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
193 1.14 bjh21 };
194 1.14 bjh21
195 1.42 bjh21 static const char * const sa110_steppings[16] = {
196 1.14 bjh21 "rev 0", "step J", "step K", "step S",
197 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
198 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
199 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
200 1.14 bjh21 };
201 1.14 bjh21
202 1.42 bjh21 static const char * const sa1100_steppings[16] = {
203 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
204 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
205 1.14 bjh21 "step D", "step E", "rev 10" "step G",
206 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
207 1.14 bjh21 };
208 1.14 bjh21
209 1.42 bjh21 static const char * const sa1110_steppings[16] = {
210 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
211 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
212 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
213 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
214 1.13 thorpej };
215 1.13 thorpej
216 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
217 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
218 1.37 ichiro "rev 2", "(IXP1200 step C)",
219 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
220 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
221 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
222 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
223 1.36 thorpej };
224 1.36 thorpej
225 1.42 bjh21 static const char * const xscale_steppings[16] = {
226 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
227 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
228 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
229 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
230 1.40 briggs };
231 1.40 briggs
232 1.42 bjh21 static const char * const i80321_steppings[16] = {
233 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
234 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
235 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
236 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
237 1.13 thorpej };
238 1.13 thorpej
239 1.60 nonaka static const char * const i80219_steppings[16] = {
240 1.60 nonaka "step A-0", "rev 1", "rev 2", "rev 3",
241 1.60 nonaka "rev 4", "rev 5", "rev 6", "rev 7",
242 1.60 nonaka "rev 8", "rev 9", "rev 10", "rev 11",
243 1.60 nonaka "rev 12", "rev 13", "rev 14", "rev 15",
244 1.60 nonaka };
245 1.60 nonaka
246 1.56 bsh /* Steppings for PXA2[15]0 */
247 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
248 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
249 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
250 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
251 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
252 1.35 thorpej };
253 1.35 thorpej
254 1.56 bsh /* Steppings for PXA255/26x.
255 1.56 bsh * rev 5: PXA26x B0, rev 6: PXA255 A0
256 1.56 bsh */
257 1.56 bsh static const char * const pxa255_steppings[16] = {
258 1.56 bsh "rev 0", "rev 1", "rev 2", "step A-0",
259 1.56 bsh "rev 4", "step B-0", "step A-0", "rev 7",
260 1.56 bsh "rev 8", "rev 9", "rev 10", "rev 11",
261 1.56 bsh "rev 12", "rev 13", "rev 14", "rev 15",
262 1.56 bsh };
263 1.56 bsh
264 1.59 bsh /* Stepping for PXA27x */
265 1.59 bsh static const char * const pxa27x_steppings[16] = {
266 1.59 bsh "step A-0", "step A-1", "step B-0", "step B-1",
267 1.59 bsh "step C-0", "rev 5", "rev 6", "rev 7",
268 1.59 bsh "rev 8", "rev 9", "rev 10", "rev 11",
269 1.59 bsh "rev 12", "rev 13", "rev 14", "rev 15",
270 1.59 bsh };
271 1.59 bsh
272 1.50 ichiro static const char * const ixp425_steppings[16] = {
273 1.50 ichiro "step 0", "rev 1", "rev 2", "rev 3",
274 1.50 ichiro "rev 4", "rev 5", "rev 6", "rev 7",
275 1.50 ichiro "rev 8", "rev 9", "rev 10", "rev 11",
276 1.50 ichiro "rev 12", "rev 13", "rev 14", "rev 15",
277 1.50 ichiro };
278 1.50 ichiro
279 1.1 matt struct cpuidtab {
280 1.1 matt u_int32_t cpuid;
281 1.1 matt enum cpu_class cpu_class;
282 1.9 thorpej const char *cpu_name;
283 1.42 bjh21 const char * const *cpu_steppings;
284 1.1 matt };
285 1.1 matt
286 1.1 matt const struct cpuidtab cpuids[] = {
287 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
288 1.13 thorpej generic_steppings },
289 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
290 1.13 thorpej generic_steppings },
291 1.13 thorpej
292 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
293 1.13 thorpej generic_steppings },
294 1.13 thorpej
295 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
296 1.13 thorpej generic_steppings },
297 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
298 1.13 thorpej generic_steppings },
299 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
300 1.13 thorpej generic_steppings },
301 1.13 thorpej
302 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
303 1.13 thorpej generic_steppings },
304 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
305 1.13 thorpej generic_steppings },
306 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
307 1.13 thorpej generic_steppings },
308 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
309 1.13 thorpej generic_steppings },
310 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
311 1.13 thorpej generic_steppings },
312 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
313 1.13 thorpej generic_steppings },
314 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
315 1.13 thorpej generic_steppings },
316 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
317 1.13 thorpej generic_steppings },
318 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
319 1.13 thorpej generic_steppings },
320 1.13 thorpej
321 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
322 1.13 thorpej generic_steppings },
323 1.13 thorpej
324 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
325 1.13 thorpej generic_steppings },
326 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
327 1.13 thorpej generic_steppings },
328 1.64 christos { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
329 1.64 christos generic_steppings },
330 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
331 1.13 thorpej generic_steppings },
332 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
333 1.13 thorpej generic_steppings },
334 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
335 1.13 thorpej generic_steppings },
336 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
337 1.52 mycroft generic_steppings },
338 1.52 mycroft { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
339 1.13 thorpej generic_steppings },
340 1.13 thorpej
341 1.53 rearnsha { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
342 1.53 rearnsha generic_steppings },
343 1.53 rearnsha { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
344 1.53 rearnsha generic_steppings },
345 1.57 rearnsha { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
346 1.57 rearnsha generic_steppings },
347 1.53 rearnsha
348 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
349 1.14 bjh21 sa110_steppings },
350 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
351 1.14 bjh21 sa1100_steppings },
352 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
353 1.14 bjh21 sa1110_steppings },
354 1.36 thorpej
355 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
356 1.37 ichiro ixp12x0_steppings },
357 1.13 thorpej
358 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
359 1.32 thorpej xscale_steppings },
360 1.32 thorpej
361 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
362 1.40 briggs i80321_steppings },
363 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
364 1.40 briggs i80321_steppings },
365 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
366 1.40 briggs i80321_steppings },
367 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
368 1.40 briggs i80321_steppings },
369 1.13 thorpej
370 1.60 nonaka { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
371 1.60 nonaka i80219_steppings },
372 1.60 nonaka { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
373 1.60 nonaka i80219_steppings },
374 1.60 nonaka
375 1.59 bsh { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
376 1.59 bsh pxa27x_steppings },
377 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
378 1.48 rjs pxa2x0_steppings },
379 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
380 1.48 rjs pxa2x0_steppings },
381 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
382 1.39 ichiro pxa2x0_steppings },
383 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
384 1.39 ichiro pxa2x0_steppings },
385 1.56 bsh { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
386 1.56 bsh pxa255_steppings },
387 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
388 1.35 thorpej pxa2x0_steppings },
389 1.35 thorpej
390 1.50 ichiro { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
391 1.50 ichiro ixp425_steppings },
392 1.50 ichiro { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
393 1.50 ichiro ixp425_steppings },
394 1.50 ichiro { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
395 1.50 ichiro ixp425_steppings },
396 1.50 ichiro
397 1.58 rearnsha { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S",
398 1.58 rearnsha generic_steppings },
399 1.58 rearnsha { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S R1",
400 1.58 rearnsha generic_steppings },
401 1.58 rearnsha
402 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
403 1.1 matt };
404 1.1 matt
405 1.1 matt struct cpu_classtab {
406 1.9 thorpej const char *class_name;
407 1.9 thorpej const char *class_option;
408 1.1 matt };
409 1.1 matt
410 1.1 matt const struct cpu_classtab cpu_classes[] = {
411 1.6 rearnsha { "unknown", NULL }, /* CPU_CLASS_NONE */
412 1.6 rearnsha { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
413 1.6 rearnsha { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
414 1.6 rearnsha { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
415 1.6 rearnsha { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
416 1.6 rearnsha { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
417 1.6 rearnsha { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
418 1.6 rearnsha { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
419 1.6 rearnsha { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
420 1.64 christos { "ARM9E-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9ES */
421 1.64 christos { "ARM9EJ-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9EJS */
422 1.53 rearnsha { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */
423 1.57 rearnsha { "ARM10EJ", "CPU_ARM10" }, /* CPU_CLASS_ARM10EJ */
424 1.6 rearnsha { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
425 1.31 thorpej { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
426 1.58 rearnsha { "ARM11J", "CPU_ARM11" }, /* CPU_CLASS_ARM11J */
427 1.1 matt };
428 1.1 matt
429 1.1 matt /*
430 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
431 1.55 wiz * arm specific information in the CPU structure to identify the processor.
432 1.55 wiz * The remaining fields in the CPU structure are filled in appropriately.
433 1.1 matt */
434 1.1 matt
435 1.42 bjh21 static const char * const wtnames[] = {
436 1.12 thorpej "write-through",
437 1.12 thorpej "write-back",
438 1.12 thorpej "write-back",
439 1.12 thorpej "**unknown 3**",
440 1.12 thorpej "**unknown 4**",
441 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
442 1.12 thorpej "write-back-locking-A",
443 1.12 thorpej "write-back-locking-B",
444 1.12 thorpej "**unknown 8**",
445 1.12 thorpej "**unknown 9**",
446 1.12 thorpej "**unknown 10**",
447 1.12 thorpej "**unknown 11**",
448 1.12 thorpej "**unknown 12**",
449 1.12 thorpej "**unknown 13**",
450 1.57 rearnsha "write-back-locking-C",
451 1.12 thorpej "**unknown 15**",
452 1.12 thorpej };
453 1.12 thorpej
454 1.1 matt void
455 1.25 bjh21 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
456 1.1 matt {
457 1.1 matt u_int cpuid;
458 1.54 chris enum cpu_class cpu_class = CPU_CLASS_NONE;
459 1.1 matt int i;
460 1.1 matt
461 1.44 bjh21 cpuid = ci->ci_arm_cpuid;
462 1.1 matt
463 1.1 matt if (cpuid == 0) {
464 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
465 1.1 matt return;
466 1.1 matt }
467 1.1 matt
468 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
469 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
470 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
471 1.20 bjh21 sprintf(cpu_model, "%s %s (%s core)",
472 1.13 thorpej cpuids[i].cpu_name,
473 1.13 thorpej cpuids[i].cpu_steppings[cpuid &
474 1.13 thorpej CPU_ID_REVISION_MASK],
475 1.19 bjh21 cpu_classes[cpu_class].class_name);
476 1.1 matt break;
477 1.1 matt }
478 1.1 matt
479 1.1 matt if (cpuids[i].cpuid == 0)
480 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
481 1.1 matt
482 1.49 thorpej aprint_naive(": %s\n", cpu_model);
483 1.49 thorpej aprint_normal(": %s\n", cpu_model);
484 1.29 bjh21
485 1.49 thorpej aprint_normal("%s:", dv->dv_xname);
486 1.29 bjh21
487 1.19 bjh21 switch (cpu_class) {
488 1.1 matt case CPU_CLASS_ARM6:
489 1.1 matt case CPU_CLASS_ARM7:
490 1.3 chris case CPU_CLASS_ARM7TDMI:
491 1.1 matt case CPU_CLASS_ARM8:
492 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
493 1.49 thorpej aprint_normal(" IDC disabled");
494 1.1 matt else
495 1.49 thorpej aprint_normal(" IDC enabled");
496 1.1 matt break;
497 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
498 1.64 christos case CPU_CLASS_ARM9ES:
499 1.64 christos case CPU_CLASS_ARM9EJS:
500 1.53 rearnsha case CPU_CLASS_ARM10E:
501 1.57 rearnsha case CPU_CLASS_ARM10EJ:
502 1.1 matt case CPU_CLASS_SA1:
503 1.4 matt case CPU_CLASS_XSCALE:
504 1.58 rearnsha case CPU_CLASS_ARM11J:
505 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
506 1.49 thorpej aprint_normal(" DC disabled");
507 1.1 matt else
508 1.49 thorpej aprint_normal(" DC enabled");
509 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
510 1.49 thorpej aprint_normal(" IC disabled");
511 1.1 matt else
512 1.49 thorpej aprint_normal(" IC enabled");
513 1.1 matt break;
514 1.19 bjh21 default:
515 1.19 bjh21 break;
516 1.1 matt }
517 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
518 1.49 thorpej aprint_normal(" WB disabled");
519 1.1 matt else
520 1.49 thorpej aprint_normal(" WB enabled");
521 1.1 matt
522 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
523 1.49 thorpej aprint_normal(" LABT");
524 1.1 matt else
525 1.49 thorpej aprint_normal(" EABT");
526 1.1 matt
527 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
528 1.49 thorpej aprint_normal(" branch prediction enabled");
529 1.1 matt
530 1.49 thorpej aprint_normal("\n");
531 1.1 matt
532 1.12 thorpej /* Print cache info. */
533 1.12 thorpej if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
534 1.12 thorpej goto skip_pcache;
535 1.12 thorpej
536 1.12 thorpej if (arm_pcache_unified) {
537 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
538 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
539 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
540 1.12 thorpej wtnames[arm_pcache_type]);
541 1.12 thorpej } else {
542 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
543 1.12 thorpej dv->dv_xname, arm_picache_size / 1024,
544 1.12 thorpej arm_picache_line_size, arm_picache_ways);
545 1.49 thorpej aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
546 1.12 thorpej dv->dv_xname, arm_pdcache_size / 1024,
547 1.12 thorpej arm_pdcache_line_size, arm_pdcache_ways,
548 1.12 thorpej wtnames[arm_pcache_type]);
549 1.12 thorpej }
550 1.12 thorpej
551 1.12 thorpej skip_pcache:
552 1.1 matt
553 1.19 bjh21 switch (cpu_class) {
554 1.1 matt #ifdef CPU_ARM2
555 1.1 matt case CPU_CLASS_ARM2:
556 1.1 matt #endif
557 1.1 matt #ifdef CPU_ARM250
558 1.1 matt case CPU_CLASS_ARM2AS:
559 1.1 matt #endif
560 1.1 matt #ifdef CPU_ARM3
561 1.1 matt case CPU_CLASS_ARM3:
562 1.1 matt #endif
563 1.1 matt #ifdef CPU_ARM6
564 1.1 matt case CPU_CLASS_ARM6:
565 1.1 matt #endif
566 1.1 matt #ifdef CPU_ARM7
567 1.1 matt case CPU_CLASS_ARM7:
568 1.1 matt #endif
569 1.3 chris #ifdef CPU_ARM7TDMI
570 1.3 chris case CPU_CLASS_ARM7TDMI:
571 1.3 chris #endif
572 1.1 matt #ifdef CPU_ARM8
573 1.1 matt case CPU_CLASS_ARM8:
574 1.6 rearnsha #endif
575 1.6 rearnsha #ifdef CPU_ARM9
576 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
577 1.53 rearnsha #endif
578 1.64 christos #ifdef CPU_ARM9E
579 1.64 christos case CPU_CLASS_ARM9ES:
580 1.64 christos case CPU_CLASS_ARM9EJS:
581 1.64 christos #endif
582 1.53 rearnsha #ifdef CPU_ARM10
583 1.53 rearnsha case CPU_CLASS_ARM10E:
584 1.57 rearnsha case CPU_CLASS_ARM10EJ:
585 1.1 matt #endif
586 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
587 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
588 1.1 matt case CPU_CLASS_SA1:
589 1.4 matt #endif
590 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
591 1.59 bsh defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
592 1.4 matt case CPU_CLASS_XSCALE:
593 1.1 matt #endif
594 1.58 rearnsha #ifdef CPU_ARM11
595 1.58 rearnsha case CPU_CLASS_ARM11J:
596 1.58 rearnsha #endif
597 1.1 matt break;
598 1.1 matt default:
599 1.63 christos if (cpu_classes[cpu_class].class_option == NULL)
600 1.49 thorpej aprint_error("%s: %s does not fully support this CPU."
601 1.1 matt "\n", dv->dv_xname, ostype);
602 1.1 matt else {
603 1.49 thorpej aprint_error("%s: This kernel does not fully support "
604 1.1 matt "this CPU.\n", dv->dv_xname);
605 1.49 thorpej aprint_normal("%s: Recompile with \"options %s\" to "
606 1.1 matt "correct this.\n", dv->dv_xname,
607 1.19 bjh21 cpu_classes[cpu_class].class_option);
608 1.1 matt }
609 1.1 matt break;
610 1.1 matt }
611 1.1 matt
612 1.43 bjh21 }
613 1.1 matt
614 1.1 matt /* End of cpu.c */
615