cpu.c revision 1.85 1 1.85 matt /* $NetBSD: cpu.c,v 1.85 2012/08/29 17:44:25 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.55 wiz * Probing and configuration for the master CPU
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.51 martin #include "opt_multiprocessor.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.85 matt __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.85 2012/08/29 17:44:25 matt Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.85 matt #include <sys/conf.h>
53 1.85 matt #include <sys/cpu.h>
54 1.1 matt #include <sys/device.h>
55 1.85 matt #include <sys/kmem.h>
56 1.1 matt #include <sys/proc.h>
57 1.85 matt
58 1.1 matt #include <uvm/uvm_extern.h>
59 1.33 thorpej
60 1.33 thorpej #include <arm/cpuconf.h>
61 1.10 thorpej #include <arm/undefined.h>
62 1.10 thorpej
63 1.1 matt #ifdef ARMFPE
64 1.1 matt #include <machine/bootconfig.h> /* For boot args */
65 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
66 1.11 thorpej #endif
67 1.1 matt
68 1.20 bjh21 char cpu_model[256];
69 1.1 matt
70 1.85 matt #ifdef MULTIPROCESSOR
71 1.85 matt volatile u_int arm_cpu_hatched = 0;
72 1.85 matt u_int arm_cpu_max = 0;
73 1.85 matt uint32_t arm_cpu_mbox __cacheline_aligned = 0;
74 1.85 matt uint32_t arm_cpu_marker __cacheline_aligned = 1;
75 1.85 matt #endif
76 1.85 matt
77 1.1 matt /* Prototypes */
78 1.84 matt void identify_arm_cpu(device_t dv, struct cpu_info *);
79 1.85 matt void identify_cortex_caches(device_t dv);
80 1.85 matt void identify_features(device_t dv);
81 1.1 matt
82 1.1 matt /*
83 1.25 bjh21 * Identify the master (boot) CPU
84 1.1 matt */
85 1.1 matt
86 1.1 matt void
87 1.85 matt cpu_attach(device_t dv, cpuid_t id)
88 1.1 matt {
89 1.85 matt struct cpu_info *ci;
90 1.85 matt
91 1.85 matt if (id == 0) {
92 1.85 matt ci = curcpu();
93 1.27 reinoud
94 1.85 matt /* Get the CPU ID from coprocessor 15 */
95 1.85 matt
96 1.85 matt ci->ci_arm_cpuid = cpu_id();
97 1.85 matt ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
98 1.85 matt ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
99 1.85 matt } else {
100 1.85 matt #ifdef MULTIPROCESSOR
101 1.85 matt KASSERT(cpu_info[id] == NULL);
102 1.85 matt ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
103 1.85 matt KASSERT(ci != NULL);
104 1.85 matt ci->ci_cpl = IPL_HIGH;
105 1.85 matt ci->ci_cpuid = id;
106 1.85 matt ci->ci_data.cpu_core_id = id;
107 1.85 matt ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
108 1.85 matt ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
109 1.85 matt ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
110 1.85 matt ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
111 1.85 matt cpu_info[ci->ci_cpuid] = ci;
112 1.85 matt if ((arm_cpu_hatched & (1 << id)) == 0) {
113 1.85 matt ci->ci_dev = dv;
114 1.85 matt dv->dv_private = ci;
115 1.85 matt aprint_naive(": disabled\n");
116 1.85 matt aprint_normal(": disabled (unresponsive)\n");
117 1.85 matt return;
118 1.85 matt }
119 1.85 matt #else
120 1.85 matt aprint_naive(": disabled\n");
121 1.85 matt aprint_normal(": disabled (uniprocessor kernel)\n");
122 1.85 matt return;
123 1.85 matt #endif
124 1.85 matt }
125 1.23 bjh21
126 1.85 matt ci->ci_dev = dv;
127 1.85 matt dv->dv_private = ci;
128 1.1 matt
129 1.85 matt evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
130 1.85 matt NULL, device_xname(dv), "arm700swibug");
131 1.1 matt
132 1.85 matt #ifdef MULTIPROCESSOR
133 1.85 matt /*
134 1.85 matt * and we are done if this is a secondary processor.
135 1.85 matt */
136 1.85 matt if (!CPU_IS_PRIMARY(ci)) {
137 1.85 matt aprint_naive(": %s\n", cpu_model);
138 1.85 matt aprint_normal(": %s\n", cpu_model);
139 1.85 matt mi_cpu_attach(ci);
140 1.85 matt return;
141 1.85 matt }
142 1.85 matt #endif
143 1.1 matt
144 1.85 matt identify_arm_cpu(dv, ci);
145 1.1 matt
146 1.85 matt #ifdef CPU_STRONGARM
147 1.85 matt if (ci->ci_arm_cputype == CPU_ID_SA110 &&
148 1.85 matt ci->ci_arm_cpurev < 3) {
149 1.85 matt aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
150 1.1 matt }
151 1.85 matt #endif
152 1.1 matt
153 1.1 matt #ifdef CPU_ARM8
154 1.85 matt if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
155 1.1 matt int clock = arm8_clock_config(0, 0);
156 1.1 matt char *fclk;
157 1.85 matt aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
158 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
159 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
160 1.1 matt switch ((clock >> 2) & 3) {
161 1.15 bjh21 case 0:
162 1.1 matt fclk = "bus clock";
163 1.1 matt break;
164 1.15 bjh21 case 1:
165 1.1 matt fclk = "ref clock";
166 1.1 matt break;
167 1.15 bjh21 case 3:
168 1.1 matt fclk = "pll";
169 1.1 matt break;
170 1.15 bjh21 default:
171 1.1 matt fclk = "illegal";
172 1.1 matt break;
173 1.1 matt }
174 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
175 1.1 matt }
176 1.1 matt #endif
177 1.1 matt
178 1.25 bjh21 #ifdef ARMFPE
179 1.1 matt /*
180 1.1 matt * Ok now we test for an FPA
181 1.1 matt * At this point no floating point emulator has been installed.
182 1.1 matt * This means any FP instruction will cause undefined exception.
183 1.1 matt * We install a temporay coproc 1 handler which will modify
184 1.1 matt * undefined_test if it is called.
185 1.1 matt * We then try to read the FP status register. If undefined_test
186 1.1 matt * has been decremented then the instruction was not handled by
187 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
188 1.1 matt * still 1 then we know the instruction was handled by an FPA.
189 1.1 matt * We then remove our test handler and look at the
190 1.1 matt * FP status register for identification.
191 1.1 matt */
192 1.1 matt
193 1.25 bjh21 /*
194 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
195 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
196 1.25 bjh21 * This is just while I work on integrating the new FPE.
197 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
198 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
199 1.25 bjh21 * case the new FPE is causing panics.
200 1.25 bjh21 */
201 1.1 matt
202 1.1 matt
203 1.85 matt int usearmfpe = 1;
204 1.25 bjh21 if (boot_args)
205 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
206 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
207 1.25 bjh21 if (usearmfpe)
208 1.25 bjh21 initialise_arm_fpe();
209 1.1 matt #endif
210 1.67 rearnsha
211 1.84 matt vfp_attach(); /* XXX SMP */
212 1.1 matt }
213 1.1 matt
214 1.19 bjh21 enum cpu_class {
215 1.19 bjh21 CPU_CLASS_NONE,
216 1.19 bjh21 CPU_CLASS_ARM2,
217 1.19 bjh21 CPU_CLASS_ARM2AS,
218 1.19 bjh21 CPU_CLASS_ARM3,
219 1.19 bjh21 CPU_CLASS_ARM6,
220 1.19 bjh21 CPU_CLASS_ARM7,
221 1.19 bjh21 CPU_CLASS_ARM7TDMI,
222 1.19 bjh21 CPU_CLASS_ARM8,
223 1.19 bjh21 CPU_CLASS_ARM9TDMI,
224 1.19 bjh21 CPU_CLASS_ARM9ES,
225 1.64 christos CPU_CLASS_ARM9EJS,
226 1.53 rearnsha CPU_CLASS_ARM10E,
227 1.57 rearnsha CPU_CLASS_ARM10EJ,
228 1.19 bjh21 CPU_CLASS_SA1,
229 1.58 rearnsha CPU_CLASS_XSCALE,
230 1.70 matt CPU_CLASS_ARM11J,
231 1.70 matt CPU_CLASS_ARMV4,
232 1.74 matt CPU_CLASS_CORTEX,
233 1.19 bjh21 };
234 1.19 bjh21
235 1.42 bjh21 static const char * const generic_steppings[16] = {
236 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
237 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
238 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
239 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
240 1.14 bjh21 };
241 1.14 bjh21
242 1.68 matt static const char * const pN_steppings[16] = {
243 1.68 matt "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
244 1.68 matt "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
245 1.68 matt };
246 1.68 matt
247 1.42 bjh21 static const char * const sa110_steppings[16] = {
248 1.14 bjh21 "rev 0", "step J", "step K", "step S",
249 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
250 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
251 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
252 1.14 bjh21 };
253 1.14 bjh21
254 1.42 bjh21 static const char * const sa1100_steppings[16] = {
255 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
256 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
257 1.14 bjh21 "step D", "step E", "rev 10" "step G",
258 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
259 1.14 bjh21 };
260 1.14 bjh21
261 1.42 bjh21 static const char * const sa1110_steppings[16] = {
262 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
263 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
264 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
265 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
266 1.13 thorpej };
267 1.13 thorpej
268 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
269 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
270 1.37 ichiro "rev 2", "(IXP1200 step C)",
271 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
272 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
273 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
274 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
275 1.36 thorpej };
276 1.36 thorpej
277 1.42 bjh21 static const char * const xscale_steppings[16] = {
278 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
279 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
280 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
281 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
282 1.40 briggs };
283 1.40 briggs
284 1.42 bjh21 static const char * const i80321_steppings[16] = {
285 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
286 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
287 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
288 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
289 1.13 thorpej };
290 1.13 thorpej
291 1.60 nonaka static const char * const i80219_steppings[16] = {
292 1.60 nonaka "step A-0", "rev 1", "rev 2", "rev 3",
293 1.60 nonaka "rev 4", "rev 5", "rev 6", "rev 7",
294 1.60 nonaka "rev 8", "rev 9", "rev 10", "rev 11",
295 1.60 nonaka "rev 12", "rev 13", "rev 14", "rev 15",
296 1.60 nonaka };
297 1.60 nonaka
298 1.56 bsh /* Steppings for PXA2[15]0 */
299 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
300 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
301 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
302 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
303 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
304 1.35 thorpej };
305 1.35 thorpej
306 1.56 bsh /* Steppings for PXA255/26x.
307 1.56 bsh * rev 5: PXA26x B0, rev 6: PXA255 A0
308 1.56 bsh */
309 1.56 bsh static const char * const pxa255_steppings[16] = {
310 1.56 bsh "rev 0", "rev 1", "rev 2", "step A-0",
311 1.56 bsh "rev 4", "step B-0", "step A-0", "rev 7",
312 1.56 bsh "rev 8", "rev 9", "rev 10", "rev 11",
313 1.56 bsh "rev 12", "rev 13", "rev 14", "rev 15",
314 1.56 bsh };
315 1.56 bsh
316 1.59 bsh /* Stepping for PXA27x */
317 1.59 bsh static const char * const pxa27x_steppings[16] = {
318 1.59 bsh "step A-0", "step A-1", "step B-0", "step B-1",
319 1.59 bsh "step C-0", "rev 5", "rev 6", "rev 7",
320 1.59 bsh "rev 8", "rev 9", "rev 10", "rev 11",
321 1.59 bsh "rev 12", "rev 13", "rev 14", "rev 15",
322 1.59 bsh };
323 1.59 bsh
324 1.50 ichiro static const char * const ixp425_steppings[16] = {
325 1.50 ichiro "step 0", "rev 1", "rev 2", "rev 3",
326 1.50 ichiro "rev 4", "rev 5", "rev 6", "rev 7",
327 1.50 ichiro "rev 8", "rev 9", "rev 10", "rev 11",
328 1.50 ichiro "rev 12", "rev 13", "rev 14", "rev 15",
329 1.50 ichiro };
330 1.50 ichiro
331 1.1 matt struct cpuidtab {
332 1.1 matt u_int32_t cpuid;
333 1.1 matt enum cpu_class cpu_class;
334 1.72 mrg const char *cpu_classname;
335 1.42 bjh21 const char * const *cpu_steppings;
336 1.1 matt };
337 1.1 matt
338 1.1 matt const struct cpuidtab cpuids[] = {
339 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
340 1.13 thorpej generic_steppings },
341 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
342 1.13 thorpej generic_steppings },
343 1.13 thorpej
344 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
345 1.13 thorpej generic_steppings },
346 1.13 thorpej
347 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
348 1.13 thorpej generic_steppings },
349 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
350 1.13 thorpej generic_steppings },
351 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
352 1.13 thorpej generic_steppings },
353 1.13 thorpej
354 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
355 1.13 thorpej generic_steppings },
356 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
357 1.13 thorpej generic_steppings },
358 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
359 1.13 thorpej generic_steppings },
360 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
361 1.13 thorpej generic_steppings },
362 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
363 1.13 thorpej generic_steppings },
364 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
365 1.13 thorpej generic_steppings },
366 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
367 1.13 thorpej generic_steppings },
368 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
369 1.13 thorpej generic_steppings },
370 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
371 1.13 thorpej generic_steppings },
372 1.13 thorpej
373 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
374 1.13 thorpej generic_steppings },
375 1.13 thorpej
376 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
377 1.13 thorpej generic_steppings },
378 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
379 1.13 thorpej generic_steppings },
380 1.64 christos { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
381 1.64 christos generic_steppings },
382 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
383 1.13 thorpej generic_steppings },
384 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
385 1.13 thorpej generic_steppings },
386 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
387 1.13 thorpej generic_steppings },
388 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
389 1.52 mycroft generic_steppings },
390 1.52 mycroft { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
391 1.13 thorpej generic_steppings },
392 1.77 kiyohara { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
393 1.77 kiyohara generic_steppings },
394 1.77 kiyohara { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
395 1.77 kiyohara generic_steppings },
396 1.13 thorpej
397 1.53 rearnsha { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
398 1.53 rearnsha generic_steppings },
399 1.53 rearnsha { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
400 1.53 rearnsha generic_steppings },
401 1.57 rearnsha { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
402 1.57 rearnsha generic_steppings },
403 1.53 rearnsha
404 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
405 1.14 bjh21 sa110_steppings },
406 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
407 1.14 bjh21 sa1100_steppings },
408 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
409 1.14 bjh21 sa1110_steppings },
410 1.36 thorpej
411 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
412 1.37 ichiro ixp12x0_steppings },
413 1.13 thorpej
414 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
415 1.32 thorpej xscale_steppings },
416 1.32 thorpej
417 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
418 1.40 briggs i80321_steppings },
419 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
420 1.40 briggs i80321_steppings },
421 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
422 1.40 briggs i80321_steppings },
423 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
424 1.40 briggs i80321_steppings },
425 1.13 thorpej
426 1.60 nonaka { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
427 1.60 nonaka i80219_steppings },
428 1.60 nonaka { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
429 1.60 nonaka i80219_steppings },
430 1.60 nonaka
431 1.59 bsh { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
432 1.59 bsh pxa27x_steppings },
433 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
434 1.48 rjs pxa2x0_steppings },
435 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
436 1.48 rjs pxa2x0_steppings },
437 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
438 1.39 ichiro pxa2x0_steppings },
439 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
440 1.39 ichiro pxa2x0_steppings },
441 1.56 bsh { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
442 1.56 bsh pxa255_steppings },
443 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
444 1.35 thorpej pxa2x0_steppings },
445 1.35 thorpej
446 1.50 ichiro { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
447 1.50 ichiro ixp425_steppings },
448 1.50 ichiro { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
449 1.50 ichiro ixp425_steppings },
450 1.50 ichiro { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
451 1.50 ichiro ixp425_steppings },
452 1.50 ichiro
453 1.68 matt { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
454 1.68 matt pN_steppings },
455 1.68 matt { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
456 1.68 matt pN_steppings },
457 1.81 skrll #if 0
458 1.81 skrll /* The ARM1156T2-S only has a memory protection unit */
459 1.80 skrll { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
460 1.80 skrll pN_steppings },
461 1.81 skrll #endif
462 1.79 skrll { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
463 1.68 matt pN_steppings },
464 1.74 matt
465 1.78 bsh { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
466 1.78 bsh generic_steppings },
467 1.78 bsh
468 1.82 matt { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
469 1.82 matt pN_steppings },
470 1.74 matt { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
471 1.74 matt pN_steppings },
472 1.74 matt { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
473 1.74 matt pN_steppings },
474 1.74 matt { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
475 1.69 matt pN_steppings },
476 1.82 matt { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
477 1.82 matt pN_steppings },
478 1.82 matt { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
479 1.82 matt pN_steppings },
480 1.82 matt { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
481 1.82 matt pN_steppings },
482 1.82 matt { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
483 1.69 matt pN_steppings },
484 1.82 matt { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
485 1.73 jmcneill pN_steppings },
486 1.58 rearnsha
487 1.70 matt { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
488 1.70 matt generic_steppings },
489 1.70 matt
490 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
491 1.1 matt };
492 1.1 matt
493 1.1 matt struct cpu_classtab {
494 1.9 thorpej const char *class_name;
495 1.9 thorpej const char *class_option;
496 1.1 matt };
497 1.1 matt
498 1.1 matt const struct cpu_classtab cpu_classes[] = {
499 1.74 matt [CPU_CLASS_NONE] = { "unknown", NULL },
500 1.74 matt [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
501 1.74 matt [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
502 1.74 matt [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
503 1.74 matt [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
504 1.74 matt [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
505 1.74 matt [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
506 1.74 matt [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
507 1.74 matt [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
508 1.74 matt [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
509 1.74 matt [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
510 1.74 matt [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
511 1.74 matt [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
512 1.74 matt [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
513 1.74 matt [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
514 1.74 matt [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
515 1.74 matt [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
516 1.75 matt [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
517 1.1 matt };
518 1.1 matt
519 1.1 matt /*
520 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
521 1.55 wiz * arm specific information in the CPU structure to identify the processor.
522 1.55 wiz * The remaining fields in the CPU structure are filled in appropriately.
523 1.1 matt */
524 1.1 matt
525 1.42 bjh21 static const char * const wtnames[] = {
526 1.12 thorpej "write-through",
527 1.12 thorpej "write-back",
528 1.12 thorpej "write-back",
529 1.12 thorpej "**unknown 3**",
530 1.12 thorpej "**unknown 4**",
531 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
532 1.12 thorpej "write-back-locking-A",
533 1.12 thorpej "write-back-locking-B",
534 1.12 thorpej "**unknown 8**",
535 1.12 thorpej "**unknown 9**",
536 1.12 thorpej "**unknown 10**",
537 1.12 thorpej "**unknown 11**",
538 1.12 thorpej "**unknown 12**",
539 1.12 thorpej "**unknown 13**",
540 1.57 rearnsha "write-back-locking-C",
541 1.12 thorpej "**unknown 15**",
542 1.12 thorpej };
543 1.12 thorpej
544 1.1 matt void
545 1.84 matt identify_arm_cpu(device_t dv, struct cpu_info *ci)
546 1.1 matt {
547 1.54 chris enum cpu_class cpu_class = CPU_CLASS_NONE;
548 1.85 matt const u_int cpuid = ci->ci_arm_cpuid;
549 1.85 matt const char * const xname = device_xname(dv);
550 1.85 matt const char *steppingstr;
551 1.1 matt int i;
552 1.1 matt
553 1.1 matt if (cpuid == 0) {
554 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
555 1.1 matt return;
556 1.1 matt }
557 1.1 matt
558 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
559 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
560 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
561 1.68 matt steppingstr = cpuids[i].cpu_steppings[cpuid &
562 1.68 matt CPU_ID_REVISION_MASK],
563 1.68 matt sprintf(cpu_model, "%s%s%s (%s core)",
564 1.72 mrg cpuids[i].cpu_classname,
565 1.68 matt steppingstr[0] == '*' ? "" : " ",
566 1.68 matt &steppingstr[steppingstr[0] == '*'],
567 1.19 bjh21 cpu_classes[cpu_class].class_name);
568 1.1 matt break;
569 1.1 matt }
570 1.1 matt
571 1.1 matt if (cpuids[i].cpuid == 0)
572 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
573 1.1 matt
574 1.85 matt if (ci->ci_data.cpu_cc_freq != 0) {
575 1.85 matt char freqbuf[8];
576 1.85 matt humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
577 1.85 matt "Hz", 1000);
578 1.85 matt
579 1.85 matt aprint_naive(": %s %s\n", freqbuf, cpu_model);
580 1.85 matt aprint_normal(": %s %s\n", freqbuf, cpu_model);
581 1.85 matt } else {
582 1.85 matt aprint_naive(": %s\n", cpu_model);
583 1.85 matt aprint_normal(": %s\n", cpu_model);
584 1.85 matt }
585 1.29 bjh21
586 1.85 matt aprint_normal("%s:", xname);
587 1.29 bjh21
588 1.19 bjh21 switch (cpu_class) {
589 1.1 matt case CPU_CLASS_ARM6:
590 1.1 matt case CPU_CLASS_ARM7:
591 1.3 chris case CPU_CLASS_ARM7TDMI:
592 1.1 matt case CPU_CLASS_ARM8:
593 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
594 1.49 thorpej aprint_normal(" IDC disabled");
595 1.1 matt else
596 1.49 thorpej aprint_normal(" IDC enabled");
597 1.1 matt break;
598 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
599 1.64 christos case CPU_CLASS_ARM9ES:
600 1.64 christos case CPU_CLASS_ARM9EJS:
601 1.53 rearnsha case CPU_CLASS_ARM10E:
602 1.57 rearnsha case CPU_CLASS_ARM10EJ:
603 1.1 matt case CPU_CLASS_SA1:
604 1.4 matt case CPU_CLASS_XSCALE:
605 1.58 rearnsha case CPU_CLASS_ARM11J:
606 1.71 matt case CPU_CLASS_ARMV4:
607 1.74 matt case CPU_CLASS_CORTEX:
608 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
609 1.49 thorpej aprint_normal(" DC disabled");
610 1.1 matt else
611 1.49 thorpej aprint_normal(" DC enabled");
612 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
613 1.49 thorpej aprint_normal(" IC disabled");
614 1.1 matt else
615 1.49 thorpej aprint_normal(" IC enabled");
616 1.1 matt break;
617 1.19 bjh21 default:
618 1.19 bjh21 break;
619 1.1 matt }
620 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
621 1.49 thorpej aprint_normal(" WB disabled");
622 1.1 matt else
623 1.49 thorpej aprint_normal(" WB enabled");
624 1.1 matt
625 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
626 1.49 thorpej aprint_normal(" LABT");
627 1.1 matt else
628 1.49 thorpej aprint_normal(" EABT");
629 1.1 matt
630 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
631 1.49 thorpej aprint_normal(" branch prediction enabled");
632 1.1 matt
633 1.49 thorpej aprint_normal("\n");
634 1.1 matt
635 1.85 matt #ifdef CPU_CORTEX
636 1.85 matt if (CPU_ID_CORTEX_P(cpuid)) {
637 1.85 matt identify_cortex_caches(dv);
638 1.85 matt if (0)
639 1.85 matt identify_features(dv);
640 1.85 matt } else
641 1.85 matt #endif
642 1.12 thorpej /* Print cache info. */
643 1.85 matt if (arm_picache_line_size != 0 || arm_pdcache_line_size != 0) {
644 1.85 matt
645 1.85 matt if (arm_pcache_unified) {
646 1.85 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s unified cache\n",
647 1.85 matt arm_pdcache_size / 1024,
648 1.85 matt arm_pdcache_line_size, arm_pdcache_ways,
649 1.85 matt wtnames[arm_pcache_type]);
650 1.85 matt } else {
651 1.85 matt aprint_normal_dev(dv, "%dKB/%dB %d-way Instruction cache\n",
652 1.85 matt arm_picache_size / 1024,
653 1.85 matt arm_picache_line_size, arm_picache_ways);
654 1.85 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s Data cache\n",
655 1.85 matt arm_pdcache_size / 1024,
656 1.85 matt arm_pdcache_line_size, arm_pdcache_ways,
657 1.85 matt wtnames[arm_pcache_type]);
658 1.85 matt }
659 1.12 thorpej
660 1.12 thorpej }
661 1.12 thorpej
662 1.1 matt
663 1.19 bjh21 switch (cpu_class) {
664 1.1 matt #ifdef CPU_ARM2
665 1.1 matt case CPU_CLASS_ARM2:
666 1.1 matt #endif
667 1.1 matt #ifdef CPU_ARM250
668 1.1 matt case CPU_CLASS_ARM2AS:
669 1.1 matt #endif
670 1.1 matt #ifdef CPU_ARM3
671 1.1 matt case CPU_CLASS_ARM3:
672 1.1 matt #endif
673 1.1 matt #ifdef CPU_ARM6
674 1.1 matt case CPU_CLASS_ARM6:
675 1.1 matt #endif
676 1.1 matt #ifdef CPU_ARM7
677 1.1 matt case CPU_CLASS_ARM7:
678 1.1 matt #endif
679 1.3 chris #ifdef CPU_ARM7TDMI
680 1.3 chris case CPU_CLASS_ARM7TDMI:
681 1.3 chris #endif
682 1.1 matt #ifdef CPU_ARM8
683 1.1 matt case CPU_CLASS_ARM8:
684 1.6 rearnsha #endif
685 1.6 rearnsha #ifdef CPU_ARM9
686 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
687 1.53 rearnsha #endif
688 1.77 kiyohara #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
689 1.64 christos case CPU_CLASS_ARM9ES:
690 1.64 christos case CPU_CLASS_ARM9EJS:
691 1.64 christos #endif
692 1.53 rearnsha #ifdef CPU_ARM10
693 1.53 rearnsha case CPU_CLASS_ARM10E:
694 1.57 rearnsha case CPU_CLASS_ARM10EJ:
695 1.1 matt #endif
696 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
697 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
698 1.1 matt case CPU_CLASS_SA1:
699 1.4 matt #endif
700 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
701 1.59 bsh defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
702 1.4 matt case CPU_CLASS_XSCALE:
703 1.1 matt #endif
704 1.68 matt #if defined(CPU_ARM11)
705 1.58 rearnsha case CPU_CLASS_ARM11J:
706 1.76 matt #endif
707 1.76 matt #if defined(CPU_CORTEX)
708 1.74 matt case CPU_CLASS_CORTEX:
709 1.58 rearnsha #endif
710 1.71 matt #if defined(CPU_FA526)
711 1.71 matt case CPU_CLASS_ARMV4:
712 1.71 matt #endif
713 1.1 matt break;
714 1.1 matt default:
715 1.85 matt if (cpu_classes[cpu_class].class_option == NULL) {
716 1.85 matt aprint_error_dev(dv, "%s does not fully support this CPU.\n",
717 1.85 matt ostype);
718 1.85 matt } else {
719 1.85 matt aprint_error_dev(dv, "This kernel does not fully support "
720 1.85 matt "this CPU.\n");
721 1.85 matt aprint_normal_dev(dv, "Recompile with \"options %s\" to "
722 1.85 matt "correct this.\n", cpu_classes[cpu_class].class_option);
723 1.1 matt }
724 1.1 matt break;
725 1.1 matt }
726 1.43 bjh21 }
727 1.1 matt
728 1.85 matt #ifdef CPU_CORTEX
729 1.85 matt static void
730 1.85 matt print_cortex_cache(device_t dv, u_int level, const char *desc)
731 1.85 matt {
732 1.85 matt uint32_t ccsidr = armreg_ccsidr_read();
733 1.85 matt u_int linesize = 1 << ((ccsidr & 7) + 4);
734 1.85 matt u_int nways = ((ccsidr >> 3) & 0x3ff) + 1;
735 1.85 matt u_int nsets = ((ccsidr >> 13) & 0x7fff) + 1;
736 1.85 matt u_int totalsize = linesize * nways * nsets;
737 1.85 matt static const char * const wstrings[] = {
738 1.85 matt "", " write-back", " write-through", ""
739 1.85 matt };
740 1.85 matt static const char * const astrings[] = {
741 1.85 matt "",
742 1.85 matt " with write allocate",
743 1.85 matt " with read allocate",
744 1.85 matt " with read and write allocate"
745 1.85 matt };
746 1.85 matt
747 1.85 matt //aprint_debug_dev(dv, "ccsidr=%#x\n", ccsidr);
748 1.85 matt
749 1.85 matt u_int wtype = (ccsidr >> 30) & 3;
750 1.85 matt u_int atype = (ccsidr >> 28) & 3;
751 1.85 matt
752 1.85 matt aprint_normal_dev(dv, "%uKB/%uB %u-way%s L%u %s cache%s\n",
753 1.85 matt totalsize / 1024, linesize, nways, wstrings[wtype], level + 1,
754 1.85 matt desc, astrings[atype]);
755 1.85 matt }
756 1.85 matt
757 1.85 matt void
758 1.85 matt identify_cortex_caches(device_t dv)
759 1.85 matt {
760 1.85 matt const uint32_t orig_csselr = armreg_csselr_read();
761 1.85 matt uint32_t clidr = armreg_clidr_read();
762 1.85 matt u_int level;
763 1.85 matt
764 1.85 matt //aprint_debug_dev(dv, "clidr=%011o\n", clidr);
765 1.85 matt
766 1.85 matt for (level = 0, clidr &= 077777777; clidr & 7; clidr >>= 3, level++) {
767 1.85 matt if (clidr & 1) {
768 1.85 matt armreg_csselr_write(2*level + 1);
769 1.85 matt print_cortex_cache(dv, level, "Instruction");
770 1.85 matt }
771 1.85 matt if (clidr & 6) {
772 1.85 matt armreg_csselr_write(2*level + 0);
773 1.85 matt print_cortex_cache(dv, level,
774 1.85 matt (clidr & 4) ? "Unified" : "Data");
775 1.85 matt }
776 1.85 matt }
777 1.85 matt
778 1.85 matt armreg_csselr_write(orig_csselr);
779 1.85 matt
780 1.85 matt
781 1.85 matt }
782 1.85 matt
783 1.85 matt void
784 1.85 matt identify_features(device_t dv)
785 1.85 matt {
786 1.85 matt uint32_t isar0 = armreg_isar0_read();
787 1.85 matt uint32_t isar1 = armreg_isar1_read();
788 1.85 matt uint32_t isar2 = armreg_isar2_read();
789 1.85 matt uint32_t isar3 = armreg_isar3_read();
790 1.85 matt uint32_t isar4 = armreg_isar4_read();
791 1.85 matt uint32_t isar5 = armreg_isar5_read();
792 1.85 matt
793 1.85 matt uint32_t mmfr0 = armreg_mmfr0_read();
794 1.85 matt uint32_t mmfr1 = armreg_mmfr1_read();
795 1.85 matt uint32_t mmfr2 = armreg_mmfr2_read();
796 1.85 matt uint32_t mmfr3 = armreg_mmfr3_read();
797 1.85 matt
798 1.85 matt uint32_t pfr0 = armreg_pfr0_read();
799 1.85 matt uint32_t pfr1 = armreg_pfr1_read();
800 1.85 matt
801 1.85 matt aprint_normal_dev(dv,
802 1.85 matt "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
803 1.85 matt isar0, isar1, isar2, isar3, isar4, isar5);
804 1.85 matt aprint_normal_dev(dv,
805 1.85 matt "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
806 1.85 matt mmfr0, mmfr1, mmfr2, mmfr3);
807 1.85 matt aprint_normal_dev(dv,
808 1.85 matt "pfr: [0]=%#x [1]=%#x\n",
809 1.85 matt pfr0, pfr1);
810 1.85 matt }
811 1.85 matt #endif /* CPU_CORTEX */
812