cpu.c revision 1.86 1 1.86 matt /* $NetBSD: cpu.c,v 1.86 2012/09/07 11:48:59 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.55 wiz * Probing and configuration for the master CPU
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.51 martin #include "opt_multiprocessor.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.86 matt __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.86 2012/09/07 11:48:59 matt Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.85 matt #include <sys/conf.h>
53 1.85 matt #include <sys/cpu.h>
54 1.1 matt #include <sys/device.h>
55 1.85 matt #include <sys/kmem.h>
56 1.1 matt #include <sys/proc.h>
57 1.85 matt
58 1.1 matt #include <uvm/uvm_extern.h>
59 1.33 thorpej
60 1.33 thorpej #include <arm/cpuconf.h>
61 1.10 thorpej #include <arm/undefined.h>
62 1.10 thorpej
63 1.1 matt #ifdef ARMFPE
64 1.1 matt #include <machine/bootconfig.h> /* For boot args */
65 1.11 thorpej #include <arm/fpe-arm/armfpe.h>
66 1.11 thorpej #endif
67 1.1 matt
68 1.20 bjh21 char cpu_model[256];
69 1.1 matt
70 1.85 matt #ifdef MULTIPROCESSOR
71 1.85 matt volatile u_int arm_cpu_hatched = 0;
72 1.85 matt u_int arm_cpu_max = 0;
73 1.85 matt uint32_t arm_cpu_mbox __cacheline_aligned = 0;
74 1.85 matt uint32_t arm_cpu_marker __cacheline_aligned = 1;
75 1.85 matt #endif
76 1.85 matt
77 1.1 matt /* Prototypes */
78 1.84 matt void identify_arm_cpu(device_t dv, struct cpu_info *);
79 1.85 matt void identify_cortex_caches(device_t dv);
80 1.85 matt void identify_features(device_t dv);
81 1.1 matt
82 1.1 matt /*
83 1.25 bjh21 * Identify the master (boot) CPU
84 1.1 matt */
85 1.1 matt
86 1.1 matt void
87 1.85 matt cpu_attach(device_t dv, cpuid_t id)
88 1.1 matt {
89 1.86 matt const char * const xname = device_xname(dv);
90 1.85 matt struct cpu_info *ci;
91 1.85 matt
92 1.85 matt if (id == 0) {
93 1.85 matt ci = curcpu();
94 1.27 reinoud
95 1.85 matt /* Get the CPU ID from coprocessor 15 */
96 1.85 matt
97 1.85 matt ci->ci_arm_cpuid = cpu_id();
98 1.85 matt ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
99 1.85 matt ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
100 1.85 matt } else {
101 1.85 matt #ifdef MULTIPROCESSOR
102 1.85 matt KASSERT(cpu_info[id] == NULL);
103 1.85 matt ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
104 1.85 matt KASSERT(ci != NULL);
105 1.85 matt ci->ci_cpl = IPL_HIGH;
106 1.85 matt ci->ci_cpuid = id;
107 1.85 matt ci->ci_data.cpu_core_id = id;
108 1.85 matt ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
109 1.85 matt ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
110 1.85 matt ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
111 1.85 matt ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
112 1.85 matt cpu_info[ci->ci_cpuid] = ci;
113 1.85 matt if ((arm_cpu_hatched & (1 << id)) == 0) {
114 1.85 matt ci->ci_dev = dv;
115 1.85 matt dv->dv_private = ci;
116 1.85 matt aprint_naive(": disabled\n");
117 1.85 matt aprint_normal(": disabled (unresponsive)\n");
118 1.85 matt return;
119 1.85 matt }
120 1.85 matt #else
121 1.85 matt aprint_naive(": disabled\n");
122 1.85 matt aprint_normal(": disabled (uniprocessor kernel)\n");
123 1.85 matt return;
124 1.85 matt #endif
125 1.85 matt }
126 1.23 bjh21
127 1.85 matt ci->ci_dev = dv;
128 1.85 matt dv->dv_private = ci;
129 1.1 matt
130 1.85 matt evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
131 1.86 matt NULL, xname, "arm700swibug");
132 1.86 matt
133 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
134 1.86 matt NULL, xname, "vector abort");
135 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
136 1.86 matt NULL, xname, "terminal abort");
137 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
138 1.86 matt NULL, xname, "external linefetch abort (S)");
139 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
140 1.86 matt NULL, xname, "external linefetch abort (P)");
141 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
142 1.86 matt NULL, xname, "external non-linefetch abort (S)");
143 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
144 1.86 matt NULL, xname, "external non-linefetch abort (P)");
145 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
146 1.86 matt NULL, xname, "external translation abort (L1)");
147 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
148 1.86 matt NULL, xname, "external translation abort (L2)");
149 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
150 1.86 matt NULL, xname, "alignment abort (0)");
151 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
152 1.86 matt NULL, xname, "alignment abort (1)");
153 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
154 1.86 matt NULL, xname, "translation abort (S)");
155 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
156 1.86 matt NULL, xname, "translation abort (P)");
157 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
158 1.86 matt NULL, xname, "domain abort (S)");
159 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
160 1.86 matt NULL, xname, "domain abort (P)");
161 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
162 1.86 matt NULL, xname, "permission abort (S)");
163 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
164 1.86 matt NULL, xname, "permission abort (P)");
165 1.1 matt
166 1.85 matt #ifdef MULTIPROCESSOR
167 1.85 matt /*
168 1.85 matt * and we are done if this is a secondary processor.
169 1.85 matt */
170 1.85 matt if (!CPU_IS_PRIMARY(ci)) {
171 1.85 matt aprint_naive(": %s\n", cpu_model);
172 1.85 matt aprint_normal(": %s\n", cpu_model);
173 1.85 matt mi_cpu_attach(ci);
174 1.85 matt return;
175 1.85 matt }
176 1.85 matt #endif
177 1.1 matt
178 1.85 matt identify_arm_cpu(dv, ci);
179 1.1 matt
180 1.85 matt #ifdef CPU_STRONGARM
181 1.85 matt if (ci->ci_arm_cputype == CPU_ID_SA110 &&
182 1.85 matt ci->ci_arm_cpurev < 3) {
183 1.85 matt aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
184 1.1 matt }
185 1.85 matt #endif
186 1.1 matt
187 1.1 matt #ifdef CPU_ARM8
188 1.85 matt if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
189 1.1 matt int clock = arm8_clock_config(0, 0);
190 1.1 matt char *fclk;
191 1.85 matt aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
192 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
193 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
194 1.1 matt switch ((clock >> 2) & 3) {
195 1.15 bjh21 case 0:
196 1.1 matt fclk = "bus clock";
197 1.1 matt break;
198 1.15 bjh21 case 1:
199 1.1 matt fclk = "ref clock";
200 1.1 matt break;
201 1.15 bjh21 case 3:
202 1.1 matt fclk = "pll";
203 1.1 matt break;
204 1.15 bjh21 default:
205 1.1 matt fclk = "illegal";
206 1.1 matt break;
207 1.1 matt }
208 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
209 1.1 matt }
210 1.1 matt #endif
211 1.1 matt
212 1.25 bjh21 #ifdef ARMFPE
213 1.1 matt /*
214 1.1 matt * Ok now we test for an FPA
215 1.1 matt * At this point no floating point emulator has been installed.
216 1.1 matt * This means any FP instruction will cause undefined exception.
217 1.1 matt * We install a temporay coproc 1 handler which will modify
218 1.1 matt * undefined_test if it is called.
219 1.1 matt * We then try to read the FP status register. If undefined_test
220 1.1 matt * has been decremented then the instruction was not handled by
221 1.1 matt * an FPA so we know the FPA is missing. If undefined_test is
222 1.1 matt * still 1 then we know the instruction was handled by an FPA.
223 1.1 matt * We then remove our test handler and look at the
224 1.1 matt * FP status register for identification.
225 1.1 matt */
226 1.1 matt
227 1.25 bjh21 /*
228 1.25 bjh21 * Ok if ARMFPE is defined and the boot options request the
229 1.25 bjh21 * ARM FPE then it will be installed as the FPE.
230 1.25 bjh21 * This is just while I work on integrating the new FPE.
231 1.25 bjh21 * It means the new FPE gets installed if compiled int (ARMFPE
232 1.25 bjh21 * defined) and also gives me a on/off option when I boot in
233 1.25 bjh21 * case the new FPE is causing panics.
234 1.25 bjh21 */
235 1.1 matt
236 1.1 matt
237 1.85 matt int usearmfpe = 1;
238 1.25 bjh21 if (boot_args)
239 1.25 bjh21 get_bootconf_option(boot_args, "armfpe",
240 1.25 bjh21 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
241 1.25 bjh21 if (usearmfpe)
242 1.25 bjh21 initialise_arm_fpe();
243 1.1 matt #endif
244 1.67 rearnsha
245 1.84 matt vfp_attach(); /* XXX SMP */
246 1.1 matt }
247 1.1 matt
248 1.19 bjh21 enum cpu_class {
249 1.19 bjh21 CPU_CLASS_NONE,
250 1.19 bjh21 CPU_CLASS_ARM2,
251 1.19 bjh21 CPU_CLASS_ARM2AS,
252 1.19 bjh21 CPU_CLASS_ARM3,
253 1.19 bjh21 CPU_CLASS_ARM6,
254 1.19 bjh21 CPU_CLASS_ARM7,
255 1.19 bjh21 CPU_CLASS_ARM7TDMI,
256 1.19 bjh21 CPU_CLASS_ARM8,
257 1.19 bjh21 CPU_CLASS_ARM9TDMI,
258 1.19 bjh21 CPU_CLASS_ARM9ES,
259 1.64 christos CPU_CLASS_ARM9EJS,
260 1.53 rearnsha CPU_CLASS_ARM10E,
261 1.57 rearnsha CPU_CLASS_ARM10EJ,
262 1.19 bjh21 CPU_CLASS_SA1,
263 1.58 rearnsha CPU_CLASS_XSCALE,
264 1.70 matt CPU_CLASS_ARM11J,
265 1.70 matt CPU_CLASS_ARMV4,
266 1.74 matt CPU_CLASS_CORTEX,
267 1.19 bjh21 };
268 1.19 bjh21
269 1.42 bjh21 static const char * const generic_steppings[16] = {
270 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
271 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
272 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
273 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
274 1.14 bjh21 };
275 1.14 bjh21
276 1.68 matt static const char * const pN_steppings[16] = {
277 1.68 matt "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
278 1.68 matt "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
279 1.68 matt };
280 1.68 matt
281 1.42 bjh21 static const char * const sa110_steppings[16] = {
282 1.14 bjh21 "rev 0", "step J", "step K", "step S",
283 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
284 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
285 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
286 1.14 bjh21 };
287 1.14 bjh21
288 1.42 bjh21 static const char * const sa1100_steppings[16] = {
289 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
290 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
291 1.14 bjh21 "step D", "step E", "rev 10" "step G",
292 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
293 1.14 bjh21 };
294 1.14 bjh21
295 1.42 bjh21 static const char * const sa1110_steppings[16] = {
296 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
297 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
298 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
299 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
300 1.13 thorpej };
301 1.13 thorpej
302 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
303 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
304 1.37 ichiro "rev 2", "(IXP1200 step C)",
305 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
306 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
307 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
308 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
309 1.36 thorpej };
310 1.36 thorpej
311 1.42 bjh21 static const char * const xscale_steppings[16] = {
312 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
313 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
314 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
315 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
316 1.40 briggs };
317 1.40 briggs
318 1.42 bjh21 static const char * const i80321_steppings[16] = {
319 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
320 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
321 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
322 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
323 1.13 thorpej };
324 1.13 thorpej
325 1.60 nonaka static const char * const i80219_steppings[16] = {
326 1.60 nonaka "step A-0", "rev 1", "rev 2", "rev 3",
327 1.60 nonaka "rev 4", "rev 5", "rev 6", "rev 7",
328 1.60 nonaka "rev 8", "rev 9", "rev 10", "rev 11",
329 1.60 nonaka "rev 12", "rev 13", "rev 14", "rev 15",
330 1.60 nonaka };
331 1.60 nonaka
332 1.56 bsh /* Steppings for PXA2[15]0 */
333 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
334 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
335 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
336 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
337 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
338 1.35 thorpej };
339 1.35 thorpej
340 1.56 bsh /* Steppings for PXA255/26x.
341 1.56 bsh * rev 5: PXA26x B0, rev 6: PXA255 A0
342 1.56 bsh */
343 1.56 bsh static const char * const pxa255_steppings[16] = {
344 1.56 bsh "rev 0", "rev 1", "rev 2", "step A-0",
345 1.56 bsh "rev 4", "step B-0", "step A-0", "rev 7",
346 1.56 bsh "rev 8", "rev 9", "rev 10", "rev 11",
347 1.56 bsh "rev 12", "rev 13", "rev 14", "rev 15",
348 1.56 bsh };
349 1.56 bsh
350 1.59 bsh /* Stepping for PXA27x */
351 1.59 bsh static const char * const pxa27x_steppings[16] = {
352 1.59 bsh "step A-0", "step A-1", "step B-0", "step B-1",
353 1.59 bsh "step C-0", "rev 5", "rev 6", "rev 7",
354 1.59 bsh "rev 8", "rev 9", "rev 10", "rev 11",
355 1.59 bsh "rev 12", "rev 13", "rev 14", "rev 15",
356 1.59 bsh };
357 1.59 bsh
358 1.50 ichiro static const char * const ixp425_steppings[16] = {
359 1.50 ichiro "step 0", "rev 1", "rev 2", "rev 3",
360 1.50 ichiro "rev 4", "rev 5", "rev 6", "rev 7",
361 1.50 ichiro "rev 8", "rev 9", "rev 10", "rev 11",
362 1.50 ichiro "rev 12", "rev 13", "rev 14", "rev 15",
363 1.50 ichiro };
364 1.50 ichiro
365 1.1 matt struct cpuidtab {
366 1.1 matt u_int32_t cpuid;
367 1.1 matt enum cpu_class cpu_class;
368 1.72 mrg const char *cpu_classname;
369 1.42 bjh21 const char * const *cpu_steppings;
370 1.1 matt };
371 1.1 matt
372 1.1 matt const struct cpuidtab cpuids[] = {
373 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
374 1.13 thorpej generic_steppings },
375 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
376 1.13 thorpej generic_steppings },
377 1.13 thorpej
378 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
379 1.13 thorpej generic_steppings },
380 1.13 thorpej
381 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
382 1.13 thorpej generic_steppings },
383 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
384 1.13 thorpej generic_steppings },
385 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
386 1.13 thorpej generic_steppings },
387 1.13 thorpej
388 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
389 1.13 thorpej generic_steppings },
390 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
391 1.13 thorpej generic_steppings },
392 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
393 1.13 thorpej generic_steppings },
394 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
395 1.13 thorpej generic_steppings },
396 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
397 1.13 thorpej generic_steppings },
398 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
399 1.13 thorpej generic_steppings },
400 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
401 1.13 thorpej generic_steppings },
402 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
403 1.13 thorpej generic_steppings },
404 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
405 1.13 thorpej generic_steppings },
406 1.13 thorpej
407 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
408 1.13 thorpej generic_steppings },
409 1.13 thorpej
410 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
411 1.13 thorpej generic_steppings },
412 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
413 1.13 thorpej generic_steppings },
414 1.64 christos { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
415 1.64 christos generic_steppings },
416 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
417 1.13 thorpej generic_steppings },
418 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
419 1.13 thorpej generic_steppings },
420 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
421 1.13 thorpej generic_steppings },
422 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
423 1.52 mycroft generic_steppings },
424 1.52 mycroft { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
425 1.13 thorpej generic_steppings },
426 1.77 kiyohara { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
427 1.77 kiyohara generic_steppings },
428 1.77 kiyohara { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
429 1.77 kiyohara generic_steppings },
430 1.13 thorpej
431 1.53 rearnsha { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
432 1.53 rearnsha generic_steppings },
433 1.53 rearnsha { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
434 1.53 rearnsha generic_steppings },
435 1.57 rearnsha { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
436 1.57 rearnsha generic_steppings },
437 1.53 rearnsha
438 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
439 1.14 bjh21 sa110_steppings },
440 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
441 1.14 bjh21 sa1100_steppings },
442 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
443 1.14 bjh21 sa1110_steppings },
444 1.36 thorpej
445 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
446 1.37 ichiro ixp12x0_steppings },
447 1.13 thorpej
448 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
449 1.32 thorpej xscale_steppings },
450 1.32 thorpej
451 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
452 1.40 briggs i80321_steppings },
453 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
454 1.40 briggs i80321_steppings },
455 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
456 1.40 briggs i80321_steppings },
457 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
458 1.40 briggs i80321_steppings },
459 1.13 thorpej
460 1.60 nonaka { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
461 1.60 nonaka i80219_steppings },
462 1.60 nonaka { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
463 1.60 nonaka i80219_steppings },
464 1.60 nonaka
465 1.59 bsh { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
466 1.59 bsh pxa27x_steppings },
467 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
468 1.48 rjs pxa2x0_steppings },
469 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
470 1.48 rjs pxa2x0_steppings },
471 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
472 1.39 ichiro pxa2x0_steppings },
473 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
474 1.39 ichiro pxa2x0_steppings },
475 1.56 bsh { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
476 1.56 bsh pxa255_steppings },
477 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
478 1.35 thorpej pxa2x0_steppings },
479 1.35 thorpej
480 1.50 ichiro { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
481 1.50 ichiro ixp425_steppings },
482 1.50 ichiro { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
483 1.50 ichiro ixp425_steppings },
484 1.50 ichiro { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
485 1.50 ichiro ixp425_steppings },
486 1.50 ichiro
487 1.68 matt { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
488 1.68 matt pN_steppings },
489 1.68 matt { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
490 1.68 matt pN_steppings },
491 1.81 skrll #if 0
492 1.81 skrll /* The ARM1156T2-S only has a memory protection unit */
493 1.80 skrll { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
494 1.80 skrll pN_steppings },
495 1.81 skrll #endif
496 1.79 skrll { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
497 1.68 matt pN_steppings },
498 1.74 matt
499 1.78 bsh { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
500 1.78 bsh generic_steppings },
501 1.78 bsh
502 1.82 matt { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
503 1.82 matt pN_steppings },
504 1.74 matt { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
505 1.74 matt pN_steppings },
506 1.74 matt { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
507 1.74 matt pN_steppings },
508 1.74 matt { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
509 1.69 matt pN_steppings },
510 1.82 matt { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
511 1.82 matt pN_steppings },
512 1.82 matt { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
513 1.82 matt pN_steppings },
514 1.82 matt { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
515 1.82 matt pN_steppings },
516 1.82 matt { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
517 1.69 matt pN_steppings },
518 1.82 matt { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
519 1.73 jmcneill pN_steppings },
520 1.58 rearnsha
521 1.70 matt { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
522 1.70 matt generic_steppings },
523 1.70 matt
524 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
525 1.1 matt };
526 1.1 matt
527 1.1 matt struct cpu_classtab {
528 1.9 thorpej const char *class_name;
529 1.9 thorpej const char *class_option;
530 1.1 matt };
531 1.1 matt
532 1.1 matt const struct cpu_classtab cpu_classes[] = {
533 1.74 matt [CPU_CLASS_NONE] = { "unknown", NULL },
534 1.74 matt [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
535 1.74 matt [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
536 1.74 matt [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
537 1.74 matt [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
538 1.74 matt [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
539 1.74 matt [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
540 1.74 matt [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
541 1.74 matt [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
542 1.74 matt [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
543 1.74 matt [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
544 1.74 matt [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
545 1.74 matt [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
546 1.74 matt [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
547 1.74 matt [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
548 1.74 matt [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
549 1.74 matt [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
550 1.75 matt [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
551 1.1 matt };
552 1.1 matt
553 1.1 matt /*
554 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
555 1.55 wiz * arm specific information in the CPU structure to identify the processor.
556 1.55 wiz * The remaining fields in the CPU structure are filled in appropriately.
557 1.1 matt */
558 1.1 matt
559 1.42 bjh21 static const char * const wtnames[] = {
560 1.12 thorpej "write-through",
561 1.12 thorpej "write-back",
562 1.12 thorpej "write-back",
563 1.12 thorpej "**unknown 3**",
564 1.12 thorpej "**unknown 4**",
565 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
566 1.12 thorpej "write-back-locking-A",
567 1.12 thorpej "write-back-locking-B",
568 1.12 thorpej "**unknown 8**",
569 1.12 thorpej "**unknown 9**",
570 1.12 thorpej "**unknown 10**",
571 1.12 thorpej "**unknown 11**",
572 1.12 thorpej "**unknown 12**",
573 1.12 thorpej "**unknown 13**",
574 1.57 rearnsha "write-back-locking-C",
575 1.86 matt "write-back-locking-D",
576 1.12 thorpej };
577 1.12 thorpej
578 1.86 matt static void
579 1.86 matt print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
580 1.86 matt {
581 1.86 matt if (info->cache_unified) {
582 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Unified cache\n",
583 1.86 matt info->dcache_size / 1024,
584 1.86 matt info->dcache_line_size, info->dcache_ways,
585 1.86 matt wtnames[info->cache_type], level + 1);
586 1.86 matt } else {
587 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way L%u Instruction cache\n",
588 1.86 matt info->icache_size / 1024,
589 1.86 matt info->icache_line_size, info->icache_ways, level + 1);
590 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Data cache\n",
591 1.86 matt info->dcache_size / 1024,
592 1.86 matt info->dcache_line_size, info->dcache_ways,
593 1.86 matt wtnames[info->cache_type], level + 1);
594 1.86 matt }
595 1.86 matt }
596 1.86 matt
597 1.1 matt void
598 1.84 matt identify_arm_cpu(device_t dv, struct cpu_info *ci)
599 1.1 matt {
600 1.54 chris enum cpu_class cpu_class = CPU_CLASS_NONE;
601 1.85 matt const u_int cpuid = ci->ci_arm_cpuid;
602 1.85 matt const char * const xname = device_xname(dv);
603 1.85 matt const char *steppingstr;
604 1.1 matt int i;
605 1.1 matt
606 1.1 matt if (cpuid == 0) {
607 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
608 1.1 matt return;
609 1.1 matt }
610 1.1 matt
611 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
612 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
613 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
614 1.68 matt steppingstr = cpuids[i].cpu_steppings[cpuid &
615 1.68 matt CPU_ID_REVISION_MASK],
616 1.68 matt sprintf(cpu_model, "%s%s%s (%s core)",
617 1.72 mrg cpuids[i].cpu_classname,
618 1.68 matt steppingstr[0] == '*' ? "" : " ",
619 1.68 matt &steppingstr[steppingstr[0] == '*'],
620 1.19 bjh21 cpu_classes[cpu_class].class_name);
621 1.1 matt break;
622 1.1 matt }
623 1.1 matt
624 1.1 matt if (cpuids[i].cpuid == 0)
625 1.20 bjh21 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
626 1.1 matt
627 1.85 matt if (ci->ci_data.cpu_cc_freq != 0) {
628 1.85 matt char freqbuf[8];
629 1.85 matt humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
630 1.85 matt "Hz", 1000);
631 1.85 matt
632 1.85 matt aprint_naive(": %s %s\n", freqbuf, cpu_model);
633 1.85 matt aprint_normal(": %s %s\n", freqbuf, cpu_model);
634 1.85 matt } else {
635 1.85 matt aprint_naive(": %s\n", cpu_model);
636 1.85 matt aprint_normal(": %s\n", cpu_model);
637 1.85 matt }
638 1.29 bjh21
639 1.85 matt aprint_normal("%s:", xname);
640 1.29 bjh21
641 1.19 bjh21 switch (cpu_class) {
642 1.1 matt case CPU_CLASS_ARM6:
643 1.1 matt case CPU_CLASS_ARM7:
644 1.3 chris case CPU_CLASS_ARM7TDMI:
645 1.1 matt case CPU_CLASS_ARM8:
646 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
647 1.49 thorpej aprint_normal(" IDC disabled");
648 1.1 matt else
649 1.49 thorpej aprint_normal(" IDC enabled");
650 1.1 matt break;
651 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
652 1.64 christos case CPU_CLASS_ARM9ES:
653 1.64 christos case CPU_CLASS_ARM9EJS:
654 1.53 rearnsha case CPU_CLASS_ARM10E:
655 1.57 rearnsha case CPU_CLASS_ARM10EJ:
656 1.1 matt case CPU_CLASS_SA1:
657 1.4 matt case CPU_CLASS_XSCALE:
658 1.58 rearnsha case CPU_CLASS_ARM11J:
659 1.71 matt case CPU_CLASS_ARMV4:
660 1.74 matt case CPU_CLASS_CORTEX:
661 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
662 1.49 thorpej aprint_normal(" DC disabled");
663 1.1 matt else
664 1.49 thorpej aprint_normal(" DC enabled");
665 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
666 1.49 thorpej aprint_normal(" IC disabled");
667 1.1 matt else
668 1.49 thorpej aprint_normal(" IC enabled");
669 1.1 matt break;
670 1.19 bjh21 default:
671 1.19 bjh21 break;
672 1.1 matt }
673 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
674 1.49 thorpej aprint_normal(" WB disabled");
675 1.1 matt else
676 1.49 thorpej aprint_normal(" WB enabled");
677 1.1 matt
678 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
679 1.49 thorpej aprint_normal(" LABT");
680 1.1 matt else
681 1.49 thorpej aprint_normal(" EABT");
682 1.1 matt
683 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
684 1.49 thorpej aprint_normal(" branch prediction enabled");
685 1.1 matt
686 1.49 thorpej aprint_normal("\n");
687 1.1 matt
688 1.86 matt #if defined(CPU_CORTEX) && 0
689 1.85 matt if (CPU_ID_CORTEX_P(cpuid)) {
690 1.85 matt identify_cortex_caches(dv);
691 1.85 matt if (0)
692 1.85 matt identify_features(dv);
693 1.85 matt } else
694 1.85 matt #endif
695 1.12 thorpej /* Print cache info. */
696 1.86 matt if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
697 1.86 matt print_cache_info(dv, &arm_pcache, 0);
698 1.86 matt }
699 1.86 matt if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
700 1.86 matt print_cache_info(dv, &arm_scache, 1);
701 1.12 thorpej }
702 1.12 thorpej
703 1.1 matt
704 1.19 bjh21 switch (cpu_class) {
705 1.1 matt #ifdef CPU_ARM2
706 1.1 matt case CPU_CLASS_ARM2:
707 1.1 matt #endif
708 1.1 matt #ifdef CPU_ARM250
709 1.1 matt case CPU_CLASS_ARM2AS:
710 1.1 matt #endif
711 1.1 matt #ifdef CPU_ARM3
712 1.1 matt case CPU_CLASS_ARM3:
713 1.1 matt #endif
714 1.1 matt #ifdef CPU_ARM6
715 1.1 matt case CPU_CLASS_ARM6:
716 1.1 matt #endif
717 1.1 matt #ifdef CPU_ARM7
718 1.1 matt case CPU_CLASS_ARM7:
719 1.1 matt #endif
720 1.3 chris #ifdef CPU_ARM7TDMI
721 1.3 chris case CPU_CLASS_ARM7TDMI:
722 1.3 chris #endif
723 1.1 matt #ifdef CPU_ARM8
724 1.1 matt case CPU_CLASS_ARM8:
725 1.6 rearnsha #endif
726 1.6 rearnsha #ifdef CPU_ARM9
727 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
728 1.53 rearnsha #endif
729 1.77 kiyohara #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
730 1.64 christos case CPU_CLASS_ARM9ES:
731 1.64 christos case CPU_CLASS_ARM9EJS:
732 1.64 christos #endif
733 1.53 rearnsha #ifdef CPU_ARM10
734 1.53 rearnsha case CPU_CLASS_ARM10E:
735 1.57 rearnsha case CPU_CLASS_ARM10EJ:
736 1.1 matt #endif
737 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
738 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
739 1.1 matt case CPU_CLASS_SA1:
740 1.4 matt #endif
741 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
742 1.59 bsh defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
743 1.4 matt case CPU_CLASS_XSCALE:
744 1.1 matt #endif
745 1.68 matt #if defined(CPU_ARM11)
746 1.58 rearnsha case CPU_CLASS_ARM11J:
747 1.76 matt #endif
748 1.76 matt #if defined(CPU_CORTEX)
749 1.74 matt case CPU_CLASS_CORTEX:
750 1.58 rearnsha #endif
751 1.71 matt #if defined(CPU_FA526)
752 1.71 matt case CPU_CLASS_ARMV4:
753 1.71 matt #endif
754 1.1 matt break;
755 1.1 matt default:
756 1.85 matt if (cpu_classes[cpu_class].class_option == NULL) {
757 1.85 matt aprint_error_dev(dv, "%s does not fully support this CPU.\n",
758 1.85 matt ostype);
759 1.85 matt } else {
760 1.85 matt aprint_error_dev(dv, "This kernel does not fully support "
761 1.85 matt "this CPU.\n");
762 1.85 matt aprint_normal_dev(dv, "Recompile with \"options %s\" to "
763 1.85 matt "correct this.\n", cpu_classes[cpu_class].class_option);
764 1.1 matt }
765 1.1 matt break;
766 1.1 matt }
767 1.43 bjh21 }
768 1.1 matt
769 1.86 matt #if defined(CPU_CORTEX) && 0
770 1.85 matt static void
771 1.85 matt print_cortex_cache(device_t dv, u_int level, const char *desc)
772 1.85 matt {
773 1.85 matt uint32_t ccsidr = armreg_ccsidr_read();
774 1.85 matt u_int linesize = 1 << ((ccsidr & 7) + 4);
775 1.85 matt u_int nways = ((ccsidr >> 3) & 0x3ff) + 1;
776 1.85 matt u_int nsets = ((ccsidr >> 13) & 0x7fff) + 1;
777 1.85 matt u_int totalsize = linesize * nways * nsets;
778 1.85 matt static const char * const wstrings[] = {
779 1.85 matt "", " write-back", " write-through", ""
780 1.85 matt };
781 1.85 matt static const char * const astrings[] = {
782 1.85 matt "",
783 1.85 matt " with write allocate",
784 1.85 matt " with read allocate",
785 1.85 matt " with read and write allocate"
786 1.85 matt };
787 1.85 matt
788 1.85 matt //aprint_debug_dev(dv, "ccsidr=%#x\n", ccsidr);
789 1.85 matt
790 1.85 matt u_int wtype = (ccsidr >> 30) & 3;
791 1.85 matt u_int atype = (ccsidr >> 28) & 3;
792 1.85 matt
793 1.85 matt aprint_normal_dev(dv, "%uKB/%uB %u-way%s L%u %s cache%s\n",
794 1.85 matt totalsize / 1024, linesize, nways, wstrings[wtype], level + 1,
795 1.85 matt desc, astrings[atype]);
796 1.85 matt }
797 1.85 matt
798 1.85 matt void
799 1.85 matt identify_cortex_caches(device_t dv)
800 1.85 matt {
801 1.85 matt const uint32_t orig_csselr = armreg_csselr_read();
802 1.85 matt uint32_t clidr = armreg_clidr_read();
803 1.85 matt u_int level;
804 1.85 matt
805 1.85 matt //aprint_debug_dev(dv, "clidr=%011o\n", clidr);
806 1.85 matt
807 1.85 matt for (level = 0, clidr &= 077777777; clidr & 7; clidr >>= 3, level++) {
808 1.85 matt if (clidr & 1) {
809 1.85 matt armreg_csselr_write(2*level + 1);
810 1.85 matt print_cortex_cache(dv, level, "Instruction");
811 1.85 matt }
812 1.85 matt if (clidr & 6) {
813 1.85 matt armreg_csselr_write(2*level + 0);
814 1.85 matt print_cortex_cache(dv, level,
815 1.85 matt (clidr & 4) ? "Unified" : "Data");
816 1.85 matt }
817 1.85 matt }
818 1.85 matt
819 1.85 matt armreg_csselr_write(orig_csselr);
820 1.85 matt
821 1.85 matt
822 1.85 matt }
823 1.85 matt
824 1.85 matt void
825 1.85 matt identify_features(device_t dv)
826 1.85 matt {
827 1.85 matt uint32_t isar0 = armreg_isar0_read();
828 1.85 matt uint32_t isar1 = armreg_isar1_read();
829 1.85 matt uint32_t isar2 = armreg_isar2_read();
830 1.85 matt uint32_t isar3 = armreg_isar3_read();
831 1.85 matt uint32_t isar4 = armreg_isar4_read();
832 1.85 matt uint32_t isar5 = armreg_isar5_read();
833 1.85 matt
834 1.85 matt uint32_t mmfr0 = armreg_mmfr0_read();
835 1.85 matt uint32_t mmfr1 = armreg_mmfr1_read();
836 1.85 matt uint32_t mmfr2 = armreg_mmfr2_read();
837 1.85 matt uint32_t mmfr3 = armreg_mmfr3_read();
838 1.85 matt
839 1.85 matt uint32_t pfr0 = armreg_pfr0_read();
840 1.85 matt uint32_t pfr1 = armreg_pfr1_read();
841 1.85 matt
842 1.85 matt aprint_normal_dev(dv,
843 1.85 matt "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
844 1.85 matt isar0, isar1, isar2, isar3, isar4, isar5);
845 1.85 matt aprint_normal_dev(dv,
846 1.85 matt "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
847 1.85 matt mmfr0, mmfr1, mmfr2, mmfr3);
848 1.85 matt aprint_normal_dev(dv,
849 1.85 matt "pfr: [0]=%#x [1]=%#x\n",
850 1.85 matt pfr0, pfr1);
851 1.85 matt }
852 1.85 matt #endif /* CPU_CORTEX */
853