cpu.c revision 1.92 1 1.92 matt /* $NetBSD: cpu.c,v 1.92 2013/01/31 22:34:26 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.55 wiz * Probing and configuration for the master CPU
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.51 martin #include "opt_multiprocessor.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.92 matt __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.92 2013/01/31 22:34:26 matt Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.85 matt #include <sys/conf.h>
53 1.85 matt #include <sys/cpu.h>
54 1.1 matt #include <sys/device.h>
55 1.85 matt #include <sys/kmem.h>
56 1.1 matt #include <sys/proc.h>
57 1.85 matt
58 1.1 matt #include <uvm/uvm_extern.h>
59 1.33 thorpej
60 1.33 thorpej #include <arm/cpuconf.h>
61 1.10 thorpej #include <arm/undefined.h>
62 1.10 thorpej
63 1.20 bjh21 char cpu_model[256];
64 1.1 matt
65 1.85 matt #ifdef MULTIPROCESSOR
66 1.85 matt volatile u_int arm_cpu_hatched = 0;
67 1.85 matt u_int arm_cpu_max = 0;
68 1.85 matt uint32_t arm_cpu_mbox __cacheline_aligned = 0;
69 1.85 matt uint32_t arm_cpu_marker __cacheline_aligned = 1;
70 1.85 matt #endif
71 1.85 matt
72 1.1 matt /* Prototypes */
73 1.84 matt void identify_arm_cpu(device_t dv, struct cpu_info *);
74 1.85 matt void identify_cortex_caches(device_t dv);
75 1.85 matt void identify_features(device_t dv);
76 1.1 matt
77 1.1 matt /*
78 1.25 bjh21 * Identify the master (boot) CPU
79 1.1 matt */
80 1.1 matt
81 1.1 matt void
82 1.85 matt cpu_attach(device_t dv, cpuid_t id)
83 1.1 matt {
84 1.86 matt const char * const xname = device_xname(dv);
85 1.85 matt struct cpu_info *ci;
86 1.85 matt
87 1.85 matt if (id == 0) {
88 1.85 matt ci = curcpu();
89 1.27 reinoud
90 1.85 matt /* Get the CPU ID from coprocessor 15 */
91 1.85 matt
92 1.85 matt ci->ci_arm_cpuid = cpu_id();
93 1.85 matt ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
94 1.85 matt ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
95 1.85 matt } else {
96 1.85 matt #ifdef MULTIPROCESSOR
97 1.85 matt KASSERT(cpu_info[id] == NULL);
98 1.85 matt ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
99 1.85 matt KASSERT(ci != NULL);
100 1.85 matt ci->ci_cpl = IPL_HIGH;
101 1.85 matt ci->ci_cpuid = id;
102 1.85 matt ci->ci_data.cpu_core_id = id;
103 1.85 matt ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
104 1.85 matt ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
105 1.85 matt ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
106 1.85 matt ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
107 1.85 matt cpu_info[ci->ci_cpuid] = ci;
108 1.85 matt if ((arm_cpu_hatched & (1 << id)) == 0) {
109 1.85 matt ci->ci_dev = dv;
110 1.85 matt dv->dv_private = ci;
111 1.85 matt aprint_naive(": disabled\n");
112 1.85 matt aprint_normal(": disabled (unresponsive)\n");
113 1.85 matt return;
114 1.85 matt }
115 1.85 matt #else
116 1.85 matt aprint_naive(": disabled\n");
117 1.85 matt aprint_normal(": disabled (uniprocessor kernel)\n");
118 1.85 matt return;
119 1.85 matt #endif
120 1.85 matt }
121 1.23 bjh21
122 1.85 matt ci->ci_dev = dv;
123 1.85 matt dv->dv_private = ci;
124 1.1 matt
125 1.85 matt evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
126 1.86 matt NULL, xname, "arm700swibug");
127 1.86 matt
128 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
129 1.86 matt NULL, xname, "vector abort");
130 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
131 1.86 matt NULL, xname, "terminal abort");
132 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
133 1.86 matt NULL, xname, "external linefetch abort (S)");
134 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
135 1.86 matt NULL, xname, "external linefetch abort (P)");
136 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
137 1.86 matt NULL, xname, "external non-linefetch abort (S)");
138 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
139 1.86 matt NULL, xname, "external non-linefetch abort (P)");
140 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
141 1.86 matt NULL, xname, "external translation abort (L1)");
142 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
143 1.86 matt NULL, xname, "external translation abort (L2)");
144 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
145 1.86 matt NULL, xname, "alignment abort (0)");
146 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
147 1.86 matt NULL, xname, "alignment abort (1)");
148 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
149 1.86 matt NULL, xname, "translation abort (S)");
150 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
151 1.86 matt NULL, xname, "translation abort (P)");
152 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
153 1.86 matt NULL, xname, "domain abort (S)");
154 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
155 1.86 matt NULL, xname, "domain abort (P)");
156 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
157 1.86 matt NULL, xname, "permission abort (S)");
158 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
159 1.86 matt NULL, xname, "permission abort (P)");
160 1.1 matt
161 1.85 matt #ifdef MULTIPROCESSOR
162 1.85 matt /*
163 1.85 matt * and we are done if this is a secondary processor.
164 1.85 matt */
165 1.85 matt if (!CPU_IS_PRIMARY(ci)) {
166 1.85 matt aprint_naive(": %s\n", cpu_model);
167 1.85 matt aprint_normal(": %s\n", cpu_model);
168 1.85 matt mi_cpu_attach(ci);
169 1.85 matt return;
170 1.85 matt }
171 1.85 matt #endif
172 1.1 matt
173 1.85 matt identify_arm_cpu(dv, ci);
174 1.1 matt
175 1.85 matt #ifdef CPU_STRONGARM
176 1.85 matt if (ci->ci_arm_cputype == CPU_ID_SA110 &&
177 1.85 matt ci->ci_arm_cpurev < 3) {
178 1.85 matt aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
179 1.1 matt }
180 1.85 matt #endif
181 1.1 matt
182 1.1 matt #ifdef CPU_ARM8
183 1.85 matt if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
184 1.1 matt int clock = arm8_clock_config(0, 0);
185 1.1 matt char *fclk;
186 1.85 matt aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
187 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
188 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
189 1.1 matt switch ((clock >> 2) & 3) {
190 1.15 bjh21 case 0:
191 1.1 matt fclk = "bus clock";
192 1.1 matt break;
193 1.15 bjh21 case 1:
194 1.1 matt fclk = "ref clock";
195 1.1 matt break;
196 1.15 bjh21 case 3:
197 1.1 matt fclk = "pll";
198 1.1 matt break;
199 1.15 bjh21 default:
200 1.1 matt fclk = "illegal";
201 1.1 matt break;
202 1.1 matt }
203 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
204 1.1 matt }
205 1.1 matt #endif
206 1.1 matt
207 1.84 matt vfp_attach(); /* XXX SMP */
208 1.1 matt }
209 1.1 matt
210 1.19 bjh21 enum cpu_class {
211 1.19 bjh21 CPU_CLASS_NONE,
212 1.19 bjh21 CPU_CLASS_ARM2,
213 1.19 bjh21 CPU_CLASS_ARM2AS,
214 1.19 bjh21 CPU_CLASS_ARM3,
215 1.19 bjh21 CPU_CLASS_ARM6,
216 1.19 bjh21 CPU_CLASS_ARM7,
217 1.19 bjh21 CPU_CLASS_ARM7TDMI,
218 1.19 bjh21 CPU_CLASS_ARM8,
219 1.19 bjh21 CPU_CLASS_ARM9TDMI,
220 1.19 bjh21 CPU_CLASS_ARM9ES,
221 1.64 christos CPU_CLASS_ARM9EJS,
222 1.53 rearnsha CPU_CLASS_ARM10E,
223 1.57 rearnsha CPU_CLASS_ARM10EJ,
224 1.19 bjh21 CPU_CLASS_SA1,
225 1.58 rearnsha CPU_CLASS_XSCALE,
226 1.70 matt CPU_CLASS_ARM11J,
227 1.70 matt CPU_CLASS_ARMV4,
228 1.74 matt CPU_CLASS_CORTEX,
229 1.19 bjh21 };
230 1.19 bjh21
231 1.42 bjh21 static const char * const generic_steppings[16] = {
232 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
233 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
234 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
235 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
236 1.14 bjh21 };
237 1.14 bjh21
238 1.68 matt static const char * const pN_steppings[16] = {
239 1.68 matt "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
240 1.68 matt "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
241 1.68 matt };
242 1.68 matt
243 1.42 bjh21 static const char * const sa110_steppings[16] = {
244 1.14 bjh21 "rev 0", "step J", "step K", "step S",
245 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
246 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
247 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
248 1.14 bjh21 };
249 1.14 bjh21
250 1.42 bjh21 static const char * const sa1100_steppings[16] = {
251 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
252 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
253 1.14 bjh21 "step D", "step E", "rev 10" "step G",
254 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
255 1.14 bjh21 };
256 1.14 bjh21
257 1.42 bjh21 static const char * const sa1110_steppings[16] = {
258 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
259 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
260 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
261 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
262 1.13 thorpej };
263 1.13 thorpej
264 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
265 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
266 1.37 ichiro "rev 2", "(IXP1200 step C)",
267 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
268 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
269 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
270 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
271 1.36 thorpej };
272 1.36 thorpej
273 1.42 bjh21 static const char * const xscale_steppings[16] = {
274 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
275 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
276 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
277 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
278 1.40 briggs };
279 1.40 briggs
280 1.42 bjh21 static const char * const i80321_steppings[16] = {
281 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
282 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
283 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
284 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
285 1.13 thorpej };
286 1.13 thorpej
287 1.60 nonaka static const char * const i80219_steppings[16] = {
288 1.60 nonaka "step A-0", "rev 1", "rev 2", "rev 3",
289 1.60 nonaka "rev 4", "rev 5", "rev 6", "rev 7",
290 1.60 nonaka "rev 8", "rev 9", "rev 10", "rev 11",
291 1.60 nonaka "rev 12", "rev 13", "rev 14", "rev 15",
292 1.60 nonaka };
293 1.60 nonaka
294 1.56 bsh /* Steppings for PXA2[15]0 */
295 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
296 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
297 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
298 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
299 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
300 1.35 thorpej };
301 1.35 thorpej
302 1.56 bsh /* Steppings for PXA255/26x.
303 1.56 bsh * rev 5: PXA26x B0, rev 6: PXA255 A0
304 1.56 bsh */
305 1.56 bsh static const char * const pxa255_steppings[16] = {
306 1.56 bsh "rev 0", "rev 1", "rev 2", "step A-0",
307 1.56 bsh "rev 4", "step B-0", "step A-0", "rev 7",
308 1.56 bsh "rev 8", "rev 9", "rev 10", "rev 11",
309 1.56 bsh "rev 12", "rev 13", "rev 14", "rev 15",
310 1.56 bsh };
311 1.56 bsh
312 1.59 bsh /* Stepping for PXA27x */
313 1.59 bsh static const char * const pxa27x_steppings[16] = {
314 1.59 bsh "step A-0", "step A-1", "step B-0", "step B-1",
315 1.59 bsh "step C-0", "rev 5", "rev 6", "rev 7",
316 1.59 bsh "rev 8", "rev 9", "rev 10", "rev 11",
317 1.59 bsh "rev 12", "rev 13", "rev 14", "rev 15",
318 1.59 bsh };
319 1.59 bsh
320 1.50 ichiro static const char * const ixp425_steppings[16] = {
321 1.50 ichiro "step 0", "rev 1", "rev 2", "rev 3",
322 1.50 ichiro "rev 4", "rev 5", "rev 6", "rev 7",
323 1.50 ichiro "rev 8", "rev 9", "rev 10", "rev 11",
324 1.50 ichiro "rev 12", "rev 13", "rev 14", "rev 15",
325 1.50 ichiro };
326 1.50 ichiro
327 1.1 matt struct cpuidtab {
328 1.88 skrll uint32_t cpuid;
329 1.1 matt enum cpu_class cpu_class;
330 1.72 mrg const char *cpu_classname;
331 1.42 bjh21 const char * const *cpu_steppings;
332 1.1 matt };
333 1.1 matt
334 1.1 matt const struct cpuidtab cpuids[] = {
335 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
336 1.13 thorpej generic_steppings },
337 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
338 1.13 thorpej generic_steppings },
339 1.13 thorpej
340 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
341 1.13 thorpej generic_steppings },
342 1.13 thorpej
343 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
344 1.13 thorpej generic_steppings },
345 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
346 1.13 thorpej generic_steppings },
347 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
348 1.13 thorpej generic_steppings },
349 1.13 thorpej
350 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
351 1.13 thorpej generic_steppings },
352 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
353 1.13 thorpej generic_steppings },
354 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
355 1.13 thorpej generic_steppings },
356 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
357 1.13 thorpej generic_steppings },
358 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
359 1.13 thorpej generic_steppings },
360 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
361 1.13 thorpej generic_steppings },
362 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
363 1.13 thorpej generic_steppings },
364 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
365 1.13 thorpej generic_steppings },
366 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
367 1.13 thorpej generic_steppings },
368 1.13 thorpej
369 1.13 thorpej { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
370 1.13 thorpej generic_steppings },
371 1.13 thorpej
372 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
373 1.13 thorpej generic_steppings },
374 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
375 1.13 thorpej generic_steppings },
376 1.64 christos { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
377 1.64 christos generic_steppings },
378 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
379 1.13 thorpej generic_steppings },
380 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
381 1.13 thorpej generic_steppings },
382 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
383 1.13 thorpej generic_steppings },
384 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
385 1.52 mycroft generic_steppings },
386 1.52 mycroft { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
387 1.13 thorpej generic_steppings },
388 1.77 kiyohara { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
389 1.77 kiyohara generic_steppings },
390 1.77 kiyohara { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
391 1.77 kiyohara generic_steppings },
392 1.13 thorpej
393 1.53 rearnsha { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
394 1.53 rearnsha generic_steppings },
395 1.53 rearnsha { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
396 1.53 rearnsha generic_steppings },
397 1.57 rearnsha { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
398 1.57 rearnsha generic_steppings },
399 1.53 rearnsha
400 1.13 thorpej { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
401 1.14 bjh21 sa110_steppings },
402 1.13 thorpej { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
403 1.14 bjh21 sa1100_steppings },
404 1.13 thorpej { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
405 1.14 bjh21 sa1110_steppings },
406 1.36 thorpej
407 1.36 thorpej { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
408 1.37 ichiro ixp12x0_steppings },
409 1.13 thorpej
410 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
411 1.32 thorpej xscale_steppings },
412 1.32 thorpej
413 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
414 1.40 briggs i80321_steppings },
415 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
416 1.40 briggs i80321_steppings },
417 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
418 1.40 briggs i80321_steppings },
419 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
420 1.40 briggs i80321_steppings },
421 1.13 thorpej
422 1.60 nonaka { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
423 1.60 nonaka i80219_steppings },
424 1.60 nonaka { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
425 1.60 nonaka i80219_steppings },
426 1.60 nonaka
427 1.59 bsh { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
428 1.59 bsh pxa27x_steppings },
429 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
430 1.48 rjs pxa2x0_steppings },
431 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
432 1.48 rjs pxa2x0_steppings },
433 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
434 1.39 ichiro pxa2x0_steppings },
435 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
436 1.39 ichiro pxa2x0_steppings },
437 1.56 bsh { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
438 1.56 bsh pxa255_steppings },
439 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
440 1.35 thorpej pxa2x0_steppings },
441 1.35 thorpej
442 1.50 ichiro { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
443 1.50 ichiro ixp425_steppings },
444 1.50 ichiro { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
445 1.50 ichiro ixp425_steppings },
446 1.50 ichiro { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
447 1.50 ichiro ixp425_steppings },
448 1.50 ichiro
449 1.68 matt { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
450 1.68 matt pN_steppings },
451 1.68 matt { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
452 1.68 matt pN_steppings },
453 1.81 skrll #if 0
454 1.81 skrll /* The ARM1156T2-S only has a memory protection unit */
455 1.80 skrll { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
456 1.80 skrll pN_steppings },
457 1.81 skrll #endif
458 1.79 skrll { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
459 1.68 matt pN_steppings },
460 1.74 matt
461 1.78 bsh { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
462 1.78 bsh generic_steppings },
463 1.78 bsh
464 1.82 matt { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
465 1.82 matt pN_steppings },
466 1.74 matt { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
467 1.74 matt pN_steppings },
468 1.74 matt { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
469 1.74 matt pN_steppings },
470 1.74 matt { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
471 1.69 matt pN_steppings },
472 1.82 matt { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
473 1.82 matt pN_steppings },
474 1.82 matt { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
475 1.82 matt pN_steppings },
476 1.82 matt { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
477 1.82 matt pN_steppings },
478 1.82 matt { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
479 1.69 matt pN_steppings },
480 1.82 matt { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
481 1.73 jmcneill pN_steppings },
482 1.58 rearnsha
483 1.70 matt { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
484 1.70 matt generic_steppings },
485 1.70 matt
486 1.13 thorpej { 0, CPU_CLASS_NONE, NULL, NULL }
487 1.1 matt };
488 1.1 matt
489 1.1 matt struct cpu_classtab {
490 1.9 thorpej const char *class_name;
491 1.9 thorpej const char *class_option;
492 1.1 matt };
493 1.1 matt
494 1.1 matt const struct cpu_classtab cpu_classes[] = {
495 1.74 matt [CPU_CLASS_NONE] = { "unknown", NULL },
496 1.74 matt [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
497 1.74 matt [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
498 1.74 matt [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
499 1.74 matt [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
500 1.74 matt [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
501 1.74 matt [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
502 1.74 matt [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
503 1.74 matt [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
504 1.74 matt [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
505 1.74 matt [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
506 1.74 matt [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
507 1.74 matt [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
508 1.74 matt [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
509 1.74 matt [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
510 1.74 matt [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
511 1.74 matt [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
512 1.75 matt [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
513 1.1 matt };
514 1.1 matt
515 1.1 matt /*
516 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
517 1.55 wiz * arm specific information in the CPU structure to identify the processor.
518 1.55 wiz * The remaining fields in the CPU structure are filled in appropriately.
519 1.1 matt */
520 1.1 matt
521 1.42 bjh21 static const char * const wtnames[] = {
522 1.12 thorpej "write-through",
523 1.12 thorpej "write-back",
524 1.12 thorpej "write-back",
525 1.12 thorpej "**unknown 3**",
526 1.12 thorpej "**unknown 4**",
527 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
528 1.12 thorpej "write-back-locking-A",
529 1.12 thorpej "write-back-locking-B",
530 1.12 thorpej "**unknown 8**",
531 1.12 thorpej "**unknown 9**",
532 1.12 thorpej "**unknown 10**",
533 1.12 thorpej "**unknown 11**",
534 1.12 thorpej "**unknown 12**",
535 1.12 thorpej "**unknown 13**",
536 1.57 rearnsha "write-back-locking-C",
537 1.86 matt "write-back-locking-D",
538 1.12 thorpej };
539 1.12 thorpej
540 1.86 matt static void
541 1.86 matt print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
542 1.86 matt {
543 1.86 matt if (info->cache_unified) {
544 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Unified cache\n",
545 1.86 matt info->dcache_size / 1024,
546 1.86 matt info->dcache_line_size, info->dcache_ways,
547 1.86 matt wtnames[info->cache_type], level + 1);
548 1.86 matt } else {
549 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way L%u Instruction cache\n",
550 1.86 matt info->icache_size / 1024,
551 1.86 matt info->icache_line_size, info->icache_ways, level + 1);
552 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Data cache\n",
553 1.86 matt info->dcache_size / 1024,
554 1.86 matt info->dcache_line_size, info->dcache_ways,
555 1.86 matt wtnames[info->cache_type], level + 1);
556 1.86 matt }
557 1.86 matt }
558 1.86 matt
559 1.1 matt void
560 1.84 matt identify_arm_cpu(device_t dv, struct cpu_info *ci)
561 1.1 matt {
562 1.54 chris enum cpu_class cpu_class = CPU_CLASS_NONE;
563 1.85 matt const u_int cpuid = ci->ci_arm_cpuid;
564 1.85 matt const char * const xname = device_xname(dv);
565 1.85 matt const char *steppingstr;
566 1.1 matt int i;
567 1.1 matt
568 1.1 matt if (cpuid == 0) {
569 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
570 1.1 matt return;
571 1.1 matt }
572 1.1 matt
573 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
574 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
575 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
576 1.68 matt steppingstr = cpuids[i].cpu_steppings[cpuid &
577 1.89 msaitoh CPU_ID_REVISION_MASK];
578 1.90 msaitoh snprintf(cpu_model, sizeof(cpu_model),
579 1.90 msaitoh "%s%s%s (%s core)", cpuids[i].cpu_classname,
580 1.68 matt steppingstr[0] == '*' ? "" : " ",
581 1.68 matt &steppingstr[steppingstr[0] == '*'],
582 1.19 bjh21 cpu_classes[cpu_class].class_name);
583 1.1 matt break;
584 1.1 matt }
585 1.1 matt
586 1.1 matt if (cpuids[i].cpuid == 0)
587 1.90 msaitoh snprintf(cpu_model, sizeof(cpu_model),
588 1.90 msaitoh "unknown CPU (ID = 0x%x)", cpuid);
589 1.1 matt
590 1.85 matt if (ci->ci_data.cpu_cc_freq != 0) {
591 1.85 matt char freqbuf[8];
592 1.85 matt humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
593 1.85 matt "Hz", 1000);
594 1.85 matt
595 1.85 matt aprint_naive(": %s %s\n", freqbuf, cpu_model);
596 1.85 matt aprint_normal(": %s %s\n", freqbuf, cpu_model);
597 1.85 matt } else {
598 1.85 matt aprint_naive(": %s\n", cpu_model);
599 1.85 matt aprint_normal(": %s\n", cpu_model);
600 1.85 matt }
601 1.29 bjh21
602 1.85 matt aprint_normal("%s:", xname);
603 1.29 bjh21
604 1.19 bjh21 switch (cpu_class) {
605 1.1 matt case CPU_CLASS_ARM6:
606 1.1 matt case CPU_CLASS_ARM7:
607 1.3 chris case CPU_CLASS_ARM7TDMI:
608 1.1 matt case CPU_CLASS_ARM8:
609 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
610 1.49 thorpej aprint_normal(" IDC disabled");
611 1.1 matt else
612 1.49 thorpej aprint_normal(" IDC enabled");
613 1.1 matt break;
614 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
615 1.64 christos case CPU_CLASS_ARM9ES:
616 1.64 christos case CPU_CLASS_ARM9EJS:
617 1.53 rearnsha case CPU_CLASS_ARM10E:
618 1.57 rearnsha case CPU_CLASS_ARM10EJ:
619 1.1 matt case CPU_CLASS_SA1:
620 1.4 matt case CPU_CLASS_XSCALE:
621 1.58 rearnsha case CPU_CLASS_ARM11J:
622 1.71 matt case CPU_CLASS_ARMV4:
623 1.74 matt case CPU_CLASS_CORTEX:
624 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
625 1.49 thorpej aprint_normal(" DC disabled");
626 1.1 matt else
627 1.49 thorpej aprint_normal(" DC enabled");
628 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
629 1.49 thorpej aprint_normal(" IC disabled");
630 1.1 matt else
631 1.49 thorpej aprint_normal(" IC enabled");
632 1.1 matt break;
633 1.19 bjh21 default:
634 1.19 bjh21 break;
635 1.1 matt }
636 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
637 1.49 thorpej aprint_normal(" WB disabled");
638 1.1 matt else
639 1.49 thorpej aprint_normal(" WB enabled");
640 1.1 matt
641 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
642 1.49 thorpej aprint_normal(" LABT");
643 1.1 matt else
644 1.49 thorpej aprint_normal(" EABT");
645 1.1 matt
646 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
647 1.49 thorpej aprint_normal(" branch prediction enabled");
648 1.1 matt
649 1.49 thorpej aprint_normal("\n");
650 1.1 matt
651 1.92 matt if (CPU_ID_CORTEX_P(cpuid) || CPU_ID_ARM11_P(cpuid)) {
652 1.87 matt identify_features(dv);
653 1.87 matt }
654 1.92 matt
655 1.12 thorpej /* Print cache info. */
656 1.86 matt if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
657 1.86 matt print_cache_info(dv, &arm_pcache, 0);
658 1.86 matt }
659 1.86 matt if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
660 1.86 matt print_cache_info(dv, &arm_scache, 1);
661 1.12 thorpej }
662 1.12 thorpej
663 1.1 matt
664 1.19 bjh21 switch (cpu_class) {
665 1.1 matt #ifdef CPU_ARM2
666 1.1 matt case CPU_CLASS_ARM2:
667 1.1 matt #endif
668 1.1 matt #ifdef CPU_ARM250
669 1.1 matt case CPU_CLASS_ARM2AS:
670 1.1 matt #endif
671 1.1 matt #ifdef CPU_ARM3
672 1.1 matt case CPU_CLASS_ARM3:
673 1.1 matt #endif
674 1.1 matt #ifdef CPU_ARM6
675 1.1 matt case CPU_CLASS_ARM6:
676 1.1 matt #endif
677 1.1 matt #ifdef CPU_ARM7
678 1.1 matt case CPU_CLASS_ARM7:
679 1.1 matt #endif
680 1.3 chris #ifdef CPU_ARM7TDMI
681 1.3 chris case CPU_CLASS_ARM7TDMI:
682 1.3 chris #endif
683 1.1 matt #ifdef CPU_ARM8
684 1.1 matt case CPU_CLASS_ARM8:
685 1.6 rearnsha #endif
686 1.6 rearnsha #ifdef CPU_ARM9
687 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
688 1.53 rearnsha #endif
689 1.77 kiyohara #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
690 1.64 christos case CPU_CLASS_ARM9ES:
691 1.64 christos case CPU_CLASS_ARM9EJS:
692 1.64 christos #endif
693 1.53 rearnsha #ifdef CPU_ARM10
694 1.53 rearnsha case CPU_CLASS_ARM10E:
695 1.57 rearnsha case CPU_CLASS_ARM10EJ:
696 1.1 matt #endif
697 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
698 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
699 1.1 matt case CPU_CLASS_SA1:
700 1.4 matt #endif
701 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
702 1.59 bsh defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
703 1.4 matt case CPU_CLASS_XSCALE:
704 1.1 matt #endif
705 1.68 matt #if defined(CPU_ARM11)
706 1.58 rearnsha case CPU_CLASS_ARM11J:
707 1.76 matt #endif
708 1.76 matt #if defined(CPU_CORTEX)
709 1.74 matt case CPU_CLASS_CORTEX:
710 1.58 rearnsha #endif
711 1.71 matt #if defined(CPU_FA526)
712 1.71 matt case CPU_CLASS_ARMV4:
713 1.71 matt #endif
714 1.1 matt break;
715 1.1 matt default:
716 1.85 matt if (cpu_classes[cpu_class].class_option == NULL) {
717 1.85 matt aprint_error_dev(dv, "%s does not fully support this CPU.\n",
718 1.85 matt ostype);
719 1.85 matt } else {
720 1.85 matt aprint_error_dev(dv, "This kernel does not fully support "
721 1.85 matt "this CPU.\n");
722 1.85 matt aprint_normal_dev(dv, "Recompile with \"options %s\" to "
723 1.85 matt "correct this.\n", cpu_classes[cpu_class].class_option);
724 1.1 matt }
725 1.1 matt break;
726 1.1 matt }
727 1.43 bjh21 }
728 1.1 matt
729 1.92 matt extern int cpu_instruction_set_attributes[6];
730 1.92 matt extern int cpu_memory_model_features[4];
731 1.92 matt extern int cpu_processor_features[2];
732 1.92 matt extern int cpu_simd_present;
733 1.92 matt extern int cpu_simdex_present;
734 1.92 matt
735 1.85 matt void
736 1.85 matt identify_features(device_t dv)
737 1.85 matt {
738 1.92 matt cpu_instruction_set_attributes[0] = armreg_isar0_read();
739 1.92 matt cpu_instruction_set_attributes[1] = armreg_isar1_read();
740 1.92 matt cpu_instruction_set_attributes[2] = armreg_isar2_read();
741 1.92 matt cpu_instruction_set_attributes[3] = armreg_isar3_read();
742 1.92 matt cpu_instruction_set_attributes[4] = armreg_isar4_read();
743 1.92 matt cpu_instruction_set_attributes[5] = armreg_isar5_read();
744 1.92 matt
745 1.92 matt cpu_simd_present =
746 1.92 matt ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
747 1.92 matt cpu_simdex_present = cpu_simd_present
748 1.92 matt && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
749 1.92 matt
750 1.92 matt cpu_memory_model_features[0] = armreg_mmfr0_read();
751 1.92 matt cpu_memory_model_features[1] = armreg_mmfr1_read();
752 1.92 matt cpu_memory_model_features[2] = armreg_mmfr2_read();
753 1.92 matt cpu_memory_model_features[3] = armreg_mmfr3_read();
754 1.85 matt
755 1.92 matt if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
756 1.87 matt /*
757 1.87 matt * Updates to the translation tables do not require a clean
758 1.92 matt * to the point of unification to ensure visibility by
759 1.92 matt * subsequent translation table walks.
760 1.87 matt */
761 1.87 matt pmap_needs_pte_sync = 0;
762 1.87 matt }
763 1.87 matt
764 1.92 matt cpu_processor_features[0] = armreg_pfr0_read();
765 1.92 matt cpu_processor_features[1] = armreg_pfr1_read();
766 1.85 matt
767 1.87 matt aprint_verbose_dev(dv,
768 1.85 matt "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
769 1.92 matt cpu_instruction_set_attributes[0],
770 1.92 matt cpu_instruction_set_attributes[1],
771 1.92 matt cpu_instruction_set_attributes[2],
772 1.92 matt cpu_instruction_set_attributes[3],
773 1.92 matt cpu_instruction_set_attributes[4],
774 1.92 matt cpu_instruction_set_attributes[5]);
775 1.87 matt aprint_verbose_dev(dv,
776 1.85 matt "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
777 1.92 matt cpu_memory_model_features[0], cpu_memory_model_features[1],
778 1.92 matt cpu_memory_model_features[2], cpu_memory_model_features[3]);
779 1.87 matt aprint_verbose_dev(dv,
780 1.85 matt "pfr: [0]=%#x [1]=%#x\n",
781 1.92 matt cpu_processor_features[0], cpu_processor_features[1]);
782 1.85 matt }
783