cpu.c revision 1.94 1 1.94 rkujawa /* $NetBSD: cpu.c,v 1.94 2013/05/19 15:42:23 rkujawa Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 1995 Mark Brinicombe.
5 1.1 matt * Copyright (c) 1995 Brini.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by Brini.
19 1.1 matt * 4. The name of the company nor the name of the author may be used to
20 1.1 matt * endorse or promote products derived from this software without specific
21 1.1 matt * prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 matt * SUCH DAMAGE.
34 1.1 matt *
35 1.1 matt * RiscBSD kernel project
36 1.1 matt *
37 1.1 matt * cpu.c
38 1.1 matt *
39 1.55 wiz * Probing and configuration for the master CPU
40 1.1 matt *
41 1.1 matt * Created : 10/10/95
42 1.1 matt */
43 1.1 matt
44 1.1 matt #include "opt_armfpe.h"
45 1.51 martin #include "opt_multiprocessor.h"
46 1.1 matt
47 1.1 matt #include <sys/param.h>
48 1.20 bjh21
49 1.94 rkujawa __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.94 2013/05/19 15:42:23 rkujawa Exp $");
50 1.20 bjh21
51 1.1 matt #include <sys/systm.h>
52 1.85 matt #include <sys/conf.h>
53 1.85 matt #include <sys/cpu.h>
54 1.1 matt #include <sys/device.h>
55 1.85 matt #include <sys/kmem.h>
56 1.1 matt #include <sys/proc.h>
57 1.85 matt
58 1.1 matt #include <uvm/uvm_extern.h>
59 1.33 thorpej
60 1.33 thorpej #include <arm/cpuconf.h>
61 1.10 thorpej #include <arm/undefined.h>
62 1.10 thorpej
63 1.20 bjh21 char cpu_model[256];
64 1.93 matt extern const char *cpu_arch;
65 1.1 matt
66 1.85 matt #ifdef MULTIPROCESSOR
67 1.85 matt volatile u_int arm_cpu_hatched = 0;
68 1.85 matt u_int arm_cpu_max = 0;
69 1.85 matt uint32_t arm_cpu_mbox __cacheline_aligned = 0;
70 1.85 matt uint32_t arm_cpu_marker __cacheline_aligned = 1;
71 1.85 matt #endif
72 1.85 matt
73 1.1 matt /* Prototypes */
74 1.84 matt void identify_arm_cpu(device_t dv, struct cpu_info *);
75 1.85 matt void identify_cortex_caches(device_t dv);
76 1.85 matt void identify_features(device_t dv);
77 1.94 rkujawa u_int cpu_pfr(int num);
78 1.1 matt
79 1.1 matt /*
80 1.25 bjh21 * Identify the master (boot) CPU
81 1.1 matt */
82 1.1 matt
83 1.1 matt void
84 1.85 matt cpu_attach(device_t dv, cpuid_t id)
85 1.1 matt {
86 1.86 matt const char * const xname = device_xname(dv);
87 1.85 matt struct cpu_info *ci;
88 1.85 matt
89 1.85 matt if (id == 0) {
90 1.85 matt ci = curcpu();
91 1.27 reinoud
92 1.85 matt /* Get the CPU ID from coprocessor 15 */
93 1.85 matt
94 1.85 matt ci->ci_arm_cpuid = cpu_id();
95 1.85 matt ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 1.85 matt ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
97 1.85 matt } else {
98 1.85 matt #ifdef MULTIPROCESSOR
99 1.85 matt KASSERT(cpu_info[id] == NULL);
100 1.85 matt ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
101 1.85 matt KASSERT(ci != NULL);
102 1.85 matt ci->ci_cpl = IPL_HIGH;
103 1.85 matt ci->ci_cpuid = id;
104 1.85 matt ci->ci_data.cpu_core_id = id;
105 1.85 matt ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
106 1.85 matt ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
107 1.85 matt ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
108 1.85 matt ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
109 1.85 matt cpu_info[ci->ci_cpuid] = ci;
110 1.85 matt if ((arm_cpu_hatched & (1 << id)) == 0) {
111 1.85 matt ci->ci_dev = dv;
112 1.85 matt dv->dv_private = ci;
113 1.85 matt aprint_naive(": disabled\n");
114 1.85 matt aprint_normal(": disabled (unresponsive)\n");
115 1.85 matt return;
116 1.85 matt }
117 1.85 matt #else
118 1.85 matt aprint_naive(": disabled\n");
119 1.85 matt aprint_normal(": disabled (uniprocessor kernel)\n");
120 1.85 matt return;
121 1.85 matt #endif
122 1.85 matt }
123 1.23 bjh21
124 1.85 matt ci->ci_dev = dv;
125 1.85 matt dv->dv_private = ci;
126 1.1 matt
127 1.85 matt evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
128 1.86 matt NULL, xname, "arm700swibug");
129 1.86 matt
130 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
131 1.86 matt NULL, xname, "vector abort");
132 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
133 1.86 matt NULL, xname, "terminal abort");
134 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
135 1.86 matt NULL, xname, "external linefetch abort (S)");
136 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
137 1.86 matt NULL, xname, "external linefetch abort (P)");
138 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
139 1.86 matt NULL, xname, "external non-linefetch abort (S)");
140 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
141 1.86 matt NULL, xname, "external non-linefetch abort (P)");
142 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
143 1.86 matt NULL, xname, "external translation abort (L1)");
144 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
145 1.86 matt NULL, xname, "external translation abort (L2)");
146 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
147 1.86 matt NULL, xname, "alignment abort (0)");
148 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
149 1.86 matt NULL, xname, "alignment abort (1)");
150 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
151 1.86 matt NULL, xname, "translation abort (S)");
152 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
153 1.86 matt NULL, xname, "translation abort (P)");
154 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
155 1.86 matt NULL, xname, "domain abort (S)");
156 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
157 1.86 matt NULL, xname, "domain abort (P)");
158 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
159 1.86 matt NULL, xname, "permission abort (S)");
160 1.86 matt evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
161 1.86 matt NULL, xname, "permission abort (P)");
162 1.1 matt
163 1.85 matt #ifdef MULTIPROCESSOR
164 1.85 matt /*
165 1.85 matt * and we are done if this is a secondary processor.
166 1.85 matt */
167 1.85 matt if (!CPU_IS_PRIMARY(ci)) {
168 1.85 matt aprint_naive(": %s\n", cpu_model);
169 1.85 matt aprint_normal(": %s\n", cpu_model);
170 1.85 matt mi_cpu_attach(ci);
171 1.85 matt return;
172 1.85 matt }
173 1.85 matt #endif
174 1.1 matt
175 1.85 matt identify_arm_cpu(dv, ci);
176 1.1 matt
177 1.85 matt #ifdef CPU_STRONGARM
178 1.85 matt if (ci->ci_arm_cputype == CPU_ID_SA110 &&
179 1.85 matt ci->ci_arm_cpurev < 3) {
180 1.85 matt aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
181 1.1 matt }
182 1.85 matt #endif
183 1.1 matt
184 1.1 matt #ifdef CPU_ARM8
185 1.85 matt if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
186 1.1 matt int clock = arm8_clock_config(0, 0);
187 1.1 matt char *fclk;
188 1.85 matt aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
189 1.49 thorpej aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
190 1.49 thorpej aprint_normal("%s", (clock & 2) ? " sync" : "");
191 1.1 matt switch ((clock >> 2) & 3) {
192 1.15 bjh21 case 0:
193 1.1 matt fclk = "bus clock";
194 1.1 matt break;
195 1.15 bjh21 case 1:
196 1.1 matt fclk = "ref clock";
197 1.1 matt break;
198 1.15 bjh21 case 3:
199 1.1 matt fclk = "pll";
200 1.1 matt break;
201 1.15 bjh21 default:
202 1.1 matt fclk = "illegal";
203 1.1 matt break;
204 1.1 matt }
205 1.49 thorpej aprint_normal(" fclk source=%s\n", fclk);
206 1.1 matt }
207 1.1 matt #endif
208 1.1 matt
209 1.84 matt vfp_attach(); /* XXX SMP */
210 1.1 matt }
211 1.1 matt
212 1.19 bjh21 enum cpu_class {
213 1.19 bjh21 CPU_CLASS_NONE,
214 1.19 bjh21 CPU_CLASS_ARM2,
215 1.19 bjh21 CPU_CLASS_ARM2AS,
216 1.19 bjh21 CPU_CLASS_ARM3,
217 1.19 bjh21 CPU_CLASS_ARM6,
218 1.19 bjh21 CPU_CLASS_ARM7,
219 1.19 bjh21 CPU_CLASS_ARM7TDMI,
220 1.19 bjh21 CPU_CLASS_ARM8,
221 1.19 bjh21 CPU_CLASS_ARM9TDMI,
222 1.19 bjh21 CPU_CLASS_ARM9ES,
223 1.64 christos CPU_CLASS_ARM9EJS,
224 1.53 rearnsha CPU_CLASS_ARM10E,
225 1.57 rearnsha CPU_CLASS_ARM10EJ,
226 1.19 bjh21 CPU_CLASS_SA1,
227 1.58 rearnsha CPU_CLASS_XSCALE,
228 1.70 matt CPU_CLASS_ARM11J,
229 1.70 matt CPU_CLASS_ARMV4,
230 1.74 matt CPU_CLASS_CORTEX,
231 1.94 rkujawa CPU_CLASS_PJ4B,
232 1.19 bjh21 };
233 1.19 bjh21
234 1.42 bjh21 static const char * const generic_steppings[16] = {
235 1.14 bjh21 "rev 0", "rev 1", "rev 2", "rev 3",
236 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
237 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
238 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
239 1.14 bjh21 };
240 1.14 bjh21
241 1.68 matt static const char * const pN_steppings[16] = {
242 1.68 matt "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
243 1.68 matt "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
244 1.68 matt };
245 1.68 matt
246 1.42 bjh21 static const char * const sa110_steppings[16] = {
247 1.14 bjh21 "rev 0", "step J", "step K", "step S",
248 1.14 bjh21 "step T", "rev 5", "rev 6", "rev 7",
249 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
250 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
251 1.14 bjh21 };
252 1.14 bjh21
253 1.42 bjh21 static const char * const sa1100_steppings[16] = {
254 1.14 bjh21 "rev 0", "step B", "step C", "rev 3",
255 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
256 1.14 bjh21 "step D", "step E", "rev 10" "step G",
257 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
258 1.14 bjh21 };
259 1.14 bjh21
260 1.42 bjh21 static const char * const sa1110_steppings[16] = {
261 1.14 bjh21 "step A-0", "rev 1", "rev 2", "rev 3",
262 1.14 bjh21 "step B-0", "step B-1", "step B-2", "step B-3",
263 1.14 bjh21 "step B-4", "step B-5", "rev 10", "rev 11",
264 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
265 1.13 thorpej };
266 1.13 thorpej
267 1.42 bjh21 static const char * const ixp12x0_steppings[16] = {
268 1.37 ichiro "(IXP1200 step A)", "(IXP1200 step B)",
269 1.37 ichiro "rev 2", "(IXP1200 step C)",
270 1.37 ichiro "(IXP1200 step D)", "(IXP1240/1250 step A)",
271 1.37 ichiro "(IXP1240 step B)", "(IXP1250 step B)",
272 1.36 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
273 1.36 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
274 1.36 thorpej };
275 1.36 thorpej
276 1.42 bjh21 static const char * const xscale_steppings[16] = {
277 1.14 bjh21 "step A-0", "step A-1", "step B-0", "step C-0",
278 1.40 briggs "step D-0", "rev 5", "rev 6", "rev 7",
279 1.40 briggs "rev 8", "rev 9", "rev 10", "rev 11",
280 1.40 briggs "rev 12", "rev 13", "rev 14", "rev 15",
281 1.40 briggs };
282 1.40 briggs
283 1.42 bjh21 static const char * const i80321_steppings[16] = {
284 1.40 briggs "step A-0", "step B-0", "rev 2", "rev 3",
285 1.14 bjh21 "rev 4", "rev 5", "rev 6", "rev 7",
286 1.14 bjh21 "rev 8", "rev 9", "rev 10", "rev 11",
287 1.14 bjh21 "rev 12", "rev 13", "rev 14", "rev 15",
288 1.13 thorpej };
289 1.13 thorpej
290 1.60 nonaka static const char * const i80219_steppings[16] = {
291 1.60 nonaka "step A-0", "rev 1", "rev 2", "rev 3",
292 1.60 nonaka "rev 4", "rev 5", "rev 6", "rev 7",
293 1.60 nonaka "rev 8", "rev 9", "rev 10", "rev 11",
294 1.60 nonaka "rev 12", "rev 13", "rev 14", "rev 15",
295 1.60 nonaka };
296 1.60 nonaka
297 1.56 bsh /* Steppings for PXA2[15]0 */
298 1.42 bjh21 static const char * const pxa2x0_steppings[16] = {
299 1.35 thorpej "step A-0", "step A-1", "step B-0", "step B-1",
300 1.48 rjs "step B-2", "step C-0", "rev 6", "rev 7",
301 1.35 thorpej "rev 8", "rev 9", "rev 10", "rev 11",
302 1.35 thorpej "rev 12", "rev 13", "rev 14", "rev 15",
303 1.35 thorpej };
304 1.35 thorpej
305 1.56 bsh /* Steppings for PXA255/26x.
306 1.56 bsh * rev 5: PXA26x B0, rev 6: PXA255 A0
307 1.56 bsh */
308 1.56 bsh static const char * const pxa255_steppings[16] = {
309 1.56 bsh "rev 0", "rev 1", "rev 2", "step A-0",
310 1.56 bsh "rev 4", "step B-0", "step A-0", "rev 7",
311 1.56 bsh "rev 8", "rev 9", "rev 10", "rev 11",
312 1.56 bsh "rev 12", "rev 13", "rev 14", "rev 15",
313 1.56 bsh };
314 1.56 bsh
315 1.59 bsh /* Stepping for PXA27x */
316 1.59 bsh static const char * const pxa27x_steppings[16] = {
317 1.59 bsh "step A-0", "step A-1", "step B-0", "step B-1",
318 1.59 bsh "step C-0", "rev 5", "rev 6", "rev 7",
319 1.59 bsh "rev 8", "rev 9", "rev 10", "rev 11",
320 1.59 bsh "rev 12", "rev 13", "rev 14", "rev 15",
321 1.59 bsh };
322 1.59 bsh
323 1.50 ichiro static const char * const ixp425_steppings[16] = {
324 1.50 ichiro "step 0", "rev 1", "rev 2", "rev 3",
325 1.50 ichiro "rev 4", "rev 5", "rev 6", "rev 7",
326 1.50 ichiro "rev 8", "rev 9", "rev 10", "rev 11",
327 1.50 ichiro "rev 12", "rev 13", "rev 14", "rev 15",
328 1.50 ichiro };
329 1.50 ichiro
330 1.1 matt struct cpuidtab {
331 1.88 skrll uint32_t cpuid;
332 1.1 matt enum cpu_class cpu_class;
333 1.72 mrg const char *cpu_classname;
334 1.42 bjh21 const char * const *cpu_steppings;
335 1.93 matt char cpu_arch[8];
336 1.1 matt };
337 1.1 matt
338 1.1 matt const struct cpuidtab cpuids[] = {
339 1.13 thorpej { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
340 1.93 matt generic_steppings, "2" },
341 1.13 thorpej { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
342 1.93 matt generic_steppings, "2" },
343 1.13 thorpej
344 1.13 thorpej { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
345 1.93 matt generic_steppings, "2A" },
346 1.13 thorpej
347 1.13 thorpej { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
348 1.93 matt generic_steppings, "3" },
349 1.13 thorpej { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
350 1.93 matt generic_steppings, "3" },
351 1.13 thorpej { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
352 1.93 matt generic_steppings, "3" },
353 1.13 thorpej
354 1.13 thorpej { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
355 1.93 matt generic_steppings, "3" },
356 1.13 thorpej { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
357 1.93 matt generic_steppings, "3" },
358 1.13 thorpej { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
359 1.93 matt generic_steppings, "3" },
360 1.13 thorpej { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
361 1.93 matt generic_steppings, "3" },
362 1.13 thorpej { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
363 1.93 matt generic_steppings, "3" },
364 1.93 matt
365 1.93 matt { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
366 1.93 matt generic_steppings, "4" },
367 1.93 matt
368 1.93 matt { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
369 1.93 matt sa110_steppings, "4" },
370 1.93 matt { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
371 1.93 matt sa1100_steppings, "4" },
372 1.93 matt { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
373 1.93 matt sa1110_steppings, "4" },
374 1.93 matt
375 1.93 matt { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
376 1.93 matt generic_steppings, "4" },
377 1.93 matt
378 1.93 matt { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
379 1.93 matt ixp12x0_steppings, "4" },
380 1.93 matt
381 1.13 thorpej { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
382 1.93 matt generic_steppings, "4T" },
383 1.13 thorpej { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
384 1.93 matt generic_steppings, "4T" },
385 1.13 thorpej { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
386 1.93 matt generic_steppings, "4T" },
387 1.13 thorpej { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
388 1.93 matt generic_steppings, "4T" },
389 1.13 thorpej { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
390 1.93 matt generic_steppings, "4T" },
391 1.13 thorpej { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
392 1.93 matt generic_steppings, "4T" },
393 1.13 thorpej { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
394 1.93 matt generic_steppings, "4T" },
395 1.93 matt { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
396 1.93 matt generic_steppings, "4T" },
397 1.93 matt
398 1.13 thorpej { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
399 1.93 matt generic_steppings, "5TE" },
400 1.13 thorpej { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
401 1.93 matt generic_steppings, "5TE" },
402 1.13 thorpej { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
403 1.93 matt generic_steppings, "5TE" },
404 1.77 kiyohara { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
405 1.93 matt generic_steppings, "5TE" },
406 1.77 kiyohara { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
407 1.93 matt generic_steppings, "5TE" },
408 1.13 thorpej
409 1.32 thorpej { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
410 1.93 matt xscale_steppings, "5TE" },
411 1.32 thorpej
412 1.38 thorpej { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
413 1.93 matt i80321_steppings, "5TE" },
414 1.38 thorpej { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
415 1.93 matt i80321_steppings, "5TE" },
416 1.40 briggs { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
417 1.93 matt i80321_steppings, "5TE" },
418 1.40 briggs { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
419 1.93 matt i80321_steppings, "5TE" },
420 1.13 thorpej
421 1.60 nonaka { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
422 1.93 matt i80219_steppings, "5TE" },
423 1.60 nonaka { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
424 1.93 matt i80219_steppings, "5TE" },
425 1.60 nonaka
426 1.59 bsh { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
427 1.93 matt pxa27x_steppings, "5TE" },
428 1.48 rjs { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
429 1.93 matt pxa2x0_steppings, "5TE" },
430 1.48 rjs { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
431 1.93 matt pxa2x0_steppings, "5TE" },
432 1.48 rjs { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
433 1.93 matt pxa2x0_steppings, "5TE" },
434 1.48 rjs { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
435 1.93 matt pxa2x0_steppings, "5TE" },
436 1.56 bsh { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
437 1.93 matt pxa255_steppings, "5TE" },
438 1.48 rjs { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
439 1.93 matt pxa2x0_steppings, "5TE" },
440 1.35 thorpej
441 1.50 ichiro { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
442 1.93 matt ixp425_steppings, "5TE" },
443 1.50 ichiro { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
444 1.93 matt ixp425_steppings, "5TE" },
445 1.50 ichiro { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
446 1.93 matt ixp425_steppings, "5TE" },
447 1.93 matt
448 1.93 matt { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
449 1.93 matt generic_steppings, "5TE" },
450 1.93 matt { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
451 1.93 matt generic_steppings, "5TE" },
452 1.93 matt
453 1.93 matt { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
454 1.93 matt generic_steppings, "5TEJ" },
455 1.93 matt { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
456 1.93 matt generic_steppings, "5TEJ" },
457 1.50 ichiro
458 1.68 matt { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
459 1.93 matt pN_steppings, "6J" },
460 1.68 matt { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
461 1.93 matt pN_steppings, "6J" },
462 1.81 skrll #if 0
463 1.81 skrll /* The ARM1156T2-S only has a memory protection unit */
464 1.80 skrll { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
465 1.93 matt pN_steppings, "6T2" },
466 1.81 skrll #endif
467 1.79 skrll { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
468 1.93 matt pN_steppings, "6ZK" },
469 1.74 matt
470 1.78 bsh { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
471 1.93 matt generic_steppings, "6K" },
472 1.78 bsh
473 1.82 matt { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
474 1.93 matt pN_steppings, "7A" },
475 1.74 matt { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
476 1.93 matt pN_steppings, "7A" },
477 1.74 matt { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
478 1.93 matt pN_steppings, "7A" },
479 1.74 matt { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
480 1.93 matt pN_steppings, "7A" },
481 1.82 matt { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
482 1.93 matt pN_steppings, "7A" },
483 1.82 matt { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
484 1.93 matt pN_steppings, "7A" },
485 1.82 matt { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
486 1.93 matt pN_steppings, "7A" },
487 1.82 matt { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
488 1.93 matt pN_steppings, "7A" },
489 1.82 matt { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
490 1.93 matt pN_steppings, "7A" },
491 1.70 matt
492 1.94 rkujawa { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
493 1.94 rkujawa generic_steppings },
494 1.94 rkujawa { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
495 1.94 rkujawa generic_steppings },
496 1.94 rkujawa { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
497 1.94 rkujawa generic_steppings },
498 1.94 rkujawa { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
499 1.94 rkujawa generic_steppings },
500 1.94 rkujawa { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
501 1.94 rkujawa generic_steppings },
502 1.94 rkujawa { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
503 1.94 rkujawa generic_steppings },
504 1.94 rkujawa { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
505 1.94 rkujawa generic_steppings },
506 1.94 rkujawa
507 1.94 rkujawa
508 1.93 matt { 0, CPU_CLASS_NONE, NULL, NULL, "" }
509 1.1 matt };
510 1.1 matt
511 1.1 matt struct cpu_classtab {
512 1.9 thorpej const char *class_name;
513 1.9 thorpej const char *class_option;
514 1.1 matt };
515 1.1 matt
516 1.1 matt const struct cpu_classtab cpu_classes[] = {
517 1.74 matt [CPU_CLASS_NONE] = { "unknown", NULL },
518 1.74 matt [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
519 1.74 matt [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
520 1.74 matt [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
521 1.74 matt [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
522 1.74 matt [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
523 1.74 matt [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
524 1.74 matt [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
525 1.74 matt [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
526 1.74 matt [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
527 1.74 matt [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
528 1.74 matt [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
529 1.74 matt [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
530 1.74 matt [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
531 1.74 matt [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
532 1.74 matt [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
533 1.74 matt [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
534 1.75 matt [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
535 1.94 rkujawa [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
536 1.1 matt };
537 1.1 matt
538 1.1 matt /*
539 1.47 wiz * Report the type of the specified arm processor. This uses the generic and
540 1.55 wiz * arm specific information in the CPU structure to identify the processor.
541 1.55 wiz * The remaining fields in the CPU structure are filled in appropriately.
542 1.1 matt */
543 1.1 matt
544 1.42 bjh21 static const char * const wtnames[] = {
545 1.12 thorpej "write-through",
546 1.12 thorpej "write-back",
547 1.12 thorpej "write-back",
548 1.12 thorpej "**unknown 3**",
549 1.12 thorpej "**unknown 4**",
550 1.12 thorpej "write-back-locking", /* XXX XScale-specific? */
551 1.12 thorpej "write-back-locking-A",
552 1.12 thorpej "write-back-locking-B",
553 1.12 thorpej "**unknown 8**",
554 1.12 thorpej "**unknown 9**",
555 1.12 thorpej "**unknown 10**",
556 1.12 thorpej "**unknown 11**",
557 1.12 thorpej "**unknown 12**",
558 1.12 thorpej "**unknown 13**",
559 1.57 rearnsha "write-back-locking-C",
560 1.86 matt "write-back-locking-D",
561 1.12 thorpej };
562 1.12 thorpej
563 1.86 matt static void
564 1.86 matt print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
565 1.86 matt {
566 1.86 matt if (info->cache_unified) {
567 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Unified cache\n",
568 1.86 matt info->dcache_size / 1024,
569 1.86 matt info->dcache_line_size, info->dcache_ways,
570 1.86 matt wtnames[info->cache_type], level + 1);
571 1.86 matt } else {
572 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way L%u Instruction cache\n",
573 1.86 matt info->icache_size / 1024,
574 1.86 matt info->icache_line_size, info->icache_ways, level + 1);
575 1.86 matt aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Data cache\n",
576 1.86 matt info->dcache_size / 1024,
577 1.86 matt info->dcache_line_size, info->dcache_ways,
578 1.86 matt wtnames[info->cache_type], level + 1);
579 1.86 matt }
580 1.86 matt }
581 1.86 matt
582 1.94 rkujawa u_int cpu_pfr(int num)
583 1.94 rkujawa {
584 1.94 rkujawa u_int feat;
585 1.94 rkujawa
586 1.94 rkujawa switch (num) {
587 1.94 rkujawa case 0:
588 1.94 rkujawa __asm __volatile("mrc p15, 0, %0, c0, c1, 0"
589 1.94 rkujawa : "=r" (feat));
590 1.94 rkujawa break;
591 1.94 rkujawa case 1:
592 1.94 rkujawa __asm __volatile("mrc p15, 0, %0, c0, c1, 1"
593 1.94 rkujawa : "=r" (feat));
594 1.94 rkujawa break;
595 1.94 rkujawa default:
596 1.94 rkujawa panic("Processor Feature Register %d not implemented", num);
597 1.94 rkujawa break;
598 1.94 rkujawa }
599 1.94 rkujawa
600 1.94 rkujawa return (feat);
601 1.94 rkujawa }
602 1.94 rkujawa
603 1.94 rkujawa
604 1.94 rkujawa
605 1.1 matt void
606 1.84 matt identify_arm_cpu(device_t dv, struct cpu_info *ci)
607 1.1 matt {
608 1.54 chris enum cpu_class cpu_class = CPU_CLASS_NONE;
609 1.85 matt const u_int cpuid = ci->ci_arm_cpuid;
610 1.85 matt const char * const xname = device_xname(dv);
611 1.85 matt const char *steppingstr;
612 1.1 matt int i;
613 1.1 matt
614 1.1 matt if (cpuid == 0) {
615 1.49 thorpej aprint_error("Processor failed probe - no CPU ID\n");
616 1.1 matt return;
617 1.1 matt }
618 1.1 matt
619 1.1 matt for (i = 0; cpuids[i].cpuid != 0; i++)
620 1.1 matt if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
621 1.19 bjh21 cpu_class = cpuids[i].cpu_class;
622 1.93 matt cpu_arch = cpuids[i].cpu_arch;
623 1.68 matt steppingstr = cpuids[i].cpu_steppings[cpuid &
624 1.89 msaitoh CPU_ID_REVISION_MASK];
625 1.90 msaitoh snprintf(cpu_model, sizeof(cpu_model),
626 1.93 matt "%s%s%s (%s V%s core)", cpuids[i].cpu_classname,
627 1.68 matt steppingstr[0] == '*' ? "" : " ",
628 1.68 matt &steppingstr[steppingstr[0] == '*'],
629 1.93 matt cpu_classes[cpu_class].class_name,
630 1.93 matt cpu_arch);
631 1.1 matt break;
632 1.1 matt }
633 1.1 matt
634 1.1 matt if (cpuids[i].cpuid == 0)
635 1.90 msaitoh snprintf(cpu_model, sizeof(cpu_model),
636 1.90 msaitoh "unknown CPU (ID = 0x%x)", cpuid);
637 1.1 matt
638 1.85 matt if (ci->ci_data.cpu_cc_freq != 0) {
639 1.85 matt char freqbuf[8];
640 1.85 matt humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
641 1.85 matt "Hz", 1000);
642 1.85 matt
643 1.85 matt aprint_naive(": %s %s\n", freqbuf, cpu_model);
644 1.85 matt aprint_normal(": %s %s\n", freqbuf, cpu_model);
645 1.85 matt } else {
646 1.85 matt aprint_naive(": %s\n", cpu_model);
647 1.85 matt aprint_normal(": %s\n", cpu_model);
648 1.85 matt }
649 1.29 bjh21
650 1.85 matt aprint_normal("%s:", xname);
651 1.29 bjh21
652 1.19 bjh21 switch (cpu_class) {
653 1.1 matt case CPU_CLASS_ARM6:
654 1.1 matt case CPU_CLASS_ARM7:
655 1.3 chris case CPU_CLASS_ARM7TDMI:
656 1.1 matt case CPU_CLASS_ARM8:
657 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
658 1.49 thorpej aprint_normal(" IDC disabled");
659 1.1 matt else
660 1.49 thorpej aprint_normal(" IDC enabled");
661 1.1 matt break;
662 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
663 1.64 christos case CPU_CLASS_ARM9ES:
664 1.64 christos case CPU_CLASS_ARM9EJS:
665 1.53 rearnsha case CPU_CLASS_ARM10E:
666 1.57 rearnsha case CPU_CLASS_ARM10EJ:
667 1.1 matt case CPU_CLASS_SA1:
668 1.4 matt case CPU_CLASS_XSCALE:
669 1.58 rearnsha case CPU_CLASS_ARM11J:
670 1.71 matt case CPU_CLASS_ARMV4:
671 1.74 matt case CPU_CLASS_CORTEX:
672 1.94 rkujawa case CPU_CLASS_PJ4B:
673 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
674 1.49 thorpej aprint_normal(" DC disabled");
675 1.1 matt else
676 1.49 thorpej aprint_normal(" DC enabled");
677 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
678 1.49 thorpej aprint_normal(" IC disabled");
679 1.1 matt else
680 1.49 thorpej aprint_normal(" IC enabled");
681 1.1 matt break;
682 1.19 bjh21 default:
683 1.19 bjh21 break;
684 1.1 matt }
685 1.18 bjh21 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
686 1.49 thorpej aprint_normal(" WB disabled");
687 1.1 matt else
688 1.49 thorpej aprint_normal(" WB enabled");
689 1.1 matt
690 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
691 1.49 thorpej aprint_normal(" LABT");
692 1.1 matt else
693 1.49 thorpej aprint_normal(" EABT");
694 1.1 matt
695 1.18 bjh21 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
696 1.49 thorpej aprint_normal(" branch prediction enabled");
697 1.1 matt
698 1.49 thorpej aprint_normal("\n");
699 1.1 matt
700 1.94 rkujawa if (CPU_ID_CORTEX_P(cpuid) || CPU_ID_ARM11_P(cpuid) || CPU_ID_MV88SV58XX_P(cpuid)) {
701 1.87 matt identify_features(dv);
702 1.87 matt }
703 1.92 matt
704 1.12 thorpej /* Print cache info. */
705 1.86 matt if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
706 1.86 matt print_cache_info(dv, &arm_pcache, 0);
707 1.86 matt }
708 1.86 matt if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
709 1.86 matt print_cache_info(dv, &arm_scache, 1);
710 1.12 thorpej }
711 1.12 thorpej
712 1.1 matt
713 1.19 bjh21 switch (cpu_class) {
714 1.1 matt #ifdef CPU_ARM2
715 1.1 matt case CPU_CLASS_ARM2:
716 1.1 matt #endif
717 1.1 matt #ifdef CPU_ARM250
718 1.1 matt case CPU_CLASS_ARM2AS:
719 1.1 matt #endif
720 1.1 matt #ifdef CPU_ARM3
721 1.1 matt case CPU_CLASS_ARM3:
722 1.1 matt #endif
723 1.1 matt #ifdef CPU_ARM6
724 1.1 matt case CPU_CLASS_ARM6:
725 1.1 matt #endif
726 1.1 matt #ifdef CPU_ARM7
727 1.1 matt case CPU_CLASS_ARM7:
728 1.1 matt #endif
729 1.3 chris #ifdef CPU_ARM7TDMI
730 1.3 chris case CPU_CLASS_ARM7TDMI:
731 1.3 chris #endif
732 1.1 matt #ifdef CPU_ARM8
733 1.1 matt case CPU_CLASS_ARM8:
734 1.6 rearnsha #endif
735 1.6 rearnsha #ifdef CPU_ARM9
736 1.6 rearnsha case CPU_CLASS_ARM9TDMI:
737 1.53 rearnsha #endif
738 1.77 kiyohara #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
739 1.64 christos case CPU_CLASS_ARM9ES:
740 1.64 christos case CPU_CLASS_ARM9EJS:
741 1.64 christos #endif
742 1.53 rearnsha #ifdef CPU_ARM10
743 1.53 rearnsha case CPU_CLASS_ARM10E:
744 1.57 rearnsha case CPU_CLASS_ARM10EJ:
745 1.1 matt #endif
746 1.37 ichiro #if defined(CPU_SA110) || defined(CPU_SA1100) || \
747 1.37 ichiro defined(CPU_SA1110) || defined(CPU_IXP12X0)
748 1.1 matt case CPU_CLASS_SA1:
749 1.4 matt #endif
750 1.35 thorpej #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
751 1.59 bsh defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
752 1.4 matt case CPU_CLASS_XSCALE:
753 1.1 matt #endif
754 1.68 matt #if defined(CPU_ARM11)
755 1.58 rearnsha case CPU_CLASS_ARM11J:
756 1.76 matt #endif
757 1.76 matt #if defined(CPU_CORTEX)
758 1.74 matt case CPU_CLASS_CORTEX:
759 1.58 rearnsha #endif
760 1.94 rkujawa #if defined(CPU_PJ4B)
761 1.94 rkujawa case CPU_CLASS_PJ4B:
762 1.94 rkujawa #endif
763 1.71 matt #if defined(CPU_FA526)
764 1.71 matt case CPU_CLASS_ARMV4:
765 1.71 matt #endif
766 1.1 matt break;
767 1.1 matt default:
768 1.85 matt if (cpu_classes[cpu_class].class_option == NULL) {
769 1.85 matt aprint_error_dev(dv, "%s does not fully support this CPU.\n",
770 1.85 matt ostype);
771 1.85 matt } else {
772 1.85 matt aprint_error_dev(dv, "This kernel does not fully support "
773 1.85 matt "this CPU.\n");
774 1.85 matt aprint_normal_dev(dv, "Recompile with \"options %s\" to "
775 1.85 matt "correct this.\n", cpu_classes[cpu_class].class_option);
776 1.1 matt }
777 1.1 matt break;
778 1.1 matt }
779 1.43 bjh21 }
780 1.1 matt
781 1.92 matt extern int cpu_instruction_set_attributes[6];
782 1.92 matt extern int cpu_memory_model_features[4];
783 1.92 matt extern int cpu_processor_features[2];
784 1.92 matt extern int cpu_simd_present;
785 1.92 matt extern int cpu_simdex_present;
786 1.92 matt
787 1.85 matt void
788 1.85 matt identify_features(device_t dv)
789 1.85 matt {
790 1.92 matt cpu_instruction_set_attributes[0] = armreg_isar0_read();
791 1.92 matt cpu_instruction_set_attributes[1] = armreg_isar1_read();
792 1.92 matt cpu_instruction_set_attributes[2] = armreg_isar2_read();
793 1.92 matt cpu_instruction_set_attributes[3] = armreg_isar3_read();
794 1.92 matt cpu_instruction_set_attributes[4] = armreg_isar4_read();
795 1.92 matt cpu_instruction_set_attributes[5] = armreg_isar5_read();
796 1.92 matt
797 1.92 matt cpu_simd_present =
798 1.92 matt ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
799 1.92 matt cpu_simdex_present = cpu_simd_present
800 1.92 matt && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
801 1.92 matt
802 1.92 matt cpu_memory_model_features[0] = armreg_mmfr0_read();
803 1.92 matt cpu_memory_model_features[1] = armreg_mmfr1_read();
804 1.92 matt cpu_memory_model_features[2] = armreg_mmfr2_read();
805 1.92 matt cpu_memory_model_features[3] = armreg_mmfr3_read();
806 1.85 matt
807 1.92 matt if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
808 1.87 matt /*
809 1.87 matt * Updates to the translation tables do not require a clean
810 1.92 matt * to the point of unification to ensure visibility by
811 1.92 matt * subsequent translation table walks.
812 1.87 matt */
813 1.87 matt pmap_needs_pte_sync = 0;
814 1.87 matt }
815 1.87 matt
816 1.92 matt cpu_processor_features[0] = armreg_pfr0_read();
817 1.92 matt cpu_processor_features[1] = armreg_pfr1_read();
818 1.85 matt
819 1.87 matt aprint_verbose_dev(dv,
820 1.85 matt "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
821 1.92 matt cpu_instruction_set_attributes[0],
822 1.92 matt cpu_instruction_set_attributes[1],
823 1.92 matt cpu_instruction_set_attributes[2],
824 1.92 matt cpu_instruction_set_attributes[3],
825 1.92 matt cpu_instruction_set_attributes[4],
826 1.92 matt cpu_instruction_set_attributes[5]);
827 1.87 matt aprint_verbose_dev(dv,
828 1.85 matt "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
829 1.92 matt cpu_memory_model_features[0], cpu_memory_model_features[1],
830 1.92 matt cpu_memory_model_features[2], cpu_memory_model_features[3]);
831 1.87 matt aprint_verbose_dev(dv,
832 1.85 matt "pfr: [0]=%#x [1]=%#x\n",
833 1.92 matt cpu_processor_features[0], cpu_processor_features[1]);
834 1.85 matt }
835