Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.102
      1 /*	$NetBSD: cpu.c,v 1.102 2014/03/20 22:19:38 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master CPU
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_multiprocessor.h"
     46 
     47 #include <sys/param.h>
     48 
     49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.102 2014/03/20 22:19:38 matt Exp $");
     50 
     51 #include <sys/systm.h>
     52 #include <sys/conf.h>
     53 #include <sys/cpu.h>
     54 #include <sys/device.h>
     55 #include <sys/kmem.h>
     56 #include <sys/proc.h>
     57 
     58 #include <uvm/uvm_extern.h>
     59 
     60 #include <arm/locore.h>
     61 #include <arm/undefined.h>
     62 
     63 char cpu_model[256];
     64 extern const char *cpu_arch;
     65 
     66 #ifdef MULTIPROCESSOR
     67 volatile u_int arm_cpu_hatched = 0;
     68 u_int arm_cpu_max = 0;
     69 uint32_t arm_cpu_mbox __cacheline_aligned = 0;
     70 uint32_t arm_cpu_marker[2]  __cacheline_aligned = { 0, 0 };
     71 #endif
     72 
     73 /* Prototypes */
     74 void identify_arm_cpu(device_t dv, struct cpu_info *);
     75 void identify_cortex_caches(device_t dv);
     76 void identify_features(device_t dv);
     77 
     78 /*
     79  * Identify the master (boot) CPU
     80  */
     81 
     82 void
     83 cpu_attach(device_t dv, cpuid_t id)
     84 {
     85 	const char * const xname = device_xname(dv);
     86 	struct cpu_info *ci;
     87 
     88 	if (id == 0) {
     89 		ci = curcpu();
     90 
     91 		/* Get the CPU ID from coprocessor 15 */
     92 
     93 		ci->ci_arm_cpuid = cpu_id();
     94 		ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
     95 		ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     96 	} else {
     97 #ifdef MULTIPROCESSOR
     98 		KASSERT(cpu_info[id] == NULL);
     99 		ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
    100 		KASSERT(ci != NULL);
    101 		ci->ci_cpl = IPL_HIGH;
    102 		ci->ci_cpuid = id;
    103 		ci->ci_data.cpu_core_id = id;
    104 		ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
    105 		ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
    106 		ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
    107 		ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
    108 		cpu_info[ci->ci_cpuid] = ci;
    109 		if ((arm_cpu_hatched & (1 << id)) == 0) {
    110 			ci->ci_dev = dv;
    111 			dv->dv_private = ci;
    112 			aprint_naive(": disabled\n");
    113 			aprint_normal(": disabled (unresponsive)\n");
    114 			return;
    115 		}
    116 #else
    117 		aprint_naive(": disabled\n");
    118 		aprint_normal(": disabled (uniprocessor kernel)\n");
    119 		return;
    120 #endif
    121 	}
    122 
    123 	ci->ci_dev = dv;
    124 	dv->dv_private = ci;
    125 
    126 	evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
    127 	    NULL, xname, "arm700swibug");
    128 
    129 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
    130 	    NULL, xname, "vector abort");
    131 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
    132 	    NULL, xname, "terminal abort");
    133 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
    134 	    NULL, xname, "external linefetch abort (S)");
    135 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
    136 	    NULL, xname, "external linefetch abort (P)");
    137 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
    138 	    NULL, xname, "external non-linefetch abort (S)");
    139 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
    140 	    NULL, xname, "external non-linefetch abort (P)");
    141 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
    142 	    NULL, xname, "external translation abort (L1)");
    143 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
    144 	    NULL, xname, "external translation abort (L2)");
    145 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
    146 	    NULL, xname, "alignment abort (0)");
    147 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
    148 	    NULL, xname, "alignment abort (1)");
    149 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
    150 	    NULL, xname, "translation abort (S)");
    151 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
    152 	    NULL, xname, "translation abort (P)");
    153 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
    154 	    NULL, xname, "domain abort (S)");
    155 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
    156 	    NULL, xname, "domain abort (P)");
    157 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
    158 	    NULL, xname, "permission abort (S)");
    159 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
    160 	    NULL, xname, "permission abort (P)");
    161 
    162 #ifdef MULTIPROCESSOR
    163 	/*
    164 	 * and we are done if this is a secondary processor.
    165 	 */
    166 	if (!CPU_IS_PRIMARY(ci)) {
    167 		aprint_naive(": %s\n", cpu_model);
    168 		aprint_normal(": %s\n", cpu_model);
    169 		mi_cpu_attach(ci);
    170 		return;
    171 	}
    172 #endif
    173 
    174 	identify_arm_cpu(dv, ci);
    175 
    176 #ifdef CPU_STRONGARM
    177 	if (ci->ci_arm_cputype == CPU_ID_SA110 &&
    178 	    ci->ci_arm_cpurev < 3) {
    179 		aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
    180 	}
    181 #endif
    182 
    183 #ifdef CPU_ARM8
    184 	if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    185 		int clock = arm8_clock_config(0, 0);
    186 		char *fclk;
    187 		aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
    188 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    189 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    190 		switch ((clock >> 2) & 3) {
    191 		case 0:
    192 			fclk = "bus clock";
    193 			break;
    194 		case 1:
    195 			fclk = "ref clock";
    196 			break;
    197 		case 3:
    198 			fclk = "pll";
    199 			break;
    200 		default:
    201 			fclk = "illegal";
    202 			break;
    203 		}
    204 		aprint_normal(" fclk source=%s\n", fclk);
    205  	}
    206 #endif
    207 
    208 	vfp_attach();		/* XXX SMP */
    209 }
    210 
    211 enum cpu_class {
    212 	CPU_CLASS_NONE,
    213 	CPU_CLASS_ARM2,
    214 	CPU_CLASS_ARM2AS,
    215 	CPU_CLASS_ARM3,
    216 	CPU_CLASS_ARM6,
    217 	CPU_CLASS_ARM7,
    218 	CPU_CLASS_ARM7TDMI,
    219 	CPU_CLASS_ARM8,
    220 	CPU_CLASS_ARM9TDMI,
    221 	CPU_CLASS_ARM9ES,
    222 	CPU_CLASS_ARM9EJS,
    223 	CPU_CLASS_ARM10E,
    224 	CPU_CLASS_ARM10EJ,
    225 	CPU_CLASS_SA1,
    226 	CPU_CLASS_XSCALE,
    227 	CPU_CLASS_ARM11J,
    228 	CPU_CLASS_ARMV4,
    229 	CPU_CLASS_CORTEX,
    230 	CPU_CLASS_PJ4B,
    231 };
    232 
    233 static const char * const generic_steppings[16] = {
    234 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    235 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    236 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    237 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    238 };
    239 
    240 static const char * const pN_steppings[16] = {
    241 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
    242 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
    243 };
    244 
    245 static const char * const sa110_steppings[16] = {
    246 	"rev 0",	"step J",	"step K",	"step S",
    247 	"step T",	"rev 5",	"rev 6",	"rev 7",
    248 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    249 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    250 };
    251 
    252 static const char * const sa1100_steppings[16] = {
    253 	"rev 0",	"step B",	"step C",	"rev 3",
    254 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    255 	"step D",	"step E",	"rev 10"	"step G",
    256 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    257 };
    258 
    259 static const char * const sa1110_steppings[16] = {
    260 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    261 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    262 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    263 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    264 };
    265 
    266 static const char * const ixp12x0_steppings[16] = {
    267 	"(IXP1200 step A)",		"(IXP1200 step B)",
    268 	"rev 2",			"(IXP1200 step C)",
    269 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    270 	"(IXP1240 step B)",		"(IXP1250 step B)",
    271 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    272 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    273 };
    274 
    275 static const char * const xscale_steppings[16] = {
    276 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    277 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    278 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    279 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    280 };
    281 
    282 static const char * const i80321_steppings[16] = {
    283 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    284 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    285 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    286 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    287 };
    288 
    289 static const char * const i80219_steppings[16] = {
    290 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    291 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    292 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    293 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    294 };
    295 
    296 /* Steppings for PXA2[15]0 */
    297 static const char * const pxa2x0_steppings[16] = {
    298 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    299 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    300 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    301 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    302 };
    303 
    304 /* Steppings for PXA255/26x.
    305  * rev 5: PXA26x B0, rev 6: PXA255 A0
    306  */
    307 static const char * const pxa255_steppings[16] = {
    308 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
    309 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
    310 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    311 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    312 };
    313 
    314 /* Stepping for PXA27x */
    315 static const char * const pxa27x_steppings[16] = {
    316 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    317 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
    318 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    319 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    320 };
    321 
    322 static const char * const ixp425_steppings[16] = {
    323 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    324 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    325 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    326 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    327 };
    328 
    329 struct cpuidtab {
    330 	uint32_t	cpuid;
    331 	enum		cpu_class cpu_class;
    332 	const char	*cpu_classname;
    333 	const char * const *cpu_steppings;
    334 	char		cpu_arch[8];
    335 };
    336 
    337 const struct cpuidtab cpuids[] = {
    338 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    339 	  generic_steppings, "2" },
    340 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    341 	  generic_steppings, "2" },
    342 
    343 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    344 	  generic_steppings, "2A" },
    345 
    346 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    347 	  generic_steppings, "3" },
    348 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    349 	  generic_steppings, "3" },
    350 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    351 	  generic_steppings, "3" },
    352 
    353 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    354 	  generic_steppings, "3" },
    355 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    356 	  generic_steppings, "3" },
    357 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    358 	  generic_steppings, "3" },
    359 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    360 	  generic_steppings, "3" },
    361 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    362 	  generic_steppings, "3" },
    363 
    364 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    365 	  generic_steppings, "4" },
    366 
    367 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    368 	  sa110_steppings, "4" },
    369 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    370 	  sa1100_steppings, "4" },
    371 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    372 	  sa1110_steppings, "4" },
    373 
    374 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
    375 	  generic_steppings, "4" },
    376 
    377 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    378 	  ixp12x0_steppings, "4" },
    379 
    380 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    381 	  generic_steppings, "4T" },
    382 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    383 	  generic_steppings, "4T" },
    384 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    385 	  generic_steppings, "4T" },
    386 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    387 	  generic_steppings, "4T" },
    388 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    389 	  generic_steppings, "4T" },
    390 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    391 	  generic_steppings, "4T" },
    392 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    393 	  generic_steppings, "4T" },
    394 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
    395 	  generic_steppings, "4T" },
    396 
    397 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    398 	  generic_steppings, "5TE" },
    399 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    400 	  generic_steppings, "5TE" },
    401 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    402 	  generic_steppings, "5TE" },
    403 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
    404 	  generic_steppings, "5TE" },
    405 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
    406 	  generic_steppings, "5TE" },
    407 
    408 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    409 	  xscale_steppings, "5TE" },
    410 
    411 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    412 	  i80321_steppings, "5TE" },
    413 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    414 	  i80321_steppings, "5TE" },
    415 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    416 	  i80321_steppings, "5TE" },
    417 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    418 	  i80321_steppings, "5TE" },
    419 
    420 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
    421 	  i80219_steppings, "5TE" },
    422 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
    423 	  i80219_steppings, "5TE" },
    424 
    425 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
    426 	  pxa27x_steppings, "5TE" },
    427 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    428 	  pxa2x0_steppings, "5TE" },
    429 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    430 	  pxa2x0_steppings, "5TE" },
    431 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    432 	  pxa2x0_steppings, "5TE" },
    433 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    434 	  pxa2x0_steppings, "5TE" },
    435 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
    436 	  pxa255_steppings, "5TE" },
    437 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    438 	  pxa2x0_steppings, "5TE" },
    439 
    440 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    441 	  ixp425_steppings, "5TE" },
    442 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    443 	  ixp425_steppings, "5TE" },
    444 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    445 	  ixp425_steppings, "5TE" },
    446 
    447 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
    448 	  generic_steppings, "5TE" },
    449 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
    450 	  generic_steppings, "5TE" },
    451 
    452 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
    453 	  generic_steppings, "5TEJ" },
    454 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
    455 	  generic_steppings, "5TEJ" },
    456 
    457 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
    458 	  pN_steppings, "6J" },
    459 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
    460 	  pN_steppings, "6J" },
    461 #if 0
    462 	/* The ARM1156T2-S only has a memory protection unit */
    463 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
    464 	  pN_steppings, "6T2" },
    465 #endif
    466 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
    467 	  pN_steppings, "6ZK" },
    468 
    469 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
    470 	  generic_steppings, "6K" },
    471 
    472 	{ CPU_ID_CORTEXA5R0,	CPU_CLASS_CORTEX,	"Cortex-A5 r0",
    473 	  pN_steppings, "7A" },
    474 	{ CPU_ID_CORTEXA7R0,	CPU_CLASS_CORTEX,	"Cortex-A7 r0",
    475 	  pN_steppings, "7A" },
    476 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
    477 	  pN_steppings, "7A" },
    478 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
    479 	  pN_steppings, "7A" },
    480 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
    481 	  pN_steppings, "7A" },
    482 	{ CPU_ID_CORTEXA9R2,	CPU_CLASS_CORTEX,	"Cortex-A9 r2",
    483 	  pN_steppings, "7A" },
    484 	{ CPU_ID_CORTEXA9R3,	CPU_CLASS_CORTEX,	"Cortex-A9 r3",
    485 	  pN_steppings, "7A" },
    486 	{ CPU_ID_CORTEXA9R4,	CPU_CLASS_CORTEX,	"Cortex-A9 r4",
    487 	  pN_steppings, "7A" },
    488 	{ CPU_ID_CORTEXA15R2,	CPU_CLASS_CORTEX,	"Cortex-A15 r2",
    489 	  pN_steppings, "7A" },
    490 	{ CPU_ID_CORTEXA15R3,	CPU_CLASS_CORTEX,	"Cortex-A15 r3",
    491 	  pN_steppings, "7A" },
    492 
    493 	{ CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
    494 	  generic_steppings },
    495 	{ CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
    496 	  generic_steppings },
    497 	{ CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
    498 	  generic_steppings },
    499 	{ CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
    500 	  generic_steppings },
    501 	{ CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
    502 	  generic_steppings },
    503 	{ CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV584x",
    504 	  generic_steppings },
    505 	{ CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
    506 	  generic_steppings },
    507 
    508 
    509 	{ 0, CPU_CLASS_NONE, NULL, NULL, "" }
    510 };
    511 
    512 struct cpu_classtab {
    513 	const char	*class_name;
    514 	const char	*class_option;
    515 };
    516 
    517 const struct cpu_classtab cpu_classes[] = {
    518 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
    519 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
    520 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
    521 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
    522 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
    523 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
    524 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
    525 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
    526 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
    527 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
    528 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
    529 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
    530 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
    531 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
    532 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
    533 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
    534 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
    535 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
    536 	[CPU_CLASS_PJ4B] =	{ "Marvell",	"CPU_PJ4B" },
    537 };
    538 
    539 /*
    540  * Report the type of the specified arm processor. This uses the generic and
    541  * arm specific information in the CPU structure to identify the processor.
    542  * The remaining fields in the CPU structure are filled in appropriately.
    543  */
    544 
    545 static const char * const wtnames[] = {
    546 	"write-through",
    547 	"write-back",
    548 	"write-back",
    549 	"**unknown 3**",
    550 	"**unknown 4**",
    551 	"write-back-locking",		/* XXX XScale-specific? */
    552 	"write-back-locking-A",
    553 	"write-back-locking-B",
    554 	"**unknown 8**",
    555 	"**unknown 9**",
    556 	"**unknown 10**",
    557 	"**unknown 11**",
    558 	"**unknown 12**",
    559 	"write-back-locking-line",
    560 	"write-back-locking-C",
    561 	"write-back-locking-D",
    562 };
    563 
    564 static void
    565 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
    566 {
    567 	if (info->cache_unified) {
    568 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
    569 		    info->dcache_size / 1024,
    570 		    info->dcache_line_size, info->dcache_ways,
    571 		    wtnames[info->cache_type], level + 1,
    572 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
    573 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
    574 	} else {
    575 		aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
    576 		    info->icache_size / 1024,
    577 		    info->icache_line_size, info->icache_ways, level + 1,
    578 		    info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
    579 		    info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
    580 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
    581 		    info->dcache_size / 1024,
    582 		    info->dcache_line_size, info->dcache_ways,
    583 		    wtnames[info->cache_type], level + 1,
    584 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
    585 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
    586 	}
    587 }
    588 
    589 void
    590 identify_arm_cpu(device_t dv, struct cpu_info *ci)
    591 {
    592 	enum cpu_class cpu_class = CPU_CLASS_NONE;
    593 	const u_int cpuid = ci->ci_arm_cpuid;
    594 	const char * const xname = device_xname(dv);
    595 	const char *steppingstr;
    596 	int i;
    597 
    598 	if (cpuid == 0) {
    599 		aprint_error("Processor failed probe - no CPU ID\n");
    600 		return;
    601 	}
    602 
    603 	for (i = 0; cpuids[i].cpuid != 0; i++)
    604 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    605 			cpu_class = cpuids[i].cpu_class;
    606 			cpu_arch = cpuids[i].cpu_arch;
    607 			steppingstr = cpuids[i].cpu_steppings[cpuid &
    608 			    CPU_ID_REVISION_MASK];
    609 			snprintf(cpu_model, sizeof(cpu_model),
    610 			    "%s%s%s (%s V%s core)", cpuids[i].cpu_classname,
    611 			    steppingstr[0] == '*' ? "" : " ",
    612 			    &steppingstr[steppingstr[0] == '*'],
    613 			    cpu_classes[cpu_class].class_name,
    614 			    cpu_arch);
    615 			break;
    616 		}
    617 
    618 	if (cpuids[i].cpuid == 0)
    619 		snprintf(cpu_model, sizeof(cpu_model),
    620 		    "unknown CPU (ID = 0x%x)", cpuid);
    621 
    622 	if (ci->ci_data.cpu_cc_freq != 0) {
    623 		char freqbuf[8];
    624 		humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
    625 		    "Hz", 1000);
    626 
    627 		aprint_naive(": %s %s\n", freqbuf, cpu_model);
    628 		aprint_normal(": %s %s\n", freqbuf, cpu_model);
    629 	} else {
    630 		aprint_naive(": %s\n", cpu_model);
    631 		aprint_normal(": %s\n", cpu_model);
    632 	}
    633 
    634 	aprint_normal("%s:", xname);
    635 
    636 	switch (cpu_class) {
    637 	case CPU_CLASS_ARM6:
    638 	case CPU_CLASS_ARM7:
    639 	case CPU_CLASS_ARM7TDMI:
    640 	case CPU_CLASS_ARM8:
    641 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    642 			aprint_normal(" IDC disabled");
    643 		else
    644 			aprint_normal(" IDC enabled");
    645 		break;
    646 	case CPU_CLASS_ARM9TDMI:
    647 	case CPU_CLASS_ARM9ES:
    648 	case CPU_CLASS_ARM9EJS:
    649 	case CPU_CLASS_ARM10E:
    650 	case CPU_CLASS_ARM10EJ:
    651 	case CPU_CLASS_SA1:
    652 	case CPU_CLASS_XSCALE:
    653 	case CPU_CLASS_ARM11J:
    654 	case CPU_CLASS_ARMV4:
    655 	case CPU_CLASS_CORTEX:
    656 	case CPU_CLASS_PJ4B:
    657 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    658 			aprint_normal(" DC disabled");
    659 		else
    660 			aprint_normal(" DC enabled");
    661 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    662 			aprint_normal(" IC disabled");
    663 		else
    664 			aprint_normal(" IC enabled");
    665 		break;
    666 	default:
    667 		break;
    668 	}
    669 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    670 		aprint_normal(" WB disabled");
    671 	else
    672 		aprint_normal(" WB enabled");
    673 
    674 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    675 		aprint_normal(" LABT");
    676 	else
    677 		aprint_normal(" EABT");
    678 
    679 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    680 		aprint_normal(" branch prediction enabled");
    681 
    682 	aprint_normal("\n");
    683 
    684 	if (CPU_ID_CORTEX_P(cpuid) || CPU_ID_ARM11_P(cpuid) || CPU_ID_MV88SV58XX_P(cpuid)) {
    685 		identify_features(dv);
    686 	}
    687 
    688 	/* Print cache info. */
    689 	if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
    690 		print_cache_info(dv, &arm_pcache, 0);
    691 	}
    692 	if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
    693 		print_cache_info(dv, &arm_scache, 1);
    694 	}
    695 
    696 
    697 	switch (cpu_class) {
    698 #ifdef CPU_ARM2
    699 	case CPU_CLASS_ARM2:
    700 #endif
    701 #ifdef CPU_ARM250
    702 	case CPU_CLASS_ARM2AS:
    703 #endif
    704 #ifdef CPU_ARM3
    705 	case CPU_CLASS_ARM3:
    706 #endif
    707 #ifdef CPU_ARM6
    708 	case CPU_CLASS_ARM6:
    709 #endif
    710 #ifdef CPU_ARM7
    711 	case CPU_CLASS_ARM7:
    712 #endif
    713 #ifdef CPU_ARM7TDMI
    714 	case CPU_CLASS_ARM7TDMI:
    715 #endif
    716 #ifdef CPU_ARM8
    717 	case CPU_CLASS_ARM8:
    718 #endif
    719 #ifdef CPU_ARM9
    720 	case CPU_CLASS_ARM9TDMI:
    721 #endif
    722 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
    723 	case CPU_CLASS_ARM9ES:
    724 	case CPU_CLASS_ARM9EJS:
    725 #endif
    726 #ifdef CPU_ARM10
    727 	case CPU_CLASS_ARM10E:
    728 	case CPU_CLASS_ARM10EJ:
    729 #endif
    730 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    731     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    732 	case CPU_CLASS_SA1:
    733 #endif
    734 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    735     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
    736 	case CPU_CLASS_XSCALE:
    737 #endif
    738 #if defined(CPU_ARM11)
    739 	case CPU_CLASS_ARM11J:
    740 #endif
    741 #if defined(CPU_CORTEX)
    742 	case CPU_CLASS_CORTEX:
    743 #endif
    744 #if defined(CPU_PJ4B)
    745 	case CPU_CLASS_PJ4B:
    746 #endif
    747 #if defined(CPU_FA526)
    748 	case CPU_CLASS_ARMV4:
    749 #endif
    750 		break;
    751 	default:
    752 		if (cpu_classes[cpu_class].class_option == NULL) {
    753 			aprint_error_dev(dv, "%s does not fully support this CPU.\n",
    754 			     ostype);
    755 		} else {
    756 			aprint_error_dev(dv, "This kernel does not fully support "
    757 			       "this CPU.\n");
    758 			aprint_normal_dev(dv, "Recompile with \"options %s\" to "
    759 			       "correct this.\n", cpu_classes[cpu_class].class_option);
    760 		}
    761 		break;
    762 	}
    763 }
    764 
    765 extern int cpu_instruction_set_attributes[6];
    766 extern int cpu_memory_model_features[4];
    767 extern int cpu_processor_features[2];
    768 extern int cpu_simd_present;
    769 extern int cpu_simdex_present;
    770 
    771 void
    772 identify_features(device_t dv)
    773 {
    774 	cpu_instruction_set_attributes[0] = armreg_isar0_read();
    775 	cpu_instruction_set_attributes[1] = armreg_isar1_read();
    776 	cpu_instruction_set_attributes[2] = armreg_isar2_read();
    777 	cpu_instruction_set_attributes[3] = armreg_isar3_read();
    778 	cpu_instruction_set_attributes[4] = armreg_isar4_read();
    779 	cpu_instruction_set_attributes[5] = armreg_isar5_read();
    780 
    781 	cpu_hwdiv_present =
    782 	    ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
    783 	cpu_simd_present =
    784 	    ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
    785 	cpu_simdex_present = cpu_simd_present
    786 	    && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
    787 	cpu_synchprim_present =
    788 	    ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
    789 	    | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
    790 
    791 	cpu_memory_model_features[0] = armreg_mmfr0_read();
    792 	cpu_memory_model_features[1] = armreg_mmfr1_read();
    793 	cpu_memory_model_features[2] = armreg_mmfr2_read();
    794 	cpu_memory_model_features[3] = armreg_mmfr3_read();
    795 
    796 	if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
    797 		/*
    798 		 * Updates to the translation tables do not require a clean
    799 		 * to the point of unification to ensure visibility by
    800 		 * subsequent translation table walks.
    801 		 */
    802 		pmap_needs_pte_sync = 0;
    803 	}
    804 
    805 	cpu_processor_features[0] = armreg_pfr0_read();
    806 	cpu_processor_features[1] = armreg_pfr1_read();
    807 
    808 	aprint_verbose_dev(dv,
    809 	    "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
    810 	    cpu_instruction_set_attributes[0],
    811 	    cpu_instruction_set_attributes[1],
    812 	    cpu_instruction_set_attributes[2],
    813 	    cpu_instruction_set_attributes[3],
    814 	    cpu_instruction_set_attributes[4],
    815 	    cpu_instruction_set_attributes[5]);
    816 	aprint_verbose_dev(dv,
    817 	    "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
    818 	    cpu_memory_model_features[0], cpu_memory_model_features[1],
    819 	    cpu_memory_model_features[2], cpu_memory_model_features[3]);
    820 	aprint_verbose_dev(dv,
    821 	    "pfr: [0]=%#x [1]=%#x\n",
    822 	    cpu_processor_features[0], cpu_processor_features[1]);
    823 }
    824