cpu.c revision 1.102 1 /* $NetBSD: cpu.c,v 1.102 2014/03/20 22:19:38 matt Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.102 2014/03/20 22:19:38 matt Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/locore.h>
61 #include <arm/undefined.h>
62
63 char cpu_model[256];
64 extern const char *cpu_arch;
65
66 #ifdef MULTIPROCESSOR
67 volatile u_int arm_cpu_hatched = 0;
68 u_int arm_cpu_max = 0;
69 uint32_t arm_cpu_mbox __cacheline_aligned = 0;
70 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
71 #endif
72
73 /* Prototypes */
74 void identify_arm_cpu(device_t dv, struct cpu_info *);
75 void identify_cortex_caches(device_t dv);
76 void identify_features(device_t dv);
77
78 /*
79 * Identify the master (boot) CPU
80 */
81
82 void
83 cpu_attach(device_t dv, cpuid_t id)
84 {
85 const char * const xname = device_xname(dv);
86 struct cpu_info *ci;
87
88 if (id == 0) {
89 ci = curcpu();
90
91 /* Get the CPU ID from coprocessor 15 */
92
93 ci->ci_arm_cpuid = cpu_id();
94 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
95 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
96 } else {
97 #ifdef MULTIPROCESSOR
98 KASSERT(cpu_info[id] == NULL);
99 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
100 KASSERT(ci != NULL);
101 ci->ci_cpl = IPL_HIGH;
102 ci->ci_cpuid = id;
103 ci->ci_data.cpu_core_id = id;
104 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
105 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
106 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
107 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
108 cpu_info[ci->ci_cpuid] = ci;
109 if ((arm_cpu_hatched & (1 << id)) == 0) {
110 ci->ci_dev = dv;
111 dv->dv_private = ci;
112 aprint_naive(": disabled\n");
113 aprint_normal(": disabled (unresponsive)\n");
114 return;
115 }
116 #else
117 aprint_naive(": disabled\n");
118 aprint_normal(": disabled (uniprocessor kernel)\n");
119 return;
120 #endif
121 }
122
123 ci->ci_dev = dv;
124 dv->dv_private = ci;
125
126 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
127 NULL, xname, "arm700swibug");
128
129 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
130 NULL, xname, "vector abort");
131 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
132 NULL, xname, "terminal abort");
133 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
134 NULL, xname, "external linefetch abort (S)");
135 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
136 NULL, xname, "external linefetch abort (P)");
137 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
138 NULL, xname, "external non-linefetch abort (S)");
139 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
140 NULL, xname, "external non-linefetch abort (P)");
141 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
142 NULL, xname, "external translation abort (L1)");
143 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
144 NULL, xname, "external translation abort (L2)");
145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
146 NULL, xname, "alignment abort (0)");
147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
148 NULL, xname, "alignment abort (1)");
149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
150 NULL, xname, "translation abort (S)");
151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
152 NULL, xname, "translation abort (P)");
153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
154 NULL, xname, "domain abort (S)");
155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
156 NULL, xname, "domain abort (P)");
157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
158 NULL, xname, "permission abort (S)");
159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
160 NULL, xname, "permission abort (P)");
161
162 #ifdef MULTIPROCESSOR
163 /*
164 * and we are done if this is a secondary processor.
165 */
166 if (!CPU_IS_PRIMARY(ci)) {
167 aprint_naive(": %s\n", cpu_model);
168 aprint_normal(": %s\n", cpu_model);
169 mi_cpu_attach(ci);
170 return;
171 }
172 #endif
173
174 identify_arm_cpu(dv, ci);
175
176 #ifdef CPU_STRONGARM
177 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
178 ci->ci_arm_cpurev < 3) {
179 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
180 }
181 #endif
182
183 #ifdef CPU_ARM8
184 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
185 int clock = arm8_clock_config(0, 0);
186 char *fclk;
187 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
188 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
189 aprint_normal("%s", (clock & 2) ? " sync" : "");
190 switch ((clock >> 2) & 3) {
191 case 0:
192 fclk = "bus clock";
193 break;
194 case 1:
195 fclk = "ref clock";
196 break;
197 case 3:
198 fclk = "pll";
199 break;
200 default:
201 fclk = "illegal";
202 break;
203 }
204 aprint_normal(" fclk source=%s\n", fclk);
205 }
206 #endif
207
208 vfp_attach(); /* XXX SMP */
209 }
210
211 enum cpu_class {
212 CPU_CLASS_NONE,
213 CPU_CLASS_ARM2,
214 CPU_CLASS_ARM2AS,
215 CPU_CLASS_ARM3,
216 CPU_CLASS_ARM6,
217 CPU_CLASS_ARM7,
218 CPU_CLASS_ARM7TDMI,
219 CPU_CLASS_ARM8,
220 CPU_CLASS_ARM9TDMI,
221 CPU_CLASS_ARM9ES,
222 CPU_CLASS_ARM9EJS,
223 CPU_CLASS_ARM10E,
224 CPU_CLASS_ARM10EJ,
225 CPU_CLASS_SA1,
226 CPU_CLASS_XSCALE,
227 CPU_CLASS_ARM11J,
228 CPU_CLASS_ARMV4,
229 CPU_CLASS_CORTEX,
230 CPU_CLASS_PJ4B,
231 };
232
233 static const char * const generic_steppings[16] = {
234 "rev 0", "rev 1", "rev 2", "rev 3",
235 "rev 4", "rev 5", "rev 6", "rev 7",
236 "rev 8", "rev 9", "rev 10", "rev 11",
237 "rev 12", "rev 13", "rev 14", "rev 15",
238 };
239
240 static const char * const pN_steppings[16] = {
241 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
242 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
243 };
244
245 static const char * const sa110_steppings[16] = {
246 "rev 0", "step J", "step K", "step S",
247 "step T", "rev 5", "rev 6", "rev 7",
248 "rev 8", "rev 9", "rev 10", "rev 11",
249 "rev 12", "rev 13", "rev 14", "rev 15",
250 };
251
252 static const char * const sa1100_steppings[16] = {
253 "rev 0", "step B", "step C", "rev 3",
254 "rev 4", "rev 5", "rev 6", "rev 7",
255 "step D", "step E", "rev 10" "step G",
256 "rev 12", "rev 13", "rev 14", "rev 15",
257 };
258
259 static const char * const sa1110_steppings[16] = {
260 "step A-0", "rev 1", "rev 2", "rev 3",
261 "step B-0", "step B-1", "step B-2", "step B-3",
262 "step B-4", "step B-5", "rev 10", "rev 11",
263 "rev 12", "rev 13", "rev 14", "rev 15",
264 };
265
266 static const char * const ixp12x0_steppings[16] = {
267 "(IXP1200 step A)", "(IXP1200 step B)",
268 "rev 2", "(IXP1200 step C)",
269 "(IXP1200 step D)", "(IXP1240/1250 step A)",
270 "(IXP1240 step B)", "(IXP1250 step B)",
271 "rev 8", "rev 9", "rev 10", "rev 11",
272 "rev 12", "rev 13", "rev 14", "rev 15",
273 };
274
275 static const char * const xscale_steppings[16] = {
276 "step A-0", "step A-1", "step B-0", "step C-0",
277 "step D-0", "rev 5", "rev 6", "rev 7",
278 "rev 8", "rev 9", "rev 10", "rev 11",
279 "rev 12", "rev 13", "rev 14", "rev 15",
280 };
281
282 static const char * const i80321_steppings[16] = {
283 "step A-0", "step B-0", "rev 2", "rev 3",
284 "rev 4", "rev 5", "rev 6", "rev 7",
285 "rev 8", "rev 9", "rev 10", "rev 11",
286 "rev 12", "rev 13", "rev 14", "rev 15",
287 };
288
289 static const char * const i80219_steppings[16] = {
290 "step A-0", "rev 1", "rev 2", "rev 3",
291 "rev 4", "rev 5", "rev 6", "rev 7",
292 "rev 8", "rev 9", "rev 10", "rev 11",
293 "rev 12", "rev 13", "rev 14", "rev 15",
294 };
295
296 /* Steppings for PXA2[15]0 */
297 static const char * const pxa2x0_steppings[16] = {
298 "step A-0", "step A-1", "step B-0", "step B-1",
299 "step B-2", "step C-0", "rev 6", "rev 7",
300 "rev 8", "rev 9", "rev 10", "rev 11",
301 "rev 12", "rev 13", "rev 14", "rev 15",
302 };
303
304 /* Steppings for PXA255/26x.
305 * rev 5: PXA26x B0, rev 6: PXA255 A0
306 */
307 static const char * const pxa255_steppings[16] = {
308 "rev 0", "rev 1", "rev 2", "step A-0",
309 "rev 4", "step B-0", "step A-0", "rev 7",
310 "rev 8", "rev 9", "rev 10", "rev 11",
311 "rev 12", "rev 13", "rev 14", "rev 15",
312 };
313
314 /* Stepping for PXA27x */
315 static const char * const pxa27x_steppings[16] = {
316 "step A-0", "step A-1", "step B-0", "step B-1",
317 "step C-0", "rev 5", "rev 6", "rev 7",
318 "rev 8", "rev 9", "rev 10", "rev 11",
319 "rev 12", "rev 13", "rev 14", "rev 15",
320 };
321
322 static const char * const ixp425_steppings[16] = {
323 "step 0", "rev 1", "rev 2", "rev 3",
324 "rev 4", "rev 5", "rev 6", "rev 7",
325 "rev 8", "rev 9", "rev 10", "rev 11",
326 "rev 12", "rev 13", "rev 14", "rev 15",
327 };
328
329 struct cpuidtab {
330 uint32_t cpuid;
331 enum cpu_class cpu_class;
332 const char *cpu_classname;
333 const char * const *cpu_steppings;
334 char cpu_arch[8];
335 };
336
337 const struct cpuidtab cpuids[] = {
338 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
339 generic_steppings, "2" },
340 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
341 generic_steppings, "2" },
342
343 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
344 generic_steppings, "2A" },
345
346 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
347 generic_steppings, "3" },
348 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
349 generic_steppings, "3" },
350 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
351 generic_steppings, "3" },
352
353 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
354 generic_steppings, "3" },
355 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
356 generic_steppings, "3" },
357 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
358 generic_steppings, "3" },
359 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
360 generic_steppings, "3" },
361 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
362 generic_steppings, "3" },
363
364 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
365 generic_steppings, "4" },
366
367 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
368 sa110_steppings, "4" },
369 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
370 sa1100_steppings, "4" },
371 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
372 sa1110_steppings, "4" },
373
374 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
375 generic_steppings, "4" },
376
377 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
378 ixp12x0_steppings, "4" },
379
380 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
381 generic_steppings, "4T" },
382 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
383 generic_steppings, "4T" },
384 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
385 generic_steppings, "4T" },
386 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
387 generic_steppings, "4T" },
388 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
389 generic_steppings, "4T" },
390 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
391 generic_steppings, "4T" },
392 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
393 generic_steppings, "4T" },
394 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
395 generic_steppings, "4T" },
396
397 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
398 generic_steppings, "5TE" },
399 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
400 generic_steppings, "5TE" },
401 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
402 generic_steppings, "5TE" },
403 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
404 generic_steppings, "5TE" },
405 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
406 generic_steppings, "5TE" },
407
408 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
409 xscale_steppings, "5TE" },
410
411 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
412 i80321_steppings, "5TE" },
413 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
414 i80321_steppings, "5TE" },
415 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
416 i80321_steppings, "5TE" },
417 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
418 i80321_steppings, "5TE" },
419
420 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
421 i80219_steppings, "5TE" },
422 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
423 i80219_steppings, "5TE" },
424
425 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
426 pxa27x_steppings, "5TE" },
427 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
428 pxa2x0_steppings, "5TE" },
429 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
430 pxa2x0_steppings, "5TE" },
431 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
432 pxa2x0_steppings, "5TE" },
433 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
434 pxa2x0_steppings, "5TE" },
435 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
436 pxa255_steppings, "5TE" },
437 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
438 pxa2x0_steppings, "5TE" },
439
440 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
441 ixp425_steppings, "5TE" },
442 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
443 ixp425_steppings, "5TE" },
444 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
445 ixp425_steppings, "5TE" },
446
447 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
448 generic_steppings, "5TE" },
449 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
450 generic_steppings, "5TE" },
451
452 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
453 generic_steppings, "5TEJ" },
454 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
455 generic_steppings, "5TEJ" },
456
457 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
458 pN_steppings, "6J" },
459 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
460 pN_steppings, "6J" },
461 #if 0
462 /* The ARM1156T2-S only has a memory protection unit */
463 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
464 pN_steppings, "6T2" },
465 #endif
466 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
467 pN_steppings, "6ZK" },
468
469 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
470 generic_steppings, "6K" },
471
472 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
473 pN_steppings, "7A" },
474 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0",
475 pN_steppings, "7A" },
476 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
477 pN_steppings, "7A" },
478 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
479 pN_steppings, "7A" },
480 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
481 pN_steppings, "7A" },
482 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
483 pN_steppings, "7A" },
484 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
485 pN_steppings, "7A" },
486 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
487 pN_steppings, "7A" },
488 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
489 pN_steppings, "7A" },
490 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
491 pN_steppings, "7A" },
492
493 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
494 generic_steppings },
495 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
496 generic_steppings },
497 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
498 generic_steppings },
499 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
500 generic_steppings },
501 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
502 generic_steppings },
503 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
504 generic_steppings },
505 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
506 generic_steppings },
507
508
509 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
510 };
511
512 struct cpu_classtab {
513 const char *class_name;
514 const char *class_option;
515 };
516
517 const struct cpu_classtab cpu_classes[] = {
518 [CPU_CLASS_NONE] = { "unknown", NULL },
519 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
520 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
521 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
522 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
523 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
524 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
525 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
526 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
527 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
528 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
529 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
530 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
531 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
532 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
533 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
534 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
535 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
536 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
537 };
538
539 /*
540 * Report the type of the specified arm processor. This uses the generic and
541 * arm specific information in the CPU structure to identify the processor.
542 * The remaining fields in the CPU structure are filled in appropriately.
543 */
544
545 static const char * const wtnames[] = {
546 "write-through",
547 "write-back",
548 "write-back",
549 "**unknown 3**",
550 "**unknown 4**",
551 "write-back-locking", /* XXX XScale-specific? */
552 "write-back-locking-A",
553 "write-back-locking-B",
554 "**unknown 8**",
555 "**unknown 9**",
556 "**unknown 10**",
557 "**unknown 11**",
558 "**unknown 12**",
559 "write-back-locking-line",
560 "write-back-locking-C",
561 "write-back-locking-D",
562 };
563
564 static void
565 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
566 {
567 if (info->cache_unified) {
568 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
569 info->dcache_size / 1024,
570 info->dcache_line_size, info->dcache_ways,
571 wtnames[info->cache_type], level + 1,
572 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
573 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
574 } else {
575 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
576 info->icache_size / 1024,
577 info->icache_line_size, info->icache_ways, level + 1,
578 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
579 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
580 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
581 info->dcache_size / 1024,
582 info->dcache_line_size, info->dcache_ways,
583 wtnames[info->cache_type], level + 1,
584 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
585 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
586 }
587 }
588
589 void
590 identify_arm_cpu(device_t dv, struct cpu_info *ci)
591 {
592 enum cpu_class cpu_class = CPU_CLASS_NONE;
593 const u_int cpuid = ci->ci_arm_cpuid;
594 const char * const xname = device_xname(dv);
595 const char *steppingstr;
596 int i;
597
598 if (cpuid == 0) {
599 aprint_error("Processor failed probe - no CPU ID\n");
600 return;
601 }
602
603 for (i = 0; cpuids[i].cpuid != 0; i++)
604 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
605 cpu_class = cpuids[i].cpu_class;
606 cpu_arch = cpuids[i].cpu_arch;
607 steppingstr = cpuids[i].cpu_steppings[cpuid &
608 CPU_ID_REVISION_MASK];
609 snprintf(cpu_model, sizeof(cpu_model),
610 "%s%s%s (%s V%s core)", cpuids[i].cpu_classname,
611 steppingstr[0] == '*' ? "" : " ",
612 &steppingstr[steppingstr[0] == '*'],
613 cpu_classes[cpu_class].class_name,
614 cpu_arch);
615 break;
616 }
617
618 if (cpuids[i].cpuid == 0)
619 snprintf(cpu_model, sizeof(cpu_model),
620 "unknown CPU (ID = 0x%x)", cpuid);
621
622 if (ci->ci_data.cpu_cc_freq != 0) {
623 char freqbuf[8];
624 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
625 "Hz", 1000);
626
627 aprint_naive(": %s %s\n", freqbuf, cpu_model);
628 aprint_normal(": %s %s\n", freqbuf, cpu_model);
629 } else {
630 aprint_naive(": %s\n", cpu_model);
631 aprint_normal(": %s\n", cpu_model);
632 }
633
634 aprint_normal("%s:", xname);
635
636 switch (cpu_class) {
637 case CPU_CLASS_ARM6:
638 case CPU_CLASS_ARM7:
639 case CPU_CLASS_ARM7TDMI:
640 case CPU_CLASS_ARM8:
641 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
642 aprint_normal(" IDC disabled");
643 else
644 aprint_normal(" IDC enabled");
645 break;
646 case CPU_CLASS_ARM9TDMI:
647 case CPU_CLASS_ARM9ES:
648 case CPU_CLASS_ARM9EJS:
649 case CPU_CLASS_ARM10E:
650 case CPU_CLASS_ARM10EJ:
651 case CPU_CLASS_SA1:
652 case CPU_CLASS_XSCALE:
653 case CPU_CLASS_ARM11J:
654 case CPU_CLASS_ARMV4:
655 case CPU_CLASS_CORTEX:
656 case CPU_CLASS_PJ4B:
657 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
658 aprint_normal(" DC disabled");
659 else
660 aprint_normal(" DC enabled");
661 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
662 aprint_normal(" IC disabled");
663 else
664 aprint_normal(" IC enabled");
665 break;
666 default:
667 break;
668 }
669 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
670 aprint_normal(" WB disabled");
671 else
672 aprint_normal(" WB enabled");
673
674 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
675 aprint_normal(" LABT");
676 else
677 aprint_normal(" EABT");
678
679 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
680 aprint_normal(" branch prediction enabled");
681
682 aprint_normal("\n");
683
684 if (CPU_ID_CORTEX_P(cpuid) || CPU_ID_ARM11_P(cpuid) || CPU_ID_MV88SV58XX_P(cpuid)) {
685 identify_features(dv);
686 }
687
688 /* Print cache info. */
689 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
690 print_cache_info(dv, &arm_pcache, 0);
691 }
692 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
693 print_cache_info(dv, &arm_scache, 1);
694 }
695
696
697 switch (cpu_class) {
698 #ifdef CPU_ARM2
699 case CPU_CLASS_ARM2:
700 #endif
701 #ifdef CPU_ARM250
702 case CPU_CLASS_ARM2AS:
703 #endif
704 #ifdef CPU_ARM3
705 case CPU_CLASS_ARM3:
706 #endif
707 #ifdef CPU_ARM6
708 case CPU_CLASS_ARM6:
709 #endif
710 #ifdef CPU_ARM7
711 case CPU_CLASS_ARM7:
712 #endif
713 #ifdef CPU_ARM7TDMI
714 case CPU_CLASS_ARM7TDMI:
715 #endif
716 #ifdef CPU_ARM8
717 case CPU_CLASS_ARM8:
718 #endif
719 #ifdef CPU_ARM9
720 case CPU_CLASS_ARM9TDMI:
721 #endif
722 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
723 case CPU_CLASS_ARM9ES:
724 case CPU_CLASS_ARM9EJS:
725 #endif
726 #ifdef CPU_ARM10
727 case CPU_CLASS_ARM10E:
728 case CPU_CLASS_ARM10EJ:
729 #endif
730 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
731 defined(CPU_SA1110) || defined(CPU_IXP12X0)
732 case CPU_CLASS_SA1:
733 #endif
734 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
735 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
736 case CPU_CLASS_XSCALE:
737 #endif
738 #if defined(CPU_ARM11)
739 case CPU_CLASS_ARM11J:
740 #endif
741 #if defined(CPU_CORTEX)
742 case CPU_CLASS_CORTEX:
743 #endif
744 #if defined(CPU_PJ4B)
745 case CPU_CLASS_PJ4B:
746 #endif
747 #if defined(CPU_FA526)
748 case CPU_CLASS_ARMV4:
749 #endif
750 break;
751 default:
752 if (cpu_classes[cpu_class].class_option == NULL) {
753 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
754 ostype);
755 } else {
756 aprint_error_dev(dv, "This kernel does not fully support "
757 "this CPU.\n");
758 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
759 "correct this.\n", cpu_classes[cpu_class].class_option);
760 }
761 break;
762 }
763 }
764
765 extern int cpu_instruction_set_attributes[6];
766 extern int cpu_memory_model_features[4];
767 extern int cpu_processor_features[2];
768 extern int cpu_simd_present;
769 extern int cpu_simdex_present;
770
771 void
772 identify_features(device_t dv)
773 {
774 cpu_instruction_set_attributes[0] = armreg_isar0_read();
775 cpu_instruction_set_attributes[1] = armreg_isar1_read();
776 cpu_instruction_set_attributes[2] = armreg_isar2_read();
777 cpu_instruction_set_attributes[3] = armreg_isar3_read();
778 cpu_instruction_set_attributes[4] = armreg_isar4_read();
779 cpu_instruction_set_attributes[5] = armreg_isar5_read();
780
781 cpu_hwdiv_present =
782 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
783 cpu_simd_present =
784 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
785 cpu_simdex_present = cpu_simd_present
786 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
787 cpu_synchprim_present =
788 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
789 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
790
791 cpu_memory_model_features[0] = armreg_mmfr0_read();
792 cpu_memory_model_features[1] = armreg_mmfr1_read();
793 cpu_memory_model_features[2] = armreg_mmfr2_read();
794 cpu_memory_model_features[3] = armreg_mmfr3_read();
795
796 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
797 /*
798 * Updates to the translation tables do not require a clean
799 * to the point of unification to ensure visibility by
800 * subsequent translation table walks.
801 */
802 pmap_needs_pte_sync = 0;
803 }
804
805 cpu_processor_features[0] = armreg_pfr0_read();
806 cpu_processor_features[1] = armreg_pfr1_read();
807
808 aprint_verbose_dev(dv,
809 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
810 cpu_instruction_set_attributes[0],
811 cpu_instruction_set_attributes[1],
812 cpu_instruction_set_attributes[2],
813 cpu_instruction_set_attributes[3],
814 cpu_instruction_set_attributes[4],
815 cpu_instruction_set_attributes[5]);
816 aprint_verbose_dev(dv,
817 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
818 cpu_memory_model_features[0], cpu_memory_model_features[1],
819 cpu_memory_model_features[2], cpu_memory_model_features[3]);
820 aprint_verbose_dev(dv,
821 "pfr: [0]=%#x [1]=%#x\n",
822 cpu_processor_features[0], cpu_processor_features[1]);
823 }
824