cpu.c revision 1.103 1 /* $NetBSD: cpu.c,v 1.103 2014/03/24 20:06:31 christos Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.103 2014/03/24 20:06:31 christos Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/locore.h>
61 #include <arm/undefined.h>
62
63 extern const char *cpu_arch;
64
65 #ifdef MULTIPROCESSOR
66 volatile u_int arm_cpu_hatched = 0;
67 u_int arm_cpu_max = 0;
68 uint32_t arm_cpu_mbox __cacheline_aligned = 0;
69 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
70 #endif
71
72 /* Prototypes */
73 void identify_arm_cpu(device_t dv, struct cpu_info *);
74 void identify_cortex_caches(device_t dv);
75 void identify_features(device_t dv);
76
77 /*
78 * Identify the master (boot) CPU
79 */
80
81 void
82 cpu_attach(device_t dv, cpuid_t id)
83 {
84 const char * const xname = device_xname(dv);
85 struct cpu_info *ci;
86
87 if (id == 0) {
88 ci = curcpu();
89
90 /* Get the CPU ID from coprocessor 15 */
91
92 ci->ci_arm_cpuid = cpu_id();
93 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
94 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
95 } else {
96 #ifdef MULTIPROCESSOR
97 KASSERT(cpu_info[id] == NULL);
98 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
99 KASSERT(ci != NULL);
100 ci->ci_cpl = IPL_HIGH;
101 ci->ci_cpuid = id;
102 ci->ci_data.cpu_core_id = id;
103 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
104 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
105 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
106 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
107 cpu_info[ci->ci_cpuid] = ci;
108 if ((arm_cpu_hatched & (1 << id)) == 0) {
109 ci->ci_dev = dv;
110 dv->dv_private = ci;
111 aprint_naive(": disabled\n");
112 aprint_normal(": disabled (unresponsive)\n");
113 return;
114 }
115 #else
116 aprint_naive(": disabled\n");
117 aprint_normal(": disabled (uniprocessor kernel)\n");
118 return;
119 #endif
120 }
121
122 ci->ci_dev = dv;
123 dv->dv_private = ci;
124
125 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
126 NULL, xname, "arm700swibug");
127
128 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
129 NULL, xname, "vector abort");
130 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
131 NULL, xname, "terminal abort");
132 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
133 NULL, xname, "external linefetch abort (S)");
134 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
135 NULL, xname, "external linefetch abort (P)");
136 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
137 NULL, xname, "external non-linefetch abort (S)");
138 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
139 NULL, xname, "external non-linefetch abort (P)");
140 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
141 NULL, xname, "external translation abort (L1)");
142 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
143 NULL, xname, "external translation abort (L2)");
144 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
145 NULL, xname, "alignment abort (0)");
146 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
147 NULL, xname, "alignment abort (1)");
148 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
149 NULL, xname, "translation abort (S)");
150 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
151 NULL, xname, "translation abort (P)");
152 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
153 NULL, xname, "domain abort (S)");
154 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
155 NULL, xname, "domain abort (P)");
156 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
157 NULL, xname, "permission abort (S)");
158 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
159 NULL, xname, "permission abort (P)");
160
161 #ifdef MULTIPROCESSOR
162 /*
163 * and we are done if this is a secondary processor.
164 */
165 if (!CPU_IS_PRIMARY(ci)) {
166 aprint_naive(": %s\n", cpu_getmodel());
167 aprint_normal(": %s\n", cpu_getmodel());
168 mi_cpu_attach(ci);
169 return;
170 }
171 #endif
172
173 identify_arm_cpu(dv, ci);
174
175 #ifdef CPU_STRONGARM
176 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
177 ci->ci_arm_cpurev < 3) {
178 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
179 }
180 #endif
181
182 #ifdef CPU_ARM8
183 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
184 int clock = arm8_clock_config(0, 0);
185 char *fclk;
186 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
187 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
188 aprint_normal("%s", (clock & 2) ? " sync" : "");
189 switch ((clock >> 2) & 3) {
190 case 0:
191 fclk = "bus clock";
192 break;
193 case 1:
194 fclk = "ref clock";
195 break;
196 case 3:
197 fclk = "pll";
198 break;
199 default:
200 fclk = "illegal";
201 break;
202 }
203 aprint_normal(" fclk source=%s\n", fclk);
204 }
205 #endif
206
207 vfp_attach(); /* XXX SMP */
208 }
209
210 enum cpu_class {
211 CPU_CLASS_NONE,
212 CPU_CLASS_ARM2,
213 CPU_CLASS_ARM2AS,
214 CPU_CLASS_ARM3,
215 CPU_CLASS_ARM6,
216 CPU_CLASS_ARM7,
217 CPU_CLASS_ARM7TDMI,
218 CPU_CLASS_ARM8,
219 CPU_CLASS_ARM9TDMI,
220 CPU_CLASS_ARM9ES,
221 CPU_CLASS_ARM9EJS,
222 CPU_CLASS_ARM10E,
223 CPU_CLASS_ARM10EJ,
224 CPU_CLASS_SA1,
225 CPU_CLASS_XSCALE,
226 CPU_CLASS_ARM11J,
227 CPU_CLASS_ARMV4,
228 CPU_CLASS_CORTEX,
229 CPU_CLASS_PJ4B,
230 };
231
232 static const char * const generic_steppings[16] = {
233 "rev 0", "rev 1", "rev 2", "rev 3",
234 "rev 4", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 static const char * const pN_steppings[16] = {
240 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
241 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
242 };
243
244 static const char * const sa110_steppings[16] = {
245 "rev 0", "step J", "step K", "step S",
246 "step T", "rev 5", "rev 6", "rev 7",
247 "rev 8", "rev 9", "rev 10", "rev 11",
248 "rev 12", "rev 13", "rev 14", "rev 15",
249 };
250
251 static const char * const sa1100_steppings[16] = {
252 "rev 0", "step B", "step C", "rev 3",
253 "rev 4", "rev 5", "rev 6", "rev 7",
254 "step D", "step E", "rev 10" "step G",
255 "rev 12", "rev 13", "rev 14", "rev 15",
256 };
257
258 static const char * const sa1110_steppings[16] = {
259 "step A-0", "rev 1", "rev 2", "rev 3",
260 "step B-0", "step B-1", "step B-2", "step B-3",
261 "step B-4", "step B-5", "rev 10", "rev 11",
262 "rev 12", "rev 13", "rev 14", "rev 15",
263 };
264
265 static const char * const ixp12x0_steppings[16] = {
266 "(IXP1200 step A)", "(IXP1200 step B)",
267 "rev 2", "(IXP1200 step C)",
268 "(IXP1200 step D)", "(IXP1240/1250 step A)",
269 "(IXP1240 step B)", "(IXP1250 step B)",
270 "rev 8", "rev 9", "rev 10", "rev 11",
271 "rev 12", "rev 13", "rev 14", "rev 15",
272 };
273
274 static const char * const xscale_steppings[16] = {
275 "step A-0", "step A-1", "step B-0", "step C-0",
276 "step D-0", "rev 5", "rev 6", "rev 7",
277 "rev 8", "rev 9", "rev 10", "rev 11",
278 "rev 12", "rev 13", "rev 14", "rev 15",
279 };
280
281 static const char * const i80321_steppings[16] = {
282 "step A-0", "step B-0", "rev 2", "rev 3",
283 "rev 4", "rev 5", "rev 6", "rev 7",
284 "rev 8", "rev 9", "rev 10", "rev 11",
285 "rev 12", "rev 13", "rev 14", "rev 15",
286 };
287
288 static const char * const i80219_steppings[16] = {
289 "step A-0", "rev 1", "rev 2", "rev 3",
290 "rev 4", "rev 5", "rev 6", "rev 7",
291 "rev 8", "rev 9", "rev 10", "rev 11",
292 "rev 12", "rev 13", "rev 14", "rev 15",
293 };
294
295 /* Steppings for PXA2[15]0 */
296 static const char * const pxa2x0_steppings[16] = {
297 "step A-0", "step A-1", "step B-0", "step B-1",
298 "step B-2", "step C-0", "rev 6", "rev 7",
299 "rev 8", "rev 9", "rev 10", "rev 11",
300 "rev 12", "rev 13", "rev 14", "rev 15",
301 };
302
303 /* Steppings for PXA255/26x.
304 * rev 5: PXA26x B0, rev 6: PXA255 A0
305 */
306 static const char * const pxa255_steppings[16] = {
307 "rev 0", "rev 1", "rev 2", "step A-0",
308 "rev 4", "step B-0", "step A-0", "rev 7",
309 "rev 8", "rev 9", "rev 10", "rev 11",
310 "rev 12", "rev 13", "rev 14", "rev 15",
311 };
312
313 /* Stepping for PXA27x */
314 static const char * const pxa27x_steppings[16] = {
315 "step A-0", "step A-1", "step B-0", "step B-1",
316 "step C-0", "rev 5", "rev 6", "rev 7",
317 "rev 8", "rev 9", "rev 10", "rev 11",
318 "rev 12", "rev 13", "rev 14", "rev 15",
319 };
320
321 static const char * const ixp425_steppings[16] = {
322 "step 0", "rev 1", "rev 2", "rev 3",
323 "rev 4", "rev 5", "rev 6", "rev 7",
324 "rev 8", "rev 9", "rev 10", "rev 11",
325 "rev 12", "rev 13", "rev 14", "rev 15",
326 };
327
328 struct cpuidtab {
329 uint32_t cpuid;
330 enum cpu_class cpu_class;
331 const char *cpu_classname;
332 const char * const *cpu_steppings;
333 char cpu_arch[8];
334 };
335
336 const struct cpuidtab cpuids[] = {
337 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
338 generic_steppings, "2" },
339 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
340 generic_steppings, "2" },
341
342 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
343 generic_steppings, "2A" },
344
345 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
346 generic_steppings, "3" },
347 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
348 generic_steppings, "3" },
349 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
350 generic_steppings, "3" },
351
352 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
353 generic_steppings, "3" },
354 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
355 generic_steppings, "3" },
356 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
357 generic_steppings, "3" },
358 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
359 generic_steppings, "3" },
360 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
361 generic_steppings, "3" },
362
363 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
364 generic_steppings, "4" },
365
366 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
367 sa110_steppings, "4" },
368 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
369 sa1100_steppings, "4" },
370 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
371 sa1110_steppings, "4" },
372
373 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
374 generic_steppings, "4" },
375
376 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
377 ixp12x0_steppings, "4" },
378
379 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
380 generic_steppings, "4T" },
381 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
382 generic_steppings, "4T" },
383 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
384 generic_steppings, "4T" },
385 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
386 generic_steppings, "4T" },
387 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
388 generic_steppings, "4T" },
389 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
390 generic_steppings, "4T" },
391 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
392 generic_steppings, "4T" },
393 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
394 generic_steppings, "4T" },
395
396 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
397 generic_steppings, "5TE" },
398 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
399 generic_steppings, "5TE" },
400 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
401 generic_steppings, "5TE" },
402 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
403 generic_steppings, "5TE" },
404 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
405 generic_steppings, "5TE" },
406
407 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
408 xscale_steppings, "5TE" },
409
410 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
411 i80321_steppings, "5TE" },
412 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
413 i80321_steppings, "5TE" },
414 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
415 i80321_steppings, "5TE" },
416 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
417 i80321_steppings, "5TE" },
418
419 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
420 i80219_steppings, "5TE" },
421 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
422 i80219_steppings, "5TE" },
423
424 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
425 pxa27x_steppings, "5TE" },
426 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
427 pxa2x0_steppings, "5TE" },
428 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
429 pxa2x0_steppings, "5TE" },
430 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
431 pxa2x0_steppings, "5TE" },
432 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
433 pxa2x0_steppings, "5TE" },
434 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
435 pxa255_steppings, "5TE" },
436 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
437 pxa2x0_steppings, "5TE" },
438
439 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
440 ixp425_steppings, "5TE" },
441 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
442 ixp425_steppings, "5TE" },
443 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
444 ixp425_steppings, "5TE" },
445
446 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
447 generic_steppings, "5TE" },
448 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
449 generic_steppings, "5TE" },
450
451 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
452 generic_steppings, "5TEJ" },
453 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
454 generic_steppings, "5TEJ" },
455
456 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
457 pN_steppings, "6J" },
458 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
459 pN_steppings, "6J" },
460 #if 0
461 /* The ARM1156T2-S only has a memory protection unit */
462 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
463 pN_steppings, "6T2" },
464 #endif
465 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
466 pN_steppings, "6ZK" },
467
468 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
469 generic_steppings, "6K" },
470
471 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
472 pN_steppings, "7A" },
473 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0",
474 pN_steppings, "7A" },
475 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
476 pN_steppings, "7A" },
477 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
478 pN_steppings, "7A" },
479 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
480 pN_steppings, "7A" },
481 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
482 pN_steppings, "7A" },
483 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
484 pN_steppings, "7A" },
485 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
486 pN_steppings, "7A" },
487 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
488 pN_steppings, "7A" },
489 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
490 pN_steppings, "7A" },
491
492 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
493 generic_steppings },
494 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
495 generic_steppings },
496 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
497 generic_steppings },
498 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
499 generic_steppings },
500 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
501 generic_steppings },
502 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
503 generic_steppings },
504 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
505 generic_steppings },
506
507
508 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
509 };
510
511 struct cpu_classtab {
512 const char *class_name;
513 const char *class_option;
514 };
515
516 const struct cpu_classtab cpu_classes[] = {
517 [CPU_CLASS_NONE] = { "unknown", NULL },
518 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
519 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
520 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
521 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
522 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
523 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
524 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
525 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
526 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
527 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
528 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
529 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
530 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
531 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
532 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
533 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
534 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
535 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
536 };
537
538 /*
539 * Report the type of the specified arm processor. This uses the generic and
540 * arm specific information in the CPU structure to identify the processor.
541 * The remaining fields in the CPU structure are filled in appropriately.
542 */
543
544 static const char * const wtnames[] = {
545 "write-through",
546 "write-back",
547 "write-back",
548 "**unknown 3**",
549 "**unknown 4**",
550 "write-back-locking", /* XXX XScale-specific? */
551 "write-back-locking-A",
552 "write-back-locking-B",
553 "**unknown 8**",
554 "**unknown 9**",
555 "**unknown 10**",
556 "**unknown 11**",
557 "**unknown 12**",
558 "write-back-locking-line",
559 "write-back-locking-C",
560 "write-back-locking-D",
561 };
562
563 static void
564 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
565 {
566 if (info->cache_unified) {
567 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
568 info->dcache_size / 1024,
569 info->dcache_line_size, info->dcache_ways,
570 wtnames[info->cache_type], level + 1,
571 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
572 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
573 } else {
574 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
575 info->icache_size / 1024,
576 info->icache_line_size, info->icache_ways, level + 1,
577 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
578 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
579 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
580 info->dcache_size / 1024,
581 info->dcache_line_size, info->dcache_ways,
582 wtnames[info->cache_type], level + 1,
583 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
584 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
585 }
586 }
587
588 void
589 identify_arm_cpu(device_t dv, struct cpu_info *ci)
590 {
591 enum cpu_class cpu_class = CPU_CLASS_NONE;
592 const u_int cpuid = ci->ci_arm_cpuid;
593 const char * const xname = device_xname(dv);
594 const char *steppingstr;
595 int i;
596
597 if (cpuid == 0) {
598 aprint_error("Processor failed probe - no CPU ID\n");
599 return;
600 }
601
602 for (i = 0; cpuids[i].cpuid != 0; i++)
603 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
604 cpu_class = cpuids[i].cpu_class;
605 cpu_arch = cpuids[i].cpu_arch;
606 steppingstr = cpuids[i].cpu_steppings[cpuid &
607 CPU_ID_REVISION_MASK];
608 cpu_setmodel("%s%s%s (%s V%s core)",
609 cpuids[i].cpu_classname,
610 steppingstr[0] == '*' ? "" : " ",
611 &steppingstr[steppingstr[0] == '*'],
612 cpu_classes[cpu_class].class_name,
613 cpu_arch);
614 break;
615 }
616
617 if (cpuids[i].cpuid == 0)
618 cpu_setmodel("unknown CPU (ID = 0x%x)", cpuid);
619
620 if (ci->ci_data.cpu_cc_freq != 0) {
621 char freqbuf[8];
622 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
623 "Hz", 1000);
624
625 aprint_naive(": %s %s\n", freqbuf, cpu_getmodel());
626 aprint_normal(": %s %s\n", freqbuf, cpu_getmodel());
627 } else {
628 aprint_naive(": %s\n", cpu_getmodel());
629 aprint_normal(": %s\n", cpu_getmodel());
630 }
631
632 aprint_normal("%s:", xname);
633
634 switch (cpu_class) {
635 case CPU_CLASS_ARM6:
636 case CPU_CLASS_ARM7:
637 case CPU_CLASS_ARM7TDMI:
638 case CPU_CLASS_ARM8:
639 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
640 aprint_normal(" IDC disabled");
641 else
642 aprint_normal(" IDC enabled");
643 break;
644 case CPU_CLASS_ARM9TDMI:
645 case CPU_CLASS_ARM9ES:
646 case CPU_CLASS_ARM9EJS:
647 case CPU_CLASS_ARM10E:
648 case CPU_CLASS_ARM10EJ:
649 case CPU_CLASS_SA1:
650 case CPU_CLASS_XSCALE:
651 case CPU_CLASS_ARM11J:
652 case CPU_CLASS_ARMV4:
653 case CPU_CLASS_CORTEX:
654 case CPU_CLASS_PJ4B:
655 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
656 aprint_normal(" DC disabled");
657 else
658 aprint_normal(" DC enabled");
659 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
660 aprint_normal(" IC disabled");
661 else
662 aprint_normal(" IC enabled");
663 break;
664 default:
665 break;
666 }
667 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
668 aprint_normal(" WB disabled");
669 else
670 aprint_normal(" WB enabled");
671
672 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
673 aprint_normal(" LABT");
674 else
675 aprint_normal(" EABT");
676
677 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
678 aprint_normal(" branch prediction enabled");
679
680 aprint_normal("\n");
681
682 if (CPU_ID_CORTEX_P(cpuid) || CPU_ID_ARM11_P(cpuid) || CPU_ID_MV88SV58XX_P(cpuid)) {
683 identify_features(dv);
684 }
685
686 /* Print cache info. */
687 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
688 print_cache_info(dv, &arm_pcache, 0);
689 }
690 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
691 print_cache_info(dv, &arm_scache, 1);
692 }
693
694
695 switch (cpu_class) {
696 #ifdef CPU_ARM2
697 case CPU_CLASS_ARM2:
698 #endif
699 #ifdef CPU_ARM250
700 case CPU_CLASS_ARM2AS:
701 #endif
702 #ifdef CPU_ARM3
703 case CPU_CLASS_ARM3:
704 #endif
705 #ifdef CPU_ARM6
706 case CPU_CLASS_ARM6:
707 #endif
708 #ifdef CPU_ARM7
709 case CPU_CLASS_ARM7:
710 #endif
711 #ifdef CPU_ARM7TDMI
712 case CPU_CLASS_ARM7TDMI:
713 #endif
714 #ifdef CPU_ARM8
715 case CPU_CLASS_ARM8:
716 #endif
717 #ifdef CPU_ARM9
718 case CPU_CLASS_ARM9TDMI:
719 #endif
720 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
721 case CPU_CLASS_ARM9ES:
722 case CPU_CLASS_ARM9EJS:
723 #endif
724 #ifdef CPU_ARM10
725 case CPU_CLASS_ARM10E:
726 case CPU_CLASS_ARM10EJ:
727 #endif
728 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
729 defined(CPU_SA1110) || defined(CPU_IXP12X0)
730 case CPU_CLASS_SA1:
731 #endif
732 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
733 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
734 case CPU_CLASS_XSCALE:
735 #endif
736 #if defined(CPU_ARM11)
737 case CPU_CLASS_ARM11J:
738 #endif
739 #if defined(CPU_CORTEX)
740 case CPU_CLASS_CORTEX:
741 #endif
742 #if defined(CPU_PJ4B)
743 case CPU_CLASS_PJ4B:
744 #endif
745 #if defined(CPU_FA526)
746 case CPU_CLASS_ARMV4:
747 #endif
748 break;
749 default:
750 if (cpu_classes[cpu_class].class_option == NULL) {
751 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
752 ostype);
753 } else {
754 aprint_error_dev(dv, "This kernel does not fully support "
755 "this CPU.\n");
756 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
757 "correct this.\n", cpu_classes[cpu_class].class_option);
758 }
759 break;
760 }
761 }
762
763 extern int cpu_instruction_set_attributes[6];
764 extern int cpu_memory_model_features[4];
765 extern int cpu_processor_features[2];
766 extern int cpu_simd_present;
767 extern int cpu_simdex_present;
768
769 void
770 identify_features(device_t dv)
771 {
772 cpu_instruction_set_attributes[0] = armreg_isar0_read();
773 cpu_instruction_set_attributes[1] = armreg_isar1_read();
774 cpu_instruction_set_attributes[2] = armreg_isar2_read();
775 cpu_instruction_set_attributes[3] = armreg_isar3_read();
776 cpu_instruction_set_attributes[4] = armreg_isar4_read();
777 cpu_instruction_set_attributes[5] = armreg_isar5_read();
778
779 cpu_hwdiv_present =
780 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
781 cpu_simd_present =
782 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
783 cpu_simdex_present = cpu_simd_present
784 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
785 cpu_synchprim_present =
786 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
787 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
788
789 cpu_memory_model_features[0] = armreg_mmfr0_read();
790 cpu_memory_model_features[1] = armreg_mmfr1_read();
791 cpu_memory_model_features[2] = armreg_mmfr2_read();
792 cpu_memory_model_features[3] = armreg_mmfr3_read();
793
794 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
795 /*
796 * Updates to the translation tables do not require a clean
797 * to the point of unification to ensure visibility by
798 * subsequent translation table walks.
799 */
800 pmap_needs_pte_sync = 0;
801 }
802
803 cpu_processor_features[0] = armreg_pfr0_read();
804 cpu_processor_features[1] = armreg_pfr1_read();
805
806 aprint_verbose_dev(dv,
807 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
808 cpu_instruction_set_attributes[0],
809 cpu_instruction_set_attributes[1],
810 cpu_instruction_set_attributes[2],
811 cpu_instruction_set_attributes[3],
812 cpu_instruction_set_attributes[4],
813 cpu_instruction_set_attributes[5]);
814 aprint_verbose_dev(dv,
815 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
816 cpu_memory_model_features[0], cpu_memory_model_features[1],
817 cpu_memory_model_features[2], cpu_memory_model_features[3]);
818 aprint_verbose_dev(dv,
819 "pfr: [0]=%#x [1]=%#x\n",
820 cpu_processor_features[0], cpu_processor_features[1]);
821 }
822