cpu.c revision 1.104 1 /* $NetBSD: cpu.c,v 1.104 2014/03/28 21:39:09 matt Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.104 2014/03/28 21:39:09 matt Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/locore.h>
61 #include <arm/undefined.h>
62
63 extern const char *cpu_arch;
64
65 #ifdef MULTIPROCESSOR
66 volatile u_int arm_cpu_hatched = 0;
67 volatile uint32_t arm_cpu_mbox __cacheline_aligned = 0;
68 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
69 u_int arm_cpu_max = 1;
70 #endif
71
72 /* Prototypes */
73 void identify_arm_cpu(device_t, struct cpu_info *);
74 void identify_cortex_caches(device_t);
75 void identify_features(device_t);
76
77 /*
78 * Identify the master (boot) CPU
79 */
80
81 void
82 cpu_attach(device_t dv, cpuid_t id)
83 {
84 const char * const xname = device_xname(dv);
85 struct cpu_info *ci;
86
87 if (id == 0) {
88 ci = curcpu();
89
90 /* Get the CPU ID from coprocessor 15 */
91
92 ci->ci_arm_cpuid = cpu_id();
93 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
94 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
95 } else {
96 #ifdef MULTIPROCESSOR
97 KASSERT(cpu_info[id] == NULL);
98 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
99 KASSERT(ci != NULL);
100 ci->ci_cpl = IPL_HIGH;
101 ci->ci_cpuid = id;
102 uint32_t mpidr = armreg_mpidr_read();
103 if (mpidr & MPIDR_MT) {
104 ci->ci_data.cpu_smt_id = mpidr & MPIDR_AFF0;
105 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF1;
106 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF2;
107 } else {
108 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF0;
109 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF1;
110 }
111 ci->ci_data.cpu_core_id = id;
112 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
113 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
114 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
115 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
116 ci->ci_ctrl = cpu_info_store.ci_ctrl;
117 ci->ci_undefsave[2] = cpu_info_store.ci_undefsave[2];
118 cpu_info[ci->ci_cpuid] = ci;
119 if ((arm_cpu_hatched & (1 << id)) == 0) {
120 ci->ci_dev = dv;
121 dv->dv_private = ci;
122 aprint_naive(": disabled\n");
123 aprint_normal(": disabled (unresponsive)\n");
124 return;
125 }
126 #else
127 aprint_naive(": disabled\n");
128 aprint_normal(": disabled (uniprocessor kernel)\n");
129 return;
130 #endif
131 }
132
133 ci->ci_dev = dv;
134 dv->dv_private = ci;
135
136 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
137 NULL, xname, "arm700swibug");
138
139 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
140 NULL, xname, "vector abort");
141 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
142 NULL, xname, "terminal abort");
143 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
144 NULL, xname, "external linefetch abort (S)");
145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
146 NULL, xname, "external linefetch abort (P)");
147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
148 NULL, xname, "external non-linefetch abort (S)");
149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
150 NULL, xname, "external non-linefetch abort (P)");
151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
152 NULL, xname, "external translation abort (L1)");
153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
154 NULL, xname, "external translation abort (L2)");
155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
156 NULL, xname, "alignment abort (0)");
157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
158 NULL, xname, "alignment abort (1)");
159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
160 NULL, xname, "translation abort (S)");
161 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
162 NULL, xname, "translation abort (P)");
163 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
164 NULL, xname, "domain abort (S)");
165 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
166 NULL, xname, "domain abort (P)");
167 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
168 NULL, xname, "permission abort (S)");
169 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
170 NULL, xname, "permission abort (P)");
171 evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
172 NULL, xname, "undefined insn traps");
173 evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
174 NULL, xname, "undefined cp15 insn traps");
175
176 #ifdef MULTIPROCESSOR
177 /*
178 * and we are done if this is a secondary processor.
179 */
180 if (id != 0) {
181 #if 1
182 aprint_naive("\n");
183 aprint_normal("\n");
184 #else
185 aprint_naive(": %s\n", cpu_getmodel());
186 aprint_normal(": %s\n", cpu_getmodel());
187 #endif
188 mi_cpu_attach(ci);
189 #ifdef ARM_MMU_EXTENDED
190 pmap_tlb_info_attach(&pmap_tlb0_info, ci);
191 #endif
192 return;
193 }
194 #endif
195
196 identify_arm_cpu(dv, ci);
197
198 #ifdef CPU_STRONGARM
199 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
200 ci->ci_arm_cpurev < 3) {
201 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
202 }
203 #endif
204
205 #ifdef CPU_ARM8
206 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
207 int clock = arm8_clock_config(0, 0);
208 char *fclk;
209 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
210 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
211 aprint_normal("%s", (clock & 2) ? " sync" : "");
212 switch ((clock >> 2) & 3) {
213 case 0:
214 fclk = "bus clock";
215 break;
216 case 1:
217 fclk = "ref clock";
218 break;
219 case 3:
220 fclk = "pll";
221 break;
222 default:
223 fclk = "illegal";
224 break;
225 }
226 aprint_normal(" fclk source=%s\n", fclk);
227 }
228 #endif
229
230 vfp_attach(ci); /* XXX SMP */
231 }
232
233 enum cpu_class {
234 CPU_CLASS_NONE,
235 CPU_CLASS_ARM2,
236 CPU_CLASS_ARM2AS,
237 CPU_CLASS_ARM3,
238 CPU_CLASS_ARM6,
239 CPU_CLASS_ARM7,
240 CPU_CLASS_ARM7TDMI,
241 CPU_CLASS_ARM8,
242 CPU_CLASS_ARM9TDMI,
243 CPU_CLASS_ARM9ES,
244 CPU_CLASS_ARM9EJS,
245 CPU_CLASS_ARM10E,
246 CPU_CLASS_ARM10EJ,
247 CPU_CLASS_SA1,
248 CPU_CLASS_XSCALE,
249 CPU_CLASS_ARM11J,
250 CPU_CLASS_ARMV4,
251 CPU_CLASS_CORTEX,
252 CPU_CLASS_PJ4B,
253 };
254
255 static const char * const generic_steppings[16] = {
256 "rev 0", "rev 1", "rev 2", "rev 3",
257 "rev 4", "rev 5", "rev 6", "rev 7",
258 "rev 8", "rev 9", "rev 10", "rev 11",
259 "rev 12", "rev 13", "rev 14", "rev 15",
260 };
261
262 static const char * const pN_steppings[16] = {
263 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
264 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
265 };
266
267 static const char * const sa110_steppings[16] = {
268 "rev 0", "step J", "step K", "step S",
269 "step T", "rev 5", "rev 6", "rev 7",
270 "rev 8", "rev 9", "rev 10", "rev 11",
271 "rev 12", "rev 13", "rev 14", "rev 15",
272 };
273
274 static const char * const sa1100_steppings[16] = {
275 "rev 0", "step B", "step C", "rev 3",
276 "rev 4", "rev 5", "rev 6", "rev 7",
277 "step D", "step E", "rev 10" "step G",
278 "rev 12", "rev 13", "rev 14", "rev 15",
279 };
280
281 static const char * const sa1110_steppings[16] = {
282 "step A-0", "rev 1", "rev 2", "rev 3",
283 "step B-0", "step B-1", "step B-2", "step B-3",
284 "step B-4", "step B-5", "rev 10", "rev 11",
285 "rev 12", "rev 13", "rev 14", "rev 15",
286 };
287
288 static const char * const ixp12x0_steppings[16] = {
289 "(IXP1200 step A)", "(IXP1200 step B)",
290 "rev 2", "(IXP1200 step C)",
291 "(IXP1200 step D)", "(IXP1240/1250 step A)",
292 "(IXP1240 step B)", "(IXP1250 step B)",
293 "rev 8", "rev 9", "rev 10", "rev 11",
294 "rev 12", "rev 13", "rev 14", "rev 15",
295 };
296
297 static const char * const xscale_steppings[16] = {
298 "step A-0", "step A-1", "step B-0", "step C-0",
299 "step D-0", "rev 5", "rev 6", "rev 7",
300 "rev 8", "rev 9", "rev 10", "rev 11",
301 "rev 12", "rev 13", "rev 14", "rev 15",
302 };
303
304 static const char * const i80321_steppings[16] = {
305 "step A-0", "step B-0", "rev 2", "rev 3",
306 "rev 4", "rev 5", "rev 6", "rev 7",
307 "rev 8", "rev 9", "rev 10", "rev 11",
308 "rev 12", "rev 13", "rev 14", "rev 15",
309 };
310
311 static const char * const i80219_steppings[16] = {
312 "step A-0", "rev 1", "rev 2", "rev 3",
313 "rev 4", "rev 5", "rev 6", "rev 7",
314 "rev 8", "rev 9", "rev 10", "rev 11",
315 "rev 12", "rev 13", "rev 14", "rev 15",
316 };
317
318 /* Steppings for PXA2[15]0 */
319 static const char * const pxa2x0_steppings[16] = {
320 "step A-0", "step A-1", "step B-0", "step B-1",
321 "step B-2", "step C-0", "rev 6", "rev 7",
322 "rev 8", "rev 9", "rev 10", "rev 11",
323 "rev 12", "rev 13", "rev 14", "rev 15",
324 };
325
326 /* Steppings for PXA255/26x.
327 * rev 5: PXA26x B0, rev 6: PXA255 A0
328 */
329 static const char * const pxa255_steppings[16] = {
330 "rev 0", "rev 1", "rev 2", "step A-0",
331 "rev 4", "step B-0", "step A-0", "rev 7",
332 "rev 8", "rev 9", "rev 10", "rev 11",
333 "rev 12", "rev 13", "rev 14", "rev 15",
334 };
335
336 /* Stepping for PXA27x */
337 static const char * const pxa27x_steppings[16] = {
338 "step A-0", "step A-1", "step B-0", "step B-1",
339 "step C-0", "rev 5", "rev 6", "rev 7",
340 "rev 8", "rev 9", "rev 10", "rev 11",
341 "rev 12", "rev 13", "rev 14", "rev 15",
342 };
343
344 static const char * const ixp425_steppings[16] = {
345 "step 0", "rev 1", "rev 2", "rev 3",
346 "rev 4", "rev 5", "rev 6", "rev 7",
347 "rev 8", "rev 9", "rev 10", "rev 11",
348 "rev 12", "rev 13", "rev 14", "rev 15",
349 };
350
351 struct cpuidtab {
352 uint32_t cpuid;
353 enum cpu_class cpu_class;
354 const char *cpu_classname;
355 const char * const *cpu_steppings;
356 char cpu_arch[8];
357 };
358
359 const struct cpuidtab cpuids[] = {
360 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
361 generic_steppings, "2" },
362 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
363 generic_steppings, "2" },
364
365 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
366 generic_steppings, "2A" },
367
368 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
369 generic_steppings, "3" },
370 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
371 generic_steppings, "3" },
372 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
373 generic_steppings, "3" },
374
375 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
376 generic_steppings, "3" },
377 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
378 generic_steppings, "3" },
379 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
380 generic_steppings, "3" },
381 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
382 generic_steppings, "3" },
383 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
384 generic_steppings, "3" },
385
386 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
387 generic_steppings, "4" },
388
389 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
390 sa110_steppings, "4" },
391 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
392 sa1100_steppings, "4" },
393 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
394 sa1110_steppings, "4" },
395
396 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
397 generic_steppings, "4" },
398
399 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
400 ixp12x0_steppings, "4" },
401
402 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
403 generic_steppings, "4T" },
404 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
405 generic_steppings, "4T" },
406 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
407 generic_steppings, "4T" },
408 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
409 generic_steppings, "4T" },
410 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
411 generic_steppings, "4T" },
412 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
413 generic_steppings, "4T" },
414 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
415 generic_steppings, "4T" },
416 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
417 generic_steppings, "4T" },
418
419 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
420 generic_steppings, "5TE" },
421 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
422 generic_steppings, "5TE" },
423 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
424 generic_steppings, "5TE" },
425 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
426 generic_steppings, "5TE" },
427 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
428 generic_steppings, "5TE" },
429
430 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
431 xscale_steppings, "5TE" },
432
433 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
434 i80321_steppings, "5TE" },
435 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
436 i80321_steppings, "5TE" },
437 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
438 i80321_steppings, "5TE" },
439 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
440 i80321_steppings, "5TE" },
441
442 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
443 i80219_steppings, "5TE" },
444 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
445 i80219_steppings, "5TE" },
446
447 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
448 pxa27x_steppings, "5TE" },
449 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
450 pxa2x0_steppings, "5TE" },
451 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
452 pxa2x0_steppings, "5TE" },
453 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
454 pxa2x0_steppings, "5TE" },
455 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
456 pxa2x0_steppings, "5TE" },
457 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
458 pxa255_steppings, "5TE" },
459 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
460 pxa2x0_steppings, "5TE" },
461
462 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
463 ixp425_steppings, "5TE" },
464 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
465 ixp425_steppings, "5TE" },
466 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
467 ixp425_steppings, "5TE" },
468
469 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
470 generic_steppings, "5TE" },
471 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
472 generic_steppings, "5TE" },
473
474 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
475 generic_steppings, "5TEJ" },
476 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
477 generic_steppings, "5TEJ" },
478
479 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
480 pN_steppings, "6J" },
481 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
482 pN_steppings, "6J" },
483 #if 0
484 /* The ARM1156T2-S only has a memory protection unit */
485 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
486 pN_steppings, "6T2" },
487 #endif
488 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
489 pN_steppings, "6ZK" },
490
491 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
492 generic_steppings, "6K" },
493
494 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
495 pN_steppings, "7A" },
496 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0",
497 pN_steppings, "7A" },
498 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
499 pN_steppings, "7A" },
500 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
501 pN_steppings, "7A" },
502 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
503 pN_steppings, "7A" },
504 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
505 pN_steppings, "7A" },
506 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
507 pN_steppings, "7A" },
508 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
509 pN_steppings, "7A" },
510 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
511 pN_steppings, "7A" },
512 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
513 pN_steppings, "7A" },
514
515 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
516 generic_steppings },
517 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
518 generic_steppings },
519 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
520 generic_steppings },
521 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
522 generic_steppings },
523 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
524 generic_steppings },
525 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
526 generic_steppings },
527 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
528 generic_steppings },
529
530
531 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
532 };
533
534 struct cpu_classtab {
535 const char *class_name;
536 const char *class_option;
537 };
538
539 const struct cpu_classtab cpu_classes[] = {
540 [CPU_CLASS_NONE] = { "unknown", NULL },
541 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
542 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
543 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
544 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
545 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
546 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
547 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
548 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
549 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
550 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
551 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
552 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
553 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
554 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
555 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
556 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
557 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
558 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
559 };
560
561 /*
562 * Report the type of the specified arm processor. This uses the generic and
563 * arm specific information in the CPU structure to identify the processor.
564 * The remaining fields in the CPU structure are filled in appropriately.
565 */
566
567 static const char * const wtnames[] = {
568 "write-through",
569 "write-back",
570 "write-back",
571 "**unknown 3**",
572 "**unknown 4**",
573 "write-back-locking", /* XXX XScale-specific? */
574 "write-back-locking-A",
575 "write-back-locking-B",
576 "**unknown 8**",
577 "**unknown 9**",
578 "**unknown 10**",
579 "**unknown 11**",
580 "**unknown 12**",
581 "write-back-locking-line",
582 "write-back-locking-C",
583 "write-back-locking-D",
584 };
585
586 static void
587 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
588 {
589 if (info->cache_unified) {
590 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
591 info->dcache_size / 1024,
592 info->dcache_line_size, info->dcache_ways,
593 wtnames[info->cache_type], level + 1,
594 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
595 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
596 } else {
597 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
598 info->icache_size / 1024,
599 info->icache_line_size, info->icache_ways, level + 1,
600 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
601 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
602 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
603 info->dcache_size / 1024,
604 info->dcache_line_size, info->dcache_ways,
605 wtnames[info->cache_type], level + 1,
606 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
607 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
608 }
609 }
610
611 static enum cpu_class
612 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
613 {
614 enum cpu_class cpu_class = CPU_CLASS_NONE;
615 for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
616 if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
617 const char *steppingstr =
618 id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
619 cpu_arch = id->cpu_arch;
620 cpu_class = id->cpu_class;
621 snprintf(buf, len, "%s%s%s (%s V%s core)",
622 id->cpu_classname,
623 steppingstr[0] == '*' ? "" : " ",
624 &steppingstr[steppingstr[0] == '*'],
625 cpu_classes[cpu_class].class_name,
626 cpu_arch);
627 return cpu_class;
628 }
629 }
630
631 snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
632 return cpu_class;
633 }
634
635 void
636 identify_arm_cpu(device_t dv, struct cpu_info *ci)
637 {
638 const uint32_t arm_cpuid = ci->ci_arm_cpuid;
639 const char * const xname = device_xname(dv);
640 char model[128];
641
642 if (arm_cpuid == 0) {
643 aprint_error("Processor failed probe - no CPU ID\n");
644 return;
645 }
646
647 const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
648 model, sizeof(model));
649 if (ci->ci_cpuid == 0) {
650 cpu_setmodel("%s", model);
651 }
652
653 if (ci->ci_data.cpu_cc_freq != 0) {
654 char freqbuf[8];
655 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
656 "Hz", 1000);
657
658 aprint_naive(": %s %s\n", freqbuf, model);
659 aprint_normal(": %s %s\n", freqbuf, model);
660 } else {
661 aprint_naive(": %s\n", model);
662 aprint_normal(": %s\n", model);
663 }
664
665 aprint_normal("%s:", xname);
666
667 switch (cpu_class) {
668 case CPU_CLASS_ARM6:
669 case CPU_CLASS_ARM7:
670 case CPU_CLASS_ARM7TDMI:
671 case CPU_CLASS_ARM8:
672 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
673 aprint_normal(" IDC disabled");
674 else
675 aprint_normal(" IDC enabled");
676 break;
677 case CPU_CLASS_ARM9TDMI:
678 case CPU_CLASS_ARM9ES:
679 case CPU_CLASS_ARM9EJS:
680 case CPU_CLASS_ARM10E:
681 case CPU_CLASS_ARM10EJ:
682 case CPU_CLASS_SA1:
683 case CPU_CLASS_XSCALE:
684 case CPU_CLASS_ARM11J:
685 case CPU_CLASS_ARMV4:
686 case CPU_CLASS_CORTEX:
687 case CPU_CLASS_PJ4B:
688 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
689 aprint_normal(" DC disabled");
690 else
691 aprint_normal(" DC enabled");
692 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
693 aprint_normal(" IC disabled");
694 else
695 aprint_normal(" IC enabled");
696 break;
697 default:
698 break;
699 }
700 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
701 aprint_normal(" WB disabled");
702 else
703 aprint_normal(" WB enabled");
704
705 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
706 aprint_normal(" LABT");
707 else
708 aprint_normal(" EABT");
709
710 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
711 aprint_normal(" branch prediction enabled");
712
713 aprint_normal("\n");
714
715 if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
716 identify_features(dv);
717 }
718
719 /* Print cache info. */
720 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
721 print_cache_info(dv, &arm_pcache, 0);
722 }
723 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
724 print_cache_info(dv, &arm_scache, 1);
725 }
726
727
728 switch (cpu_class) {
729 #ifdef CPU_ARM2
730 case CPU_CLASS_ARM2:
731 #endif
732 #ifdef CPU_ARM250
733 case CPU_CLASS_ARM2AS:
734 #endif
735 #ifdef CPU_ARM3
736 case CPU_CLASS_ARM3:
737 #endif
738 #ifdef CPU_ARM6
739 case CPU_CLASS_ARM6:
740 #endif
741 #ifdef CPU_ARM7
742 case CPU_CLASS_ARM7:
743 #endif
744 #ifdef CPU_ARM7TDMI
745 case CPU_CLASS_ARM7TDMI:
746 #endif
747 #ifdef CPU_ARM8
748 case CPU_CLASS_ARM8:
749 #endif
750 #ifdef CPU_ARM9
751 case CPU_CLASS_ARM9TDMI:
752 #endif
753 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
754 case CPU_CLASS_ARM9ES:
755 case CPU_CLASS_ARM9EJS:
756 #endif
757 #ifdef CPU_ARM10
758 case CPU_CLASS_ARM10E:
759 case CPU_CLASS_ARM10EJ:
760 #endif
761 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
762 defined(CPU_SA1110) || defined(CPU_IXP12X0)
763 case CPU_CLASS_SA1:
764 #endif
765 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
766 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
767 case CPU_CLASS_XSCALE:
768 #endif
769 #if defined(CPU_ARM11)
770 case CPU_CLASS_ARM11J:
771 #endif
772 #if defined(CPU_CORTEX)
773 case CPU_CLASS_CORTEX:
774 #endif
775 #if defined(CPU_PJ4B)
776 case CPU_CLASS_PJ4B:
777 #endif
778 #if defined(CPU_FA526)
779 case CPU_CLASS_ARMV4:
780 #endif
781 break;
782 default:
783 if (cpu_classes[cpu_class].class_option == NULL) {
784 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
785 ostype);
786 } else {
787 aprint_error_dev(dv, "This kernel does not fully support "
788 "this CPU.\n");
789 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
790 "correct this.\n", cpu_classes[cpu_class].class_option);
791 }
792 break;
793 }
794 }
795
796 extern int cpu_instruction_set_attributes[6];
797 extern int cpu_memory_model_features[4];
798 extern int cpu_processor_features[2];
799 extern int cpu_simd_present;
800 extern int cpu_simdex_present;
801
802 void
803 identify_features(device_t dv)
804 {
805 cpu_instruction_set_attributes[0] = armreg_isar0_read();
806 cpu_instruction_set_attributes[1] = armreg_isar1_read();
807 cpu_instruction_set_attributes[2] = armreg_isar2_read();
808 cpu_instruction_set_attributes[3] = armreg_isar3_read();
809 cpu_instruction_set_attributes[4] = armreg_isar4_read();
810 cpu_instruction_set_attributes[5] = armreg_isar5_read();
811
812 cpu_hwdiv_present =
813 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
814 cpu_simd_present =
815 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
816 cpu_simdex_present = cpu_simd_present
817 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
818 cpu_synchprim_present =
819 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
820 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
821
822 cpu_memory_model_features[0] = armreg_mmfr0_read();
823 cpu_memory_model_features[1] = armreg_mmfr1_read();
824 cpu_memory_model_features[2] = armreg_mmfr2_read();
825 cpu_memory_model_features[3] = armreg_mmfr3_read();
826
827 #if 0
828 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
829 /*
830 * Updates to the translation tables do not require a clean
831 * to the point of unification to ensure visibility by
832 * subsequent translation table walks.
833 */
834 pmap_needs_pte_sync = 0;
835 }
836 #endif
837
838 cpu_processor_features[0] = armreg_pfr0_read();
839 cpu_processor_features[1] = armreg_pfr1_read();
840
841 aprint_verbose_dev(dv,
842 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
843 cpu_instruction_set_attributes[0],
844 cpu_instruction_set_attributes[1],
845 cpu_instruction_set_attributes[2],
846 cpu_instruction_set_attributes[3],
847 cpu_instruction_set_attributes[4],
848 cpu_instruction_set_attributes[5]);
849 aprint_verbose_dev(dv,
850 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
851 cpu_memory_model_features[0], cpu_memory_model_features[1],
852 cpu_memory_model_features[2], cpu_memory_model_features[3]);
853 aprint_verbose_dev(dv,
854 "pfr: [0]=%#x [1]=%#x\n",
855 cpu_processor_features[0], cpu_processor_features[1]);
856 }
857