Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.11
      1 /*	$NetBSD: cpu.c,v 1.11 2001/11/24 01:26:24 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_cputypes.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/malloc.h>
     50 #include <sys/device.h>
     51 #include <sys/proc.h>
     52 #include <uvm/uvm_extern.h>
     53 #include <machine/conf.h>
     54 #include <machine/cpu.h>
     55 #include <arm/undefined.h>
     56 
     57 #include <arm/cpus.h>
     58 
     59 #ifdef ARMFPE
     60 #include <machine/bootconfig.h> /* For boot args */
     61 #include <arm/fpe-arm/armfpe.h>
     62 #endif
     63 
     64 cpu_t cpus[MAX_CPUS];
     65 
     66 char cpu_model[64];
     67 volatile int undefined_test;	/* Used for FPA test */
     68 extern int cpuctrl;		/* cpu control register value */
     69 
     70 /* Prototypes */
     71 void identify_master_cpu __P((struct device *dv, int cpu_number));
     72 void identify_arm_cpu	__P((struct device *dv, int cpu_number));
     73 void identify_arm_fpu	__P((struct device *dv, int cpu_number));
     74 int fpa_test __P((u_int, u_int, trapframe_t *, int));
     75 int fpa_handler __P((u_int, u_int, trapframe_t *, int));
     76 
     77 /*
     78  * void cpusattach(struct device *parent, struct device *dev, void *aux)
     79  *
     80  * Attach the main cpu
     81  */
     82 
     83 void
     84 cpu_attach(dv)
     85 	struct device *dv;
     86 {
     87 	identify_master_cpu(dv, CPU_MASTER);
     88 }
     89 
     90 /*
     91  * Used to test for an FPA. The following function is installed as a coproc1
     92  * handler on the undefined instruction vector and then we issue a FPA
     93  * instruction. If undefined_test is non zero then the FPA did not handle
     94  * the instruction so must be absent.
     95  */
     96 
     97 int
     98 fpa_test(address, instruction, frame, fault_code)
     99 	u_int address;
    100 	u_int instruction;
    101 	trapframe_t *frame;
    102 	int fault_code;
    103 {
    104 
    105 	frame->tf_pc += INSN_SIZE;
    106 	++undefined_test;
    107 	return(0);
    108 }
    109 
    110 /*
    111  * If an FPA was found then this function is installed as the coproc1 handler
    112  * on the undefined instruction vector. Currently we don't support FPA's
    113  * so this just triggers an exception.
    114  */
    115 
    116 int
    117 fpa_handler(address, instruction, frame, fault_code)
    118 	u_int address;
    119 	u_int instruction;
    120 	trapframe_t *frame;
    121 	int fault_code;
    122 {
    123 	u_int fpsr;
    124 
    125 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    126 
    127 	printf("FPA exception: fpsr = %08x\n", fpsr);
    128 
    129 	return(1);
    130 }
    131 
    132 
    133 /*
    134  * Identify the master (boot) CPU
    135  * This also probes for an FPU and will install an FPE if necessary
    136  */
    137 
    138 void
    139 identify_master_cpu(dv, cpu_number)
    140 	struct device *dv;
    141 	int cpu_number;
    142 {
    143 	u_int fpsr;
    144 	void *uh;
    145 
    146 	cpus[cpu_number].cpu_ctrl = cpuctrl;
    147 
    148 	/* Get the cpu ID from coprocessor 15 */
    149 
    150 	cpus[cpu_number].cpu_id = cpu_id();
    151 
    152 	identify_arm_cpu(dv, cpu_number);
    153 	strcpy(cpu_model, cpus[cpu_number].cpu_model);
    154 
    155 	if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
    156 	    && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
    157 		printf("%s: SA-110 with bugged STM^ instruction\n",
    158 		       dv->dv_xname);
    159 	}
    160 
    161 #ifdef CPU_ARM8
    162 	if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    163 		int clock = arm8_clock_config(0, 0);
    164 		char *fclk;
    165 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    166 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    167 		printf("%s", (clock & 2) ? " sync" : "");
    168 		switch ((clock >> 2) & 3) {
    169 		case 0 :
    170 			fclk = "bus clock";
    171 			break;
    172 		case 1 :
    173 			fclk = "ref clock";
    174 			break;
    175 		case 3 :
    176 			fclk = "pll";
    177 			break;
    178 		default :
    179 			fclk = "illegal";
    180 			break;
    181 		}
    182 		printf(" fclk source=%s\n", fclk);
    183  	}
    184 #endif
    185 
    186 	/*
    187 	 * Ok now we test for an FPA
    188 	 * At this point no floating point emulator has been installed.
    189 	 * This means any FP instruction will cause undefined exception.
    190 	 * We install a temporay coproc 1 handler which will modify
    191 	 * undefined_test if it is called.
    192 	 * We then try to read the FP status register. If undefined_test
    193 	 * has been decremented then the instruction was not handled by
    194 	 * an FPA so we know the FPA is missing. If undefined_test is
    195 	 * still 1 then we know the instruction was handled by an FPA.
    196 	 * We then remove our test handler and look at the
    197 	 * FP status register for identification.
    198 	 */
    199 
    200 	uh = install_coproc_handler(FP_COPROC, fpa_test);
    201 
    202 	undefined_test = 0;
    203 
    204 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    205 
    206 	remove_coproc_handler(uh);
    207 
    208 	if (undefined_test == 0) {
    209 		cpus[cpu_number].fpu_type = (fpsr >> 24);
    210 	        switch (fpsr >> 24) {
    211 		case 0x81 :
    212 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
    213 			break;
    214 
    215 		default :
    216 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
    217 			break;
    218 		}
    219 		cpus[cpu_number].fpu_flags = 0;
    220 		install_coproc_handler(FP_COPROC, fpa_handler);
    221 	} else {
    222 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
    223 		cpus[cpu_number].fpu_flags = 0;
    224 
    225 		/*
    226 		 * Ok if ARMFPE is defined and the boot options request the
    227 		 * ARM FPE then it will be installed as the FPE.
    228 		 * This is just while I work on integrating the new FPE.
    229 		 * It means the new FPE gets installed if compiled int (ARMFPE
    230 		 * defined) and also gives me a on/off option when I boot in
    231 		 * case the new FPE is causing panics.
    232 		 */
    233 
    234 #ifdef ARMFPE
    235 		if (boot_args) {
    236 			int usearmfpe = 1;
    237 
    238 			get_bootconf_option(boot_args, "armfpe",
    239 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    240 			if (usearmfpe) {
    241 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
    242 					identify_arm_fpu(dv, cpu_number);
    243 			}
    244 		}
    245 
    246 #endif
    247 	}
    248 
    249 	identify_arm_fpu(dv, cpu_number);
    250 }
    251 
    252 struct cpuidtab {
    253 	u_int32_t	cpuid;
    254 	enum		cpu_class cpu_class;
    255 	const char	*cpu_name;
    256 };
    257 
    258 const struct cpuidtab cpuids[] = {
    259 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2" },
    260 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250" },
    261 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3" },
    262 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600" },
    263 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610" },
    264 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620" },
    265 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700" },
    266 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710" },
    267 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500" },
    268 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a" },
    269 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE" },
    270 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T" },
    271 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T" },
    272 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
    273 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
    274 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810" },
    275 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T" },
    276 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T" },
    277 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T" },
    278 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S" },
    279 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
    280 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
    281 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110" },
    282 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100" },
    283 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110" },
    284 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"i80200" },
    285 	{ 0, CPU_CLASS_NONE, NULL }
    286 };
    287 
    288 struct cpu_classtab {
    289 	const char	*class_name;
    290 	const char	*class_option;
    291 };
    292 
    293 const struct cpu_classtab cpu_classes[] = {
    294 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    295 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    296 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    297 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    298 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    299 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    300 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    301 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    302 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    303 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    304 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    305 	{ "XScale",	"CPU_XSCALE" },		/* CPU_CLASS_XSCALE */
    306 };
    307 
    308 /*
    309  * Report the type of the specifed arm processor. This uses the generic and
    310  * arm specific information in the cpu structure to identify the processor.
    311  * The remaining fields in the cpu structure are filled in appropriately.
    312  */
    313 
    314 void
    315 identify_arm_cpu(dv, cpu_number)
    316 	struct device *dv;
    317 	int cpu_number;
    318 {
    319 	cpu_t *cpu;
    320 	u_int cpuid;
    321 	int i;
    322 
    323 	cpu = &cpus[cpu_number];
    324 	cpuid = cpu->cpu_id;
    325 
    326 	if (cpuid == 0) {
    327 		printf("Processor failed probe - no CPU ID\n");
    328 		return;
    329 	}
    330 
    331 	for (i = 0; cpuids[i].cpuid != 0; i++)
    332 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    333 			cpu->cpu_class = cpuids[i].cpu_class;
    334 			sprintf(cpu->cpu_model, "%s rev %d (%s core)",
    335 			    cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
    336 			    cpu_classes[cpu->cpu_class].class_name);
    337 			break;
    338 		}
    339 
    340 	if (cpuids[i].cpuid == 0)
    341 		sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    342 
    343 	switch (cpu->cpu_class) {
    344 	case CPU_CLASS_ARM6:
    345 	case CPU_CLASS_ARM7:
    346 	case CPU_CLASS_ARM7TDMI:
    347 	case CPU_CLASS_ARM8:
    348 		if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    349 			strcat(cpu->cpu_model, " IDC disabled");
    350 		else
    351 			strcat(cpu->cpu_model, " IDC enabled");
    352 		break;
    353 	case CPU_CLASS_ARM9TDMI:
    354 	case CPU_CLASS_SA1:
    355 	case CPU_CLASS_XSCALE:
    356 		if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    357 			strcat(cpu->cpu_model, " DC disabled");
    358 		else
    359 			strcat(cpu->cpu_model, " DC enabled");
    360 		if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    361 			strcat(cpu->cpu_model, " IC disabled");
    362 		else
    363 			strcat(cpu->cpu_model, " IC enabled");
    364 		break;
    365 	}
    366 	if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    367 		strcat(cpu->cpu_model, " WB disabled");
    368 	else
    369 		strcat(cpu->cpu_model, " WB enabled");
    370 
    371 	if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
    372 		strcat(cpu->cpu_model, " LABT");
    373 	else
    374 		strcat(cpu->cpu_model, " EABT");
    375 
    376 	if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
    377 		strcat(cpu->cpu_model, " branch prediction enabled");
    378 
    379 	/* Print the info */
    380 
    381 	printf(": %s\n", cpu->cpu_model);
    382 
    383 	switch (cpu->cpu_class) {
    384 #ifdef CPU_ARM2
    385 	case CPU_CLASS_ARM2:
    386 #endif
    387 #ifdef CPU_ARM250
    388 	case CPU_CLASS_ARM2AS:
    389 #endif
    390 #ifdef CPU_ARM3
    391 	case CPU_CLASS_ARM3:
    392 #endif
    393 #ifdef CPU_ARM6
    394 	case CPU_CLASS_ARM6:
    395 #endif
    396 #ifdef CPU_ARM7
    397 	case CPU_CLASS_ARM7:
    398 #endif
    399 #ifdef CPU_ARM7TDMI
    400 	case CPU_CLASS_ARM7TDMI:
    401 #endif
    402 #ifdef CPU_ARM8
    403 	case CPU_CLASS_ARM8:
    404 #endif
    405 #ifdef CPU_ARM9
    406 	case CPU_CLASS_ARM9TDMI:
    407 #endif
    408 #ifdef CPU_SA110
    409 	case CPU_CLASS_SA1:
    410 #endif
    411 #ifdef CPU_XSCALE
    412 	case CPU_CLASS_XSCALE:
    413 #endif
    414 		break;
    415 	default:
    416 		if (cpu_classes[cpu->cpu_class].class_option != NULL)
    417 			printf("%s: %s does not fully support this CPU."
    418 			       "\n", dv->dv_xname, ostype);
    419 		else {
    420 			printf("%s: This kernel does not fully support "
    421 			       "this CPU.\n", dv->dv_xname);
    422 			printf("%s: Recompile with \"options %s\" to "
    423 			       "correct this.\n", dv->dv_xname,
    424 			       cpu_classes[cpu->cpu_class].class_option);
    425 		}
    426 		break;
    427 	}
    428 
    429 }
    430 
    431 
    432 /*
    433  * Report the type of the specifed arm fpu. This uses the generic and arm
    434  * specific information in the cpu structure to identify the fpu. The
    435  * remaining fields in the cpu structure are filled in appropriately.
    436  */
    437 
    438 void
    439 identify_arm_fpu(dv, cpu_number)
    440 	struct device *dv;
    441 	int cpu_number;
    442 {
    443 	cpu_t *cpu;
    444 
    445 	cpu = &cpus[cpu_number];
    446 
    447 	/* Now for the FP info */
    448 
    449 	switch (cpu->fpu_class) {
    450 	case FPU_CLASS_NONE :
    451 		strcpy(cpu->fpu_model, "None");
    452 		break;
    453 	case FPU_CLASS_FPE :
    454 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    455 		printf("%s: no FP hardware found\n", dv->dv_xname);
    456 		break;
    457 	case FPU_CLASS_FPA :
    458 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    459 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
    460 			strcpy(cpu->fpu_model, "FPA11");
    461 			printf("%s: FPA11 found\n", dv->dv_xname);
    462 		} else {
    463 			strcpy(cpu->fpu_model, "FPA");
    464 			printf("%s: FPA10 found\n", dv->dv_xname);
    465 		}
    466 		if ((cpu->fpu_flags & 4) == 0)
    467 			strcat(cpu->fpu_model, "");
    468 		else
    469 			strcat(cpu->fpu_model, " clk/2");
    470 		break;
    471 	case FPU_CLASS_FPU :
    472 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
    473 		    cpu->fpu_type);
    474 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
    475 		break;
    476 	}
    477 }
    478 
    479 /* End of cpu.c */
    480