cpu.c revision 1.113 1 /* $NetBSD: cpu.c,v 1.113 2016/03/03 17:01:31 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.113 2016/03/03 17:01:31 skrll Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/locore.h>
61 #include <arm/undefined.h>
62
63 extern const char *cpu_arch;
64
65 #ifdef MULTIPROCESSOR
66 volatile u_int arm_cpu_hatched = 0;
67 volatile uint32_t arm_cpu_mbox __cacheline_aligned = 0;
68 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
69 u_int arm_cpu_max = 1;
70 #endif
71
72 /* Prototypes */
73 void identify_arm_cpu(device_t, struct cpu_info *);
74 void identify_cortex_caches(device_t);
75 void identify_features(device_t);
76
77 /*
78 * Identify the master (boot) CPU
79 */
80
81 void
82 cpu_attach(device_t dv, cpuid_t id)
83 {
84 const char * const xname = device_xname(dv);
85 struct cpu_info *ci;
86
87 if (id == 0) {
88 ci = curcpu();
89
90 /* Get the CPU ID from coprocessor 15 */
91
92 ci->ci_arm_cpuid = cpu_idnum();
93 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
94 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
95 } else {
96 #ifdef MULTIPROCESSOR
97 KASSERT(cpu_info[id] == NULL);
98 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
99 KASSERT(ci != NULL);
100 ci->ci_cpl = IPL_HIGH;
101 ci->ci_cpuid = id;
102 uint32_t mpidr = armreg_mpidr_read();
103 if (mpidr & MPIDR_MT) {
104 ci->ci_data.cpu_smt_id = mpidr & MPIDR_AFF0;
105 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF1;
106 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF2;
107 } else {
108 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF0;
109 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF1;
110 }
111 ci->ci_data.cpu_core_id = id;
112 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
113 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
114 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
115 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
116 ci->ci_ctrl = cpu_info_store.ci_ctrl;
117 ci->ci_undefsave[2] = cpu_info_store.ci_undefsave[2];
118 cpu_info[ci->ci_cpuid] = ci;
119 if ((arm_cpu_hatched & (1 << id)) == 0) {
120 ci->ci_dev = dv;
121 dv->dv_private = ci;
122 aprint_naive(": disabled\n");
123 aprint_normal(": disabled (unresponsive)\n");
124 return;
125 }
126 #else
127 aprint_naive(": disabled\n");
128 aprint_normal(": disabled (uniprocessor kernel)\n");
129 return;
130 #endif
131 }
132
133 ci->ci_dev = dv;
134 dv->dv_private = ci;
135
136 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
137 NULL, xname, "arm700swibug");
138
139 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
140 NULL, xname, "vector abort");
141 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
142 NULL, xname, "terminal abort");
143 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
144 NULL, xname, "external linefetch abort (S)");
145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
146 NULL, xname, "external linefetch abort (P)");
147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
148 NULL, xname, "external non-linefetch abort (S)");
149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
150 NULL, xname, "external non-linefetch abort (P)");
151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
152 NULL, xname, "external translation abort (L1)");
153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
154 NULL, xname, "external translation abort (L2)");
155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
156 NULL, xname, "alignment abort (0)");
157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
158 NULL, xname, "alignment abort (1)");
159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
160 NULL, xname, "translation abort (S)");
161 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
162 NULL, xname, "translation abort (P)");
163 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
164 NULL, xname, "domain abort (S)");
165 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
166 NULL, xname, "domain abort (P)");
167 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
168 NULL, xname, "permission abort (S)");
169 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
170 NULL, xname, "permission abort (P)");
171 evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
172 NULL, xname, "undefined insn traps");
173 evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
174 NULL, xname, "undefined cp15 insn traps");
175
176 #ifdef MULTIPROCESSOR
177 /*
178 * and we are done if this is a secondary processor.
179 */
180 if (id != 0) {
181 #if 1
182 aprint_naive("\n");
183 aprint_normal("\n");
184 #else
185 aprint_naive(": %s\n", cpu_getmodel());
186 aprint_normal(": %s\n", cpu_getmodel());
187 #endif
188 mi_cpu_attach(ci);
189 #ifdef ARM_MMU_EXTENDED
190 pmap_tlb_info_attach(&pmap_tlb0_info, ci);
191 #endif
192 return;
193 }
194 #endif
195
196 identify_arm_cpu(dv, ci);
197
198 #ifdef CPU_STRONGARM
199 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
200 ci->ci_arm_cpurev < 3) {
201 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
202 }
203 #endif
204
205 #ifdef CPU_ARM8
206 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
207 int clock = arm8_clock_config(0, 0);
208 char *fclk;
209 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
210 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
211 aprint_normal("%s", (clock & 2) ? " sync" : "");
212 switch ((clock >> 2) & 3) {
213 case 0:
214 fclk = "bus clock";
215 break;
216 case 1:
217 fclk = "ref clock";
218 break;
219 case 3:
220 fclk = "pll";
221 break;
222 default:
223 fclk = "illegal";
224 break;
225 }
226 aprint_normal(" fclk source=%s\n", fclk);
227 }
228 #endif
229
230 vfp_attach(ci); /* XXX SMP */
231 }
232
233 enum cpu_class {
234 CPU_CLASS_NONE,
235 CPU_CLASS_ARM2,
236 CPU_CLASS_ARM2AS,
237 CPU_CLASS_ARM3,
238 CPU_CLASS_ARM6,
239 CPU_CLASS_ARM7,
240 CPU_CLASS_ARM7TDMI,
241 CPU_CLASS_ARM8,
242 CPU_CLASS_ARM9TDMI,
243 CPU_CLASS_ARM9ES,
244 CPU_CLASS_ARM9EJS,
245 CPU_CLASS_ARM10E,
246 CPU_CLASS_ARM10EJ,
247 CPU_CLASS_SA1,
248 CPU_CLASS_XSCALE,
249 CPU_CLASS_ARM11J,
250 CPU_CLASS_ARMV4,
251 CPU_CLASS_CORTEX,
252 CPU_CLASS_PJ4B,
253 };
254
255 static const char * const generic_steppings[16] = {
256 "rev 0", "rev 1", "rev 2", "rev 3",
257 "rev 4", "rev 5", "rev 6", "rev 7",
258 "rev 8", "rev 9", "rev 10", "rev 11",
259 "rev 12", "rev 13", "rev 14", "rev 15",
260 };
261
262 static const char * const pN_steppings[16] = {
263 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
264 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
265 };
266
267 static const char * const sa110_steppings[16] = {
268 "rev 0", "step J", "step K", "step S",
269 "step T", "rev 5", "rev 6", "rev 7",
270 "rev 8", "rev 9", "rev 10", "rev 11",
271 "rev 12", "rev 13", "rev 14", "rev 15",
272 };
273
274 static const char * const sa1100_steppings[16] = {
275 "rev 0", "step B", "step C", "rev 3",
276 "rev 4", "rev 5", "rev 6", "rev 7",
277 "step D", "step E", "rev 10" "step G",
278 "rev 12", "rev 13", "rev 14", "rev 15",
279 };
280
281 static const char * const sa1110_steppings[16] = {
282 "step A-0", "rev 1", "rev 2", "rev 3",
283 "step B-0", "step B-1", "step B-2", "step B-3",
284 "step B-4", "step B-5", "rev 10", "rev 11",
285 "rev 12", "rev 13", "rev 14", "rev 15",
286 };
287
288 static const char * const ixp12x0_steppings[16] = {
289 "(IXP1200 step A)", "(IXP1200 step B)",
290 "rev 2", "(IXP1200 step C)",
291 "(IXP1200 step D)", "(IXP1240/1250 step A)",
292 "(IXP1240 step B)", "(IXP1250 step B)",
293 "rev 8", "rev 9", "rev 10", "rev 11",
294 "rev 12", "rev 13", "rev 14", "rev 15",
295 };
296
297 static const char * const xscale_steppings[16] = {
298 "step A-0", "step A-1", "step B-0", "step C-0",
299 "step D-0", "rev 5", "rev 6", "rev 7",
300 "rev 8", "rev 9", "rev 10", "rev 11",
301 "rev 12", "rev 13", "rev 14", "rev 15",
302 };
303
304 static const char * const i80321_steppings[16] = {
305 "step A-0", "step B-0", "rev 2", "rev 3",
306 "rev 4", "rev 5", "rev 6", "rev 7",
307 "rev 8", "rev 9", "rev 10", "rev 11",
308 "rev 12", "rev 13", "rev 14", "rev 15",
309 };
310
311 static const char * const i80219_steppings[16] = {
312 "step A-0", "rev 1", "rev 2", "rev 3",
313 "rev 4", "rev 5", "rev 6", "rev 7",
314 "rev 8", "rev 9", "rev 10", "rev 11",
315 "rev 12", "rev 13", "rev 14", "rev 15",
316 };
317
318 /* Steppings for PXA2[15]0 */
319 static const char * const pxa2x0_steppings[16] = {
320 "step A-0", "step A-1", "step B-0", "step B-1",
321 "step B-2", "step C-0", "rev 6", "rev 7",
322 "rev 8", "rev 9", "rev 10", "rev 11",
323 "rev 12", "rev 13", "rev 14", "rev 15",
324 };
325
326 /* Steppings for PXA255/26x.
327 * rev 5: PXA26x B0, rev 6: PXA255 A0
328 */
329 static const char * const pxa255_steppings[16] = {
330 "rev 0", "rev 1", "rev 2", "step A-0",
331 "rev 4", "step B-0", "step A-0", "rev 7",
332 "rev 8", "rev 9", "rev 10", "rev 11",
333 "rev 12", "rev 13", "rev 14", "rev 15",
334 };
335
336 /* Stepping for PXA27x */
337 static const char * const pxa27x_steppings[16] = {
338 "step A-0", "step A-1", "step B-0", "step B-1",
339 "step C-0", "rev 5", "rev 6", "rev 7",
340 "rev 8", "rev 9", "rev 10", "rev 11",
341 "rev 12", "rev 13", "rev 14", "rev 15",
342 };
343
344 static const char * const ixp425_steppings[16] = {
345 "step 0", "rev 1", "rev 2", "rev 3",
346 "rev 4", "rev 5", "rev 6", "rev 7",
347 "rev 8", "rev 9", "rev 10", "rev 11",
348 "rev 12", "rev 13", "rev 14", "rev 15",
349 };
350
351 struct cpuidtab {
352 uint32_t cpuid;
353 enum cpu_class cpu_class;
354 const char *cpu_classname;
355 const char * const *cpu_steppings;
356 char cpu_arch[8];
357 };
358
359 const struct cpuidtab cpuids[] = {
360 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
361 generic_steppings, "2" },
362 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
363 generic_steppings, "2" },
364
365 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
366 generic_steppings, "2A" },
367
368 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
369 generic_steppings, "3" },
370 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
371 generic_steppings, "3" },
372 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
373 generic_steppings, "3" },
374
375 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
376 generic_steppings, "3" },
377 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
378 generic_steppings, "3" },
379 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
380 generic_steppings, "3" },
381 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
382 generic_steppings, "3" },
383 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
384 generic_steppings, "3" },
385
386 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
387 generic_steppings, "4" },
388
389 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
390 sa110_steppings, "4" },
391 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
392 sa1100_steppings, "4" },
393 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
394 sa1110_steppings, "4" },
395
396 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
397 generic_steppings, "4" },
398
399 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
400 ixp12x0_steppings, "4" },
401
402 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
403 generic_steppings, "4T" },
404 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
405 generic_steppings, "4T" },
406 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
407 generic_steppings, "4T" },
408 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
409 generic_steppings, "4T" },
410 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
411 generic_steppings, "4T" },
412 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
413 generic_steppings, "4T" },
414 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
415 generic_steppings, "4T" },
416 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
417 generic_steppings, "4T" },
418
419 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
420 generic_steppings, "5TE" },
421 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
422 generic_steppings, "5TE" },
423 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
424 generic_steppings, "5TE" },
425 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
426 generic_steppings, "5TE" },
427 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
428 generic_steppings, "5TE" },
429
430 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
431 xscale_steppings, "5TE" },
432
433 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
434 i80321_steppings, "5TE" },
435 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
436 i80321_steppings, "5TE" },
437 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
438 i80321_steppings, "5TE" },
439 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
440 i80321_steppings, "5TE" },
441
442 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
443 i80219_steppings, "5TE" },
444 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
445 i80219_steppings, "5TE" },
446
447 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
448 pxa27x_steppings, "5TE" },
449 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
450 pxa2x0_steppings, "5TE" },
451 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
452 pxa2x0_steppings, "5TE" },
453 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
454 pxa2x0_steppings, "5TE" },
455 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
456 pxa2x0_steppings, "5TE" },
457 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
458 pxa255_steppings, "5TE" },
459 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
460 pxa2x0_steppings, "5TE" },
461
462 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
463 ixp425_steppings, "5TE" },
464 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
465 ixp425_steppings, "5TE" },
466 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
467 ixp425_steppings, "5TE" },
468
469 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
470 generic_steppings, "5TE" },
471 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
472 generic_steppings, "5TE" },
473
474 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
475 generic_steppings, "5TEJ" },
476 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
477 generic_steppings, "5TEJ" },
478
479 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
480 pN_steppings, "6J" },
481 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
482 pN_steppings, "6J" },
483 #if 0
484 /* The ARM1156T2-S only has a memory protection unit */
485 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
486 pN_steppings, "6T2" },
487 #endif
488 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
489 pN_steppings, "6ZK" },
490
491 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
492 generic_steppings, "6K" },
493
494 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
495 pN_steppings, "7A" },
496 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0",
497 pN_steppings, "7A" },
498 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
499 pN_steppings, "7A" },
500 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
501 pN_steppings, "7A" },
502 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
503 pN_steppings, "7A" },
504 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
505 pN_steppings, "7A" },
506 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
507 pN_steppings, "7A" },
508 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
509 pN_steppings, "7A" },
510 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
511 pN_steppings, "7A" },
512 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
513 pN_steppings, "7A" },
514 { CPU_ID_CORTEXA17R1, CPU_CLASS_CORTEX, "Cortex-A17 r1",
515 pN_steppings, "7A" },
516 { CPU_ID_CORTEXA53R0, CPU_CLASS_CORTEX, "Cortex-A53 r0",
517 pN_steppings, "8A" },
518 { CPU_ID_CORTEXA57R0, CPU_CLASS_CORTEX, "Cortex-A57 r0",
519 pN_steppings, "8A" },
520 { CPU_ID_CORTEXA57R1, CPU_CLASS_CORTEX, "Cortex-A57 r1",
521 pN_steppings, "8A" },
522 { CPU_ID_CORTEXA72R0, CPU_CLASS_CORTEX, "Cortex-A72 r0",
523 pN_steppings, "8A" },
524
525 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
526 generic_steppings },
527 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
528 generic_steppings },
529 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
530 generic_steppings },
531 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
532 generic_steppings },
533 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
534 generic_steppings },
535 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
536 generic_steppings },
537 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
538 generic_steppings },
539
540
541 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
542 };
543
544 struct cpu_classtab {
545 const char *class_name;
546 const char *class_option;
547 };
548
549 const struct cpu_classtab cpu_classes[] = {
550 [CPU_CLASS_NONE] = { "unknown", NULL },
551 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
552 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
553 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
554 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
555 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
556 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
557 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
558 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
559 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
560 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
561 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
562 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
563 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
564 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
565 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
566 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
567 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
568 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
569 };
570
571 /*
572 * Report the type of the specified arm processor. This uses the generic and
573 * arm specific information in the CPU structure to identify the processor.
574 * The remaining fields in the CPU structure are filled in appropriately.
575 */
576
577 static const char * const wtnames[] = {
578 "write-through",
579 "write-back",
580 "write-back",
581 "**unknown 3**",
582 "**unknown 4**",
583 "write-back-locking", /* XXX XScale-specific? */
584 "write-back-locking-A",
585 "write-back-locking-B",
586 "**unknown 8**",
587 "**unknown 9**",
588 "**unknown 10**",
589 "**unknown 11**",
590 "write-back",
591 "write-back-locking-line",
592 "write-back-locking-C",
593 "write-back-locking-D",
594 };
595
596 static void
597 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
598 {
599 if (info->cache_unified) {
600 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
601 info->dcache_size / 1024,
602 info->dcache_line_size, info->dcache_ways,
603 wtnames[info->cache_type], level + 1,
604 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
605 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
606 } else {
607 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
608 info->icache_size / 1024,
609 info->icache_line_size, info->icache_ways, level + 1,
610 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
611 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
612 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
613 info->dcache_size / 1024,
614 info->dcache_line_size, info->dcache_ways,
615 wtnames[info->cache_type], level + 1,
616 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
617 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
618 }
619 }
620
621 static enum cpu_class
622 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
623 {
624 enum cpu_class cpu_class = CPU_CLASS_NONE;
625 for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
626 if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
627 const char *steppingstr =
628 id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
629 cpu_arch = id->cpu_arch;
630 cpu_class = id->cpu_class;
631 snprintf(buf, len, "%s%s%s (%s V%s core)",
632 id->cpu_classname,
633 steppingstr[0] == '*' ? "" : " ",
634 &steppingstr[steppingstr[0] == '*'],
635 cpu_classes[cpu_class].class_name,
636 cpu_arch);
637 return cpu_class;
638 }
639 }
640
641 snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
642 return cpu_class;
643 }
644
645 void
646 identify_arm_cpu(device_t dv, struct cpu_info *ci)
647 {
648 const uint32_t arm_cpuid = ci->ci_arm_cpuid;
649 const char * const xname = device_xname(dv);
650 char model[128];
651
652 if (arm_cpuid == 0) {
653 aprint_error("Processor failed probe - no CPU ID\n");
654 return;
655 }
656
657 const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
658 model, sizeof(model));
659 if (ci->ci_cpuid == 0) {
660 cpu_setmodel("%s", model);
661 }
662
663 if (ci->ci_data.cpu_cc_freq != 0) {
664 char freqbuf[10];
665 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
666 "Hz", 1000);
667
668 aprint_naive(": %s %s\n", freqbuf, model);
669 aprint_normal(": %s %s\n", freqbuf, model);
670 } else {
671 aprint_naive(": %s\n", model);
672 aprint_normal(": %s\n", model);
673 }
674
675 aprint_normal("%s:", xname);
676
677 switch (cpu_class) {
678 case CPU_CLASS_ARM6:
679 case CPU_CLASS_ARM7:
680 case CPU_CLASS_ARM7TDMI:
681 case CPU_CLASS_ARM8:
682 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
683 aprint_normal(" IDC disabled");
684 else
685 aprint_normal(" IDC enabled");
686 break;
687 case CPU_CLASS_ARM9TDMI:
688 case CPU_CLASS_ARM9ES:
689 case CPU_CLASS_ARM9EJS:
690 case CPU_CLASS_ARM10E:
691 case CPU_CLASS_ARM10EJ:
692 case CPU_CLASS_SA1:
693 case CPU_CLASS_XSCALE:
694 case CPU_CLASS_ARM11J:
695 case CPU_CLASS_ARMV4:
696 case CPU_CLASS_CORTEX:
697 case CPU_CLASS_PJ4B:
698 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
699 aprint_normal(" DC disabled");
700 else
701 aprint_normal(" DC enabled");
702 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
703 aprint_normal(" IC disabled");
704 else
705 aprint_normal(" IC enabled");
706 break;
707 default:
708 break;
709 }
710 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
711 aprint_normal(" WB disabled");
712 else
713 aprint_normal(" WB enabled");
714
715 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
716 aprint_normal(" LABT");
717 else
718 aprint_normal(" EABT");
719
720 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
721 aprint_normal(" branch prediction enabled");
722
723 aprint_normal("\n");
724
725 if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
726 identify_features(dv);
727 }
728
729 /* Print cache info. */
730 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
731 print_cache_info(dv, &arm_pcache, 0);
732 }
733 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
734 print_cache_info(dv, &arm_scache, 1);
735 }
736
737
738 switch (cpu_class) {
739 #ifdef CPU_ARM2
740 case CPU_CLASS_ARM2:
741 #endif
742 #ifdef CPU_ARM250
743 case CPU_CLASS_ARM2AS:
744 #endif
745 #ifdef CPU_ARM3
746 case CPU_CLASS_ARM3:
747 #endif
748 #ifdef CPU_ARM6
749 case CPU_CLASS_ARM6:
750 #endif
751 #ifdef CPU_ARM7
752 case CPU_CLASS_ARM7:
753 #endif
754 #ifdef CPU_ARM7TDMI
755 case CPU_CLASS_ARM7TDMI:
756 #endif
757 #ifdef CPU_ARM8
758 case CPU_CLASS_ARM8:
759 #endif
760 #ifdef CPU_ARM9
761 case CPU_CLASS_ARM9TDMI:
762 #endif
763 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
764 case CPU_CLASS_ARM9ES:
765 case CPU_CLASS_ARM9EJS:
766 #endif
767 #ifdef CPU_ARM10
768 case CPU_CLASS_ARM10E:
769 case CPU_CLASS_ARM10EJ:
770 #endif
771 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
772 defined(CPU_SA1110) || defined(CPU_IXP12X0)
773 case CPU_CLASS_SA1:
774 #endif
775 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
776 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
777 case CPU_CLASS_XSCALE:
778 #endif
779 #if defined(CPU_ARM11)
780 case CPU_CLASS_ARM11J:
781 #endif
782 #if defined(CPU_CORTEX)
783 case CPU_CLASS_CORTEX:
784 #endif
785 #if defined(CPU_PJ4B)
786 case CPU_CLASS_PJ4B:
787 #endif
788 #if defined(CPU_FA526)
789 case CPU_CLASS_ARMV4:
790 #endif
791 break;
792 default:
793 if (cpu_classes[cpu_class].class_option == NULL) {
794 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
795 ostype);
796 } else {
797 aprint_error_dev(dv, "This kernel does not fully support "
798 "this CPU.\n");
799 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
800 "correct this.\n", cpu_classes[cpu_class].class_option);
801 }
802 break;
803 }
804 }
805
806 extern int cpu_instruction_set_attributes[6];
807 extern int cpu_memory_model_features[4];
808 extern int cpu_processor_features[2];
809 extern int cpu_simd_present;
810 extern int cpu_simdex_present;
811
812 void
813 identify_features(device_t dv)
814 {
815 cpu_instruction_set_attributes[0] = armreg_isar0_read();
816 cpu_instruction_set_attributes[1] = armreg_isar1_read();
817 cpu_instruction_set_attributes[2] = armreg_isar2_read();
818 cpu_instruction_set_attributes[3] = armreg_isar3_read();
819 cpu_instruction_set_attributes[4] = armreg_isar4_read();
820 cpu_instruction_set_attributes[5] = armreg_isar5_read();
821
822 cpu_hwdiv_present =
823 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
824 cpu_simd_present =
825 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
826 cpu_simdex_present = cpu_simd_present
827 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
828 cpu_synchprim_present =
829 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
830 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
831
832 cpu_memory_model_features[0] = armreg_mmfr0_read();
833 cpu_memory_model_features[1] = armreg_mmfr1_read();
834 cpu_memory_model_features[2] = armreg_mmfr2_read();
835 cpu_memory_model_features[3] = armreg_mmfr3_read();
836
837 #if 0
838 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
839 /*
840 * Updates to the translation tables do not require a clean
841 * to the point of unification to ensure visibility by
842 * subsequent translation table walks.
843 */
844 pmap_needs_pte_sync = 0;
845 }
846 #endif
847
848 cpu_processor_features[0] = armreg_pfr0_read();
849 cpu_processor_features[1] = armreg_pfr1_read();
850
851 aprint_debug_dev(dv, "sctlr: %#x\n", armreg_sctlr_read());
852 aprint_debug_dev(dv, "actlr: %#x\n", armreg_auxctl_read());
853 aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read());
854 #ifdef MULTIPROCESSOR
855 aprint_debug_dev(dv, "mpidr: %#x\n", armreg_mpidr_read());
856 #endif
857 aprint_debug_dev(dv,
858 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
859 cpu_instruction_set_attributes[0],
860 cpu_instruction_set_attributes[1],
861 cpu_instruction_set_attributes[2],
862 cpu_instruction_set_attributes[3],
863 cpu_instruction_set_attributes[4],
864 cpu_instruction_set_attributes[5]);
865 aprint_debug_dev(dv,
866 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
867 cpu_memory_model_features[0], cpu_memory_model_features[1],
868 cpu_memory_model_features[2], cpu_memory_model_features[3]);
869 aprint_debug_dev(dv,
870 "pfr: [0]=%#x [1]=%#x\n",
871 cpu_processor_features[0], cpu_processor_features[1]);
872 }
873