cpu.c revision 1.116.4.2 1 /* $NetBSD: cpu.c,v 1.116.4.2 2020/04/08 14:07:28 martin Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 #include "opt_multiprocessor.h"
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.116.4.2 2020/04/08 14:07:28 martin Exp $");
50
51 #include <sys/param.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/reboot.h>
58 #include <sys/systm.h>
59
60 #include <uvm/uvm_extern.h>
61
62 #include <arm/locore.h>
63 #include <arm/undefined.h>
64 #include <arm/cpu_topology.h>
65
66 extern const char *cpu_arch;
67
68 #ifdef MULTIPROCESSOR
69 #ifdef MPDEBUG
70 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
71 #endif
72
73 #endif
74
75 /* Prototypes */
76 void identify_arm_cpu(device_t, struct cpu_info *);
77 void identify_cortex_caches(device_t);
78 void identify_features(device_t);
79
80 /*
81 * Identify the master (boot) CPU
82 */
83
84 void
85 cpu_attach(device_t dv, cpuid_t id)
86 {
87 const char * const xname = device_xname(dv);
88 const int unit = device_unit(dv);
89 struct cpu_info *ci;
90
91 if (unit == 0) {
92 ci = curcpu();
93
94 /* Read SCTLR from cpu */
95 ci->ci_ctrl = cpu_control(0, 0);
96
97 /* Get the CPU ID from coprocessor 15 */
98
99 ci->ci_cpuid = id;
100 ci->ci_arm_cpuid = cpu_idnum();
101 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
102 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
103 } else {
104 #ifdef MULTIPROCESSOR
105 if ((boothowto & RB_MD1) != 0) {
106 aprint_naive("\n");
107 aprint_normal(": multiprocessor boot disabled\n");
108 return;
109 }
110
111 KASSERT(unit < MAXCPUS);
112 ci = &cpu_info_store[unit];
113
114 KASSERT(cpu_info[unit] == NULL);
115 ci->ci_cpl = IPL_HIGH;
116 ci->ci_cpuid = id;
117 ci->ci_data.cpu_cc_freq = cpu_info_store[0].ci_data.cpu_cc_freq;
118
119 ci->ci_undefsave[2] = cpu_info_store[0].ci_undefsave[2];
120
121 cpu_info[unit] = ci;
122 if ((arm_cpu_hatched & __BIT(unit)) == 0) {
123 ci->ci_dev = dv;
124 dv->dv_private = ci;
125 aprint_naive(": disabled\n");
126 aprint_normal(": disabled (unresponsive)\n");
127 return;
128 }
129 #else
130 aprint_naive(": disabled\n");
131 aprint_normal(": disabled (uniprocessor kernel)\n");
132 return;
133 #endif
134 }
135
136 ci->ci_dev = dv;
137 dv->dv_private = ci;
138
139 arm_cpu_do_topology(ci);
140
141 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
142 NULL, xname, "arm700swibug");
143
144 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
145 NULL, xname, "vector abort");
146 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
147 NULL, xname, "terminal abort");
148 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
149 NULL, xname, "external linefetch abort (S)");
150 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
151 NULL, xname, "external linefetch abort (P)");
152 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
153 NULL, xname, "external non-linefetch abort (S)");
154 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
155 NULL, xname, "external non-linefetch abort (P)");
156 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
157 NULL, xname, "external translation abort (L1)");
158 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
159 NULL, xname, "external translation abort (L2)");
160 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
161 NULL, xname, "alignment abort (0)");
162 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
163 NULL, xname, "alignment abort (1)");
164 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
165 NULL, xname, "translation abort (S)");
166 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
167 NULL, xname, "translation abort (P)");
168 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
169 NULL, xname, "domain abort (S)");
170 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
171 NULL, xname, "domain abort (P)");
172 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
173 NULL, xname, "permission abort (S)");
174 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
175 NULL, xname, "permission abort (P)");
176 evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
177 NULL, xname, "undefined insn traps");
178 evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
179 NULL, xname, "undefined cp15 insn traps");
180
181 #ifdef MULTIPROCESSOR
182 /*
183 * and we are done if this is a secondary processor.
184 */
185 if (unit != 0) {
186 aprint_naive("\n");
187 aprint_normal("\n");
188 mi_cpu_attach(ci);
189 #ifdef ARM_MMU_EXTENDED
190 pmap_tlb_info_attach(&pmap_tlb0_info, ci);
191 #endif
192 return;
193 }
194 #endif
195
196 identify_arm_cpu(dv, ci);
197
198 #ifdef CPU_STRONGARM
199 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
200 ci->ci_arm_cpurev < 3) {
201 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
202 }
203 #endif
204
205 #ifdef CPU_ARM8
206 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
207 int clock = arm8_clock_config(0, 0);
208 char *fclk;
209 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
210 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
211 aprint_normal("%s", (clock & 2) ? " sync" : "");
212 switch ((clock >> 2) & 3) {
213 case 0:
214 fclk = "bus clock";
215 break;
216 case 1:
217 fclk = "ref clock";
218 break;
219 case 3:
220 fclk = "pll";
221 break;
222 default:
223 fclk = "illegal";
224 break;
225 }
226 aprint_normal(" fclk source=%s\n", fclk);
227 }
228 #endif
229
230 vfp_attach(ci); /* XXX SMP */
231 }
232
233 enum cpu_class {
234 CPU_CLASS_NONE,
235 CPU_CLASS_ARM2,
236 CPU_CLASS_ARM2AS,
237 CPU_CLASS_ARM3,
238 CPU_CLASS_ARM6,
239 CPU_CLASS_ARM7,
240 CPU_CLASS_ARM7TDMI,
241 CPU_CLASS_ARM8,
242 CPU_CLASS_ARM9TDMI,
243 CPU_CLASS_ARM9ES,
244 CPU_CLASS_ARM9EJS,
245 CPU_CLASS_ARM10E,
246 CPU_CLASS_ARM10EJ,
247 CPU_CLASS_SA1,
248 CPU_CLASS_XSCALE,
249 CPU_CLASS_ARM11J,
250 CPU_CLASS_ARMV4,
251 CPU_CLASS_CORTEX,
252 CPU_CLASS_PJ4B,
253 };
254
255 static const char * const generic_steppings[16] = {
256 "rev 0", "rev 1", "rev 2", "rev 3",
257 "rev 4", "rev 5", "rev 6", "rev 7",
258 "rev 8", "rev 9", "rev 10", "rev 11",
259 "rev 12", "rev 13", "rev 14", "rev 15",
260 };
261
262 static const char * const pN_steppings[16] = {
263 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
264 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
265 };
266
267 static const char * const sa110_steppings[16] = {
268 "rev 0", "step J", "step K", "step S",
269 "step T", "rev 5", "rev 6", "rev 7",
270 "rev 8", "rev 9", "rev 10", "rev 11",
271 "rev 12", "rev 13", "rev 14", "rev 15",
272 };
273
274 static const char * const sa1100_steppings[16] = {
275 "rev 0", "step B", "step C", "rev 3",
276 "rev 4", "rev 5", "rev 6", "rev 7",
277 "step D", "step E", "rev 10" "step G",
278 "rev 12", "rev 13", "rev 14", "rev 15",
279 };
280
281 static const char * const sa1110_steppings[16] = {
282 "step A-0", "rev 1", "rev 2", "rev 3",
283 "step B-0", "step B-1", "step B-2", "step B-3",
284 "step B-4", "step B-5", "rev 10", "rev 11",
285 "rev 12", "rev 13", "rev 14", "rev 15",
286 };
287
288 static const char * const ixp12x0_steppings[16] = {
289 "(IXP1200 step A)", "(IXP1200 step B)",
290 "rev 2", "(IXP1200 step C)",
291 "(IXP1200 step D)", "(IXP1240/1250 step A)",
292 "(IXP1240 step B)", "(IXP1250 step B)",
293 "rev 8", "rev 9", "rev 10", "rev 11",
294 "rev 12", "rev 13", "rev 14", "rev 15",
295 };
296
297 static const char * const xscale_steppings[16] = {
298 "step A-0", "step A-1", "step B-0", "step C-0",
299 "step D-0", "rev 5", "rev 6", "rev 7",
300 "rev 8", "rev 9", "rev 10", "rev 11",
301 "rev 12", "rev 13", "rev 14", "rev 15",
302 };
303
304 static const char * const i80321_steppings[16] = {
305 "step A-0", "step B-0", "rev 2", "rev 3",
306 "rev 4", "rev 5", "rev 6", "rev 7",
307 "rev 8", "rev 9", "rev 10", "rev 11",
308 "rev 12", "rev 13", "rev 14", "rev 15",
309 };
310
311 static const char * const i80219_steppings[16] = {
312 "step A-0", "rev 1", "rev 2", "rev 3",
313 "rev 4", "rev 5", "rev 6", "rev 7",
314 "rev 8", "rev 9", "rev 10", "rev 11",
315 "rev 12", "rev 13", "rev 14", "rev 15",
316 };
317
318 /* Steppings for PXA2[15]0 */
319 static const char * const pxa2x0_steppings[16] = {
320 "step A-0", "step A-1", "step B-0", "step B-1",
321 "step B-2", "step C-0", "rev 6", "rev 7",
322 "rev 8", "rev 9", "rev 10", "rev 11",
323 "rev 12", "rev 13", "rev 14", "rev 15",
324 };
325
326 /* Steppings for PXA255/26x.
327 * rev 5: PXA26x B0, rev 6: PXA255 A0
328 */
329 static const char * const pxa255_steppings[16] = {
330 "rev 0", "rev 1", "rev 2", "step A-0",
331 "rev 4", "step B-0", "step A-0", "rev 7",
332 "rev 8", "rev 9", "rev 10", "rev 11",
333 "rev 12", "rev 13", "rev 14", "rev 15",
334 };
335
336 /* Stepping for PXA27x */
337 static const char * const pxa27x_steppings[16] = {
338 "step A-0", "step A-1", "step B-0", "step B-1",
339 "step C-0", "rev 5", "rev 6", "rev 7",
340 "rev 8", "rev 9", "rev 10", "rev 11",
341 "rev 12", "rev 13", "rev 14", "rev 15",
342 };
343
344 static const char * const ixp425_steppings[16] = {
345 "step 0", "rev 1", "rev 2", "rev 3",
346 "rev 4", "rev 5", "rev 6", "rev 7",
347 "rev 8", "rev 9", "rev 10", "rev 11",
348 "rev 12", "rev 13", "rev 14", "rev 15",
349 };
350
351 struct cpuidtab {
352 uint32_t cpuid;
353 enum cpu_class cpu_class;
354 const char *cpu_classname;
355 const char * const *cpu_steppings;
356 char cpu_arch[8];
357 };
358
359 const struct cpuidtab cpuids[] = {
360 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
361 generic_steppings, "2" },
362 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
363 generic_steppings, "2" },
364
365 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
366 generic_steppings, "2A" },
367
368 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
369 generic_steppings, "3" },
370 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
371 generic_steppings, "3" },
372 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
373 generic_steppings, "3" },
374
375 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
376 generic_steppings, "3" },
377 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
378 generic_steppings, "3" },
379 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
380 generic_steppings, "3" },
381 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
382 generic_steppings, "3" },
383 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
384 generic_steppings, "3" },
385
386 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
387 generic_steppings, "4" },
388
389 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
390 sa110_steppings, "4" },
391 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
392 sa1100_steppings, "4" },
393 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
394 sa1110_steppings, "4" },
395
396 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
397 generic_steppings, "4" },
398
399 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
400 ixp12x0_steppings, "4" },
401
402 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
403 generic_steppings, "4T" },
404 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
405 generic_steppings, "4T" },
406 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
407 generic_steppings, "4T" },
408 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
409 generic_steppings, "4T" },
410 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
411 generic_steppings, "4T" },
412 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
413 generic_steppings, "4T" },
414 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
415 generic_steppings, "4T" },
416 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
417 generic_steppings, "4T" },
418
419 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
420 generic_steppings, "5TE" },
421 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
422 generic_steppings, "5TE" },
423 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
424 generic_steppings, "5TE" },
425 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
426 generic_steppings, "5TE" },
427 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
428 generic_steppings, "5TE" },
429
430 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
431 xscale_steppings, "5TE" },
432
433 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
434 i80321_steppings, "5TE" },
435 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
436 i80321_steppings, "5TE" },
437 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
438 i80321_steppings, "5TE" },
439 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
440 i80321_steppings, "5TE" },
441
442 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
443 i80219_steppings, "5TE" },
444 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
445 i80219_steppings, "5TE" },
446
447 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
448 pxa27x_steppings, "5TE" },
449 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
450 pxa2x0_steppings, "5TE" },
451 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
452 pxa2x0_steppings, "5TE" },
453 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
454 pxa2x0_steppings, "5TE" },
455 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
456 pxa2x0_steppings, "5TE" },
457 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
458 pxa255_steppings, "5TE" },
459 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
460 pxa2x0_steppings, "5TE" },
461
462 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
463 ixp425_steppings, "5TE" },
464 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
465 ixp425_steppings, "5TE" },
466 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
467 ixp425_steppings, "5TE" },
468
469 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
470 generic_steppings, "5TE" },
471 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
472 generic_steppings, "5TE" },
473
474 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
475 generic_steppings, "5TEJ" },
476 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
477 generic_steppings, "5TEJ" },
478
479 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
480 pN_steppings, "6J" },
481 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
482 pN_steppings, "6J" },
483 #if 0
484 /* The ARM1156T2-S only has a memory protection unit */
485 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
486 pN_steppings, "6T2" },
487 #endif
488 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
489 pN_steppings, "6ZK" },
490
491 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
492 generic_steppings, "6K" },
493
494 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
495 pN_steppings, "7A" },
496 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0",
497 pN_steppings, "7A" },
498 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
499 pN_steppings, "7A" },
500 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
501 pN_steppings, "7A" },
502 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
503 pN_steppings, "7A" },
504 { CPU_ID_CORTEXA9R1, CPU_CLASS_CORTEX, "Cortex-A9 r1",
505 pN_steppings, "7A" },
506 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
507 pN_steppings, "7A" },
508 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
509 pN_steppings, "7A" },
510 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
511 pN_steppings, "7A" },
512 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
513 pN_steppings, "7A" },
514 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
515 pN_steppings, "7A" },
516 { CPU_ID_CORTEXA15R4, CPU_CLASS_CORTEX, "Cortex-A15 r4",
517 pN_steppings, "7A" },
518 { CPU_ID_CORTEXA17R1, CPU_CLASS_CORTEX, "Cortex-A17 r1",
519 pN_steppings, "7A" },
520 { CPU_ID_CORTEXA35R0, CPU_CLASS_CORTEX, "Cortex-A35 r0",
521 pN_steppings, "8A" },
522 { CPU_ID_CORTEXA53R0, CPU_CLASS_CORTEX, "Cortex-A53 r0",
523 pN_steppings, "8A" },
524 { CPU_ID_CORTEXA57R0, CPU_CLASS_CORTEX, "Cortex-A57 r0",
525 pN_steppings, "8A" },
526 { CPU_ID_CORTEXA57R1, CPU_CLASS_CORTEX, "Cortex-A57 r1",
527 pN_steppings, "8A" },
528 { CPU_ID_CORTEXA72R0, CPU_CLASS_CORTEX, "Cortex-A72 r0",
529 pN_steppings, "8A" },
530
531 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
532 generic_steppings },
533 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
534 generic_steppings },
535 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
536 generic_steppings },
537 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
538 generic_steppings },
539 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
540 generic_steppings },
541 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
542 generic_steppings },
543 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
544 generic_steppings },
545
546
547 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
548 };
549
550 struct cpu_classtab {
551 const char *class_name;
552 const char *class_option;
553 };
554
555 const struct cpu_classtab cpu_classes[] = {
556 [CPU_CLASS_NONE] = { "unknown", NULL },
557 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
558 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
559 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
560 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
561 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
562 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
563 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
564 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
565 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
566 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
567 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
568 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
569 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
570 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
571 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
572 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
573 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
574 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
575 };
576
577 /*
578 * Report the type of the specified arm processor. This uses the generic and
579 * arm specific information in the CPU structure to identify the processor.
580 * The remaining fields in the CPU structure are filled in appropriately.
581 */
582
583 static const char * const wtnames[] = {
584 "write-through",
585 "write-back",
586 "write-back",
587 "**unknown 3**",
588 "**unknown 4**",
589 "write-back-locking", /* XXX XScale-specific? */
590 "write-back-locking-A",
591 "write-back-locking-B",
592 "**unknown 8**",
593 "**unknown 9**",
594 "**unknown 10**",
595 "**unknown 11**",
596 "write-back",
597 "write-back-locking-line",
598 "write-back-locking-C",
599 "write-back-locking-D",
600 };
601
602 static void
603 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
604 {
605 if (info->cache_unified) {
606 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
607 info->dcache_size / 1024,
608 info->dcache_line_size, info->dcache_ways,
609 wtnames[info->cache_type], level + 1,
610 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
611 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
612 } else {
613 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
614 info->icache_size / 1024,
615 info->icache_line_size, info->icache_ways, level + 1,
616 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
617 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
618 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
619 info->dcache_size / 1024,
620 info->dcache_line_size, info->dcache_ways,
621 wtnames[info->cache_type], level + 1,
622 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
623 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
624 }
625 }
626
627 static enum cpu_class
628 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
629 {
630 enum cpu_class cpu_class = CPU_CLASS_NONE;
631 for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
632 if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
633 const char *steppingstr =
634 id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
635 cpu_arch = id->cpu_arch;
636 cpu_class = id->cpu_class;
637 snprintf(buf, len, "%s%s%s (%s V%s core)",
638 id->cpu_classname,
639 steppingstr[0] == '*' ? "" : " ",
640 &steppingstr[steppingstr[0] == '*'],
641 cpu_classes[cpu_class].class_name,
642 cpu_arch);
643 return cpu_class;
644 }
645 }
646
647 snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
648 return cpu_class;
649 }
650
651 void
652 identify_arm_cpu(device_t dv, struct cpu_info *ci)
653 {
654 const uint32_t arm_cpuid = ci->ci_arm_cpuid;
655 const char * const xname = device_xname(dv);
656 char model[128];
657 const char *m;
658
659 if (arm_cpuid == 0) {
660 aprint_error("Processor failed probe - no CPU ID\n");
661 return;
662 }
663
664 const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
665 model, sizeof(model));
666 if (ci->ci_cpuid == 0) {
667 m = cpu_getmodel();
668 if (m == NULL || *m == 0)
669 cpu_setmodel("%s", model);
670 }
671
672 if (ci->ci_data.cpu_cc_freq != 0) {
673 char freqbuf[10];
674 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
675 "Hz", 1000);
676
677 aprint_naive(": %s %s\n", freqbuf, model);
678 aprint_normal(": %s %s\n", freqbuf, model);
679 } else {
680 aprint_naive(": %s\n", model);
681 aprint_normal(": %s\n", model);
682 }
683
684 aprint_normal("%s:", xname);
685
686 switch (cpu_class) {
687 case CPU_CLASS_ARM6:
688 case CPU_CLASS_ARM7:
689 case CPU_CLASS_ARM7TDMI:
690 case CPU_CLASS_ARM8:
691 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
692 aprint_normal(" IDC disabled");
693 else
694 aprint_normal(" IDC enabled");
695 break;
696 case CPU_CLASS_ARM9TDMI:
697 case CPU_CLASS_ARM9ES:
698 case CPU_CLASS_ARM9EJS:
699 case CPU_CLASS_ARM10E:
700 case CPU_CLASS_ARM10EJ:
701 case CPU_CLASS_SA1:
702 case CPU_CLASS_XSCALE:
703 case CPU_CLASS_ARM11J:
704 case CPU_CLASS_ARMV4:
705 case CPU_CLASS_CORTEX:
706 case CPU_CLASS_PJ4B:
707 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
708 aprint_normal(" DC disabled");
709 else
710 aprint_normal(" DC enabled");
711 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
712 aprint_normal(" IC disabled");
713 else
714 aprint_normal(" IC enabled");
715 break;
716 default:
717 break;
718 }
719 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
720 aprint_normal(" WB disabled");
721 else
722 aprint_normal(" WB enabled");
723
724 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
725 aprint_normal(" LABT");
726 else
727 aprint_normal(" EABT");
728
729 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
730 aprint_normal(" branch prediction enabled");
731
732 aprint_normal("\n");
733
734 if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
735 identify_features(dv);
736 }
737
738 /* Print cache info. */
739 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
740 print_cache_info(dv, &arm_pcache, 0);
741 }
742 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
743 print_cache_info(dv, &arm_scache, 1);
744 }
745
746
747 switch (cpu_class) {
748 #ifdef CPU_ARM6
749 case CPU_CLASS_ARM6:
750 #endif
751 #ifdef CPU_ARM7
752 case CPU_CLASS_ARM7:
753 #endif
754 #ifdef CPU_ARM7TDMI
755 case CPU_CLASS_ARM7TDMI:
756 #endif
757 #ifdef CPU_ARM8
758 case CPU_CLASS_ARM8:
759 #endif
760 #ifdef CPU_ARM9
761 case CPU_CLASS_ARM9TDMI:
762 #endif
763 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
764 case CPU_CLASS_ARM9ES:
765 case CPU_CLASS_ARM9EJS:
766 #endif
767 #ifdef CPU_ARM10
768 case CPU_CLASS_ARM10E:
769 case CPU_CLASS_ARM10EJ:
770 #endif
771 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
772 defined(CPU_SA1110) || defined(CPU_IXP12X0)
773 case CPU_CLASS_SA1:
774 #endif
775 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
776 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
777 case CPU_CLASS_XSCALE:
778 #endif
779 #if defined(CPU_ARM11)
780 case CPU_CLASS_ARM11J:
781 #endif
782 #if defined(CPU_CORTEX)
783 case CPU_CLASS_CORTEX:
784 #endif
785 #if defined(CPU_PJ4B)
786 case CPU_CLASS_PJ4B:
787 #endif
788 #if defined(CPU_FA526)
789 case CPU_CLASS_ARMV4:
790 #endif
791 break;
792 default:
793 if (cpu_classes[cpu_class].class_option == NULL) {
794 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
795 ostype);
796 } else {
797 aprint_error_dev(dv, "This kernel does not fully support "
798 "this CPU.\n");
799 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
800 "correct this.\n", cpu_classes[cpu_class].class_option);
801 }
802 break;
803 }
804 }
805
806 extern int cpu_instruction_set_attributes[6];
807 extern int cpu_memory_model_features[4];
808 extern int cpu_processor_features[2];
809 extern int cpu_simd_present;
810 extern int cpu_simdex_present;
811
812 void
813 identify_features(device_t dv)
814 {
815 cpu_instruction_set_attributes[0] = armreg_isar0_read();
816 cpu_instruction_set_attributes[1] = armreg_isar1_read();
817 cpu_instruction_set_attributes[2] = armreg_isar2_read();
818 cpu_instruction_set_attributes[3] = armreg_isar3_read();
819 cpu_instruction_set_attributes[4] = armreg_isar4_read();
820 cpu_instruction_set_attributes[5] = armreg_isar5_read();
821
822 cpu_hwdiv_present =
823 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
824 cpu_simd_present =
825 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
826 cpu_simdex_present = cpu_simd_present
827 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
828 cpu_synchprim_present =
829 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
830 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
831
832 cpu_memory_model_features[0] = armreg_mmfr0_read();
833 cpu_memory_model_features[1] = armreg_mmfr1_read();
834 cpu_memory_model_features[2] = armreg_mmfr2_read();
835 cpu_memory_model_features[3] = armreg_mmfr3_read();
836
837 #if 0
838 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
839 /*
840 * Updates to the translation tables do not require a clean
841 * to the point of unification to ensure visibility by
842 * subsequent translation table walks.
843 */
844 pmap_needs_pte_sync = 0;
845 }
846 #endif
847
848 cpu_processor_features[0] = armreg_pfr0_read();
849 cpu_processor_features[1] = armreg_pfr1_read();
850
851 aprint_debug_dev(dv, "sctlr: %#x\n", armreg_sctlr_read());
852 aprint_debug_dev(dv, "actlr: %#x\n", armreg_auxctl_read());
853 aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read());
854 #ifdef MULTIPROCESSOR
855 aprint_debug_dev(dv, "mpidr: %#x\n", armreg_mpidr_read());
856 #endif
857 aprint_debug_dev(dv,
858 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
859 cpu_instruction_set_attributes[0],
860 cpu_instruction_set_attributes[1],
861 cpu_instruction_set_attributes[2],
862 cpu_instruction_set_attributes[3],
863 cpu_instruction_set_attributes[4],
864 cpu_instruction_set_attributes[5]);
865 aprint_debug_dev(dv,
866 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
867 cpu_memory_model_features[0], cpu_memory_model_features[1],
868 cpu_memory_model_features[2], cpu_memory_model_features[3]);
869 aprint_debug_dev(dv,
870 "pfr: [0]=%#x [1]=%#x\n",
871 cpu_processor_features[0], cpu_processor_features[1]);
872 }
873
874 #ifdef _ARM_ARCH_6
875 int
876 cpu_maxproc_hook(int nmaxproc)
877 {
878
879 #ifdef ARM_MMU_EXTENDED
880 return pmap_maxproc_set(nmaxproc);
881 #else
882 return 0;
883 #endif
884 }
885 #endif
886