cpu.c revision 1.135 1 /* $NetBSD: cpu.c,v 1.135 2019/12/02 23:22:43 ad Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 #include "opt_multiprocessor.h"
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.135 2019/12/02 23:22:43 ad Exp $");
50
51 #include <sys/param.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <arm/locore.h>
62 #include <arm/undefined.h>
63
64 extern const char *cpu_arch;
65
66 #ifdef MULTIPROCESSOR
67 uint32_t cpu_mpidr[MAXCPUS] = {
68 [0 ... MAXCPUS - 1] = ~0,
69 };
70
71 volatile u_int arm_cpu_hatched __cacheline_aligned = 0;
72 volatile uint32_t arm_cpu_mbox __cacheline_aligned = 0;
73 u_int arm_cpu_max = 1;
74
75 #ifdef MPDEBUG
76 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
77 #endif
78
79 #endif
80
81 /* Prototypes */
82 void identify_arm_cpu(device_t, struct cpu_info *);
83 void identify_cortex_caches(device_t);
84 void identify_features(device_t);
85
86 /*
87 * Identify the master (boot) CPU
88 */
89
90 void
91 cpu_attach(device_t dv, cpuid_t id)
92 {
93 const char * const xname = device_xname(dv);
94 const int unit = device_unit(dv);
95 struct cpu_info *ci;
96
97 if (unit == 0) {
98 ci = curcpu();
99
100 /* Read SCTLR from cpu */
101 ci->ci_ctrl = cpu_control(0, 0);
102
103 /* Get the CPU ID from coprocessor 15 */
104
105 ci->ci_cpuid = id;
106 ci->ci_arm_cpuid = cpu_idnum();
107 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
108 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
109 #ifdef MULTIPROCESSOR
110 uint32_t mpidr = armreg_mpidr_read();
111 ci->ci_mpidr = mpidr;
112
113 if (mpidr & MPIDR_MT) {
114 cpu_topology_set(ci,
115 __SHIFTOUT(mpidr, MPIDR_AFF2),
116 __SHIFTOUT(mpidr, MPIDR_AFF1),
117 __SHIFTOUT(mpidr, MPIDR_AFF0));
118 } else {
119 cpu_topology_set(ci,
120 __SHIFTOUT(mpidr, MPIDR_AFF1),
121 __SHIFTOUT(mpidr, MPIDR_AFF0),
122 0);
123 }
124 #endif
125 } else {
126 #ifdef MULTIPROCESSOR
127 KASSERT(cpu_info[unit] == NULL);
128 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
129 ci->ci_cpl = IPL_HIGH;
130 ci->ci_cpuid = id;
131 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
132
133 ci->ci_undefsave[2] = cpu_info_store.ci_undefsave[2];
134
135 cpu_info[unit] = ci;
136 if (cpu_hatched_p(unit) == false) {
137 ci->ci_dev = dv;
138 dv->dv_private = ci;
139 aprint_naive(": disabled\n");
140 aprint_normal(": disabled (unresponsive)\n");
141 return;
142 }
143 #else
144 aprint_naive(": disabled\n");
145 aprint_normal(": disabled (uniprocessor kernel)\n");
146 return;
147 #endif
148 }
149
150 ci->ci_dev = dv;
151 dv->dv_private = ci;
152
153 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
154 NULL, xname, "arm700swibug");
155
156 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
157 NULL, xname, "vector abort");
158 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
159 NULL, xname, "terminal abort");
160 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
161 NULL, xname, "external linefetch abort (S)");
162 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
163 NULL, xname, "external linefetch abort (P)");
164 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
165 NULL, xname, "external non-linefetch abort (S)");
166 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
167 NULL, xname, "external non-linefetch abort (P)");
168 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
169 NULL, xname, "external translation abort (L1)");
170 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
171 NULL, xname, "external translation abort (L2)");
172 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
173 NULL, xname, "alignment abort (0)");
174 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
175 NULL, xname, "alignment abort (1)");
176 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
177 NULL, xname, "translation abort (S)");
178 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
179 NULL, xname, "translation abort (P)");
180 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
181 NULL, xname, "domain abort (S)");
182 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
183 NULL, xname, "domain abort (P)");
184 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
185 NULL, xname, "permission abort (S)");
186 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
187 NULL, xname, "permission abort (P)");
188 evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
189 NULL, xname, "undefined insn traps");
190 evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
191 NULL, xname, "undefined cp15 insn traps");
192
193 #ifdef MULTIPROCESSOR
194 /*
195 * and we are done if this is a secondary processor.
196 */
197 if (unit != 0) {
198 aprint_naive("\n");
199 aprint_normal("\n");
200 mi_cpu_attach(ci);
201 #ifdef ARM_MMU_EXTENDED
202 pmap_tlb_info_attach(&pmap_tlb0_info, ci);
203 #endif
204 return;
205 }
206 #endif
207
208 identify_arm_cpu(dv, ci);
209
210 #ifdef CPU_STRONGARM
211 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
212 ci->ci_arm_cpurev < 3) {
213 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
214 }
215 #endif
216
217 #ifdef CPU_ARM8
218 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
219 int clock = arm8_clock_config(0, 0);
220 char *fclk;
221 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
222 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
223 aprint_normal("%s", (clock & 2) ? " sync" : "");
224 switch ((clock >> 2) & 3) {
225 case 0:
226 fclk = "bus clock";
227 break;
228 case 1:
229 fclk = "ref clock";
230 break;
231 case 3:
232 fclk = "pll";
233 break;
234 default:
235 fclk = "illegal";
236 break;
237 }
238 aprint_normal(" fclk source=%s\n", fclk);
239 }
240 #endif
241
242 vfp_attach(ci); /* XXX SMP */
243 }
244
245 #ifdef MULTIPROCESSOR
246 bool
247 cpu_hatched_p(u_int cpuindex)
248 {
249 membar_consumer();
250 return (arm_cpu_hatched & __BIT(cpuindex)) != 0;
251 }
252 #endif
253
254 enum cpu_class {
255 CPU_CLASS_NONE,
256 CPU_CLASS_ARM2,
257 CPU_CLASS_ARM2AS,
258 CPU_CLASS_ARM3,
259 CPU_CLASS_ARM6,
260 CPU_CLASS_ARM7,
261 CPU_CLASS_ARM7TDMI,
262 CPU_CLASS_ARM8,
263 CPU_CLASS_ARM9TDMI,
264 CPU_CLASS_ARM9ES,
265 CPU_CLASS_ARM9EJS,
266 CPU_CLASS_ARM10E,
267 CPU_CLASS_ARM10EJ,
268 CPU_CLASS_SA1,
269 CPU_CLASS_XSCALE,
270 CPU_CLASS_ARM11J,
271 CPU_CLASS_ARMV4,
272 CPU_CLASS_CORTEX,
273 CPU_CLASS_PJ4B,
274 };
275
276 static const char * const generic_steppings[16] = {
277 "rev 0", "rev 1", "rev 2", "rev 3",
278 "rev 4", "rev 5", "rev 6", "rev 7",
279 "rev 8", "rev 9", "rev 10", "rev 11",
280 "rev 12", "rev 13", "rev 14", "rev 15",
281 };
282
283 static const char * const pN_steppings[16] = {
284 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
285 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
286 };
287
288 static const char * const sa110_steppings[16] = {
289 "rev 0", "step J", "step K", "step S",
290 "step T", "rev 5", "rev 6", "rev 7",
291 "rev 8", "rev 9", "rev 10", "rev 11",
292 "rev 12", "rev 13", "rev 14", "rev 15",
293 };
294
295 static const char * const sa1100_steppings[16] = {
296 "rev 0", "step B", "step C", "rev 3",
297 "rev 4", "rev 5", "rev 6", "rev 7",
298 "step D", "step E", "rev 10" "step G",
299 "rev 12", "rev 13", "rev 14", "rev 15",
300 };
301
302 static const char * const sa1110_steppings[16] = {
303 "step A-0", "rev 1", "rev 2", "rev 3",
304 "step B-0", "step B-1", "step B-2", "step B-3",
305 "step B-4", "step B-5", "rev 10", "rev 11",
306 "rev 12", "rev 13", "rev 14", "rev 15",
307 };
308
309 static const char * const ixp12x0_steppings[16] = {
310 "(IXP1200 step A)", "(IXP1200 step B)",
311 "rev 2", "(IXP1200 step C)",
312 "(IXP1200 step D)", "(IXP1240/1250 step A)",
313 "(IXP1240 step B)", "(IXP1250 step B)",
314 "rev 8", "rev 9", "rev 10", "rev 11",
315 "rev 12", "rev 13", "rev 14", "rev 15",
316 };
317
318 static const char * const xscale_steppings[16] = {
319 "step A-0", "step A-1", "step B-0", "step C-0",
320 "step D-0", "rev 5", "rev 6", "rev 7",
321 "rev 8", "rev 9", "rev 10", "rev 11",
322 "rev 12", "rev 13", "rev 14", "rev 15",
323 };
324
325 static const char * const i80321_steppings[16] = {
326 "step A-0", "step B-0", "rev 2", "rev 3",
327 "rev 4", "rev 5", "rev 6", "rev 7",
328 "rev 8", "rev 9", "rev 10", "rev 11",
329 "rev 12", "rev 13", "rev 14", "rev 15",
330 };
331
332 static const char * const i80219_steppings[16] = {
333 "step A-0", "rev 1", "rev 2", "rev 3",
334 "rev 4", "rev 5", "rev 6", "rev 7",
335 "rev 8", "rev 9", "rev 10", "rev 11",
336 "rev 12", "rev 13", "rev 14", "rev 15",
337 };
338
339 /* Steppings for PXA2[15]0 */
340 static const char * const pxa2x0_steppings[16] = {
341 "step A-0", "step A-1", "step B-0", "step B-1",
342 "step B-2", "step C-0", "rev 6", "rev 7",
343 "rev 8", "rev 9", "rev 10", "rev 11",
344 "rev 12", "rev 13", "rev 14", "rev 15",
345 };
346
347 /* Steppings for PXA255/26x.
348 * rev 5: PXA26x B0, rev 6: PXA255 A0
349 */
350 static const char * const pxa255_steppings[16] = {
351 "rev 0", "rev 1", "rev 2", "step A-0",
352 "rev 4", "step B-0", "step A-0", "rev 7",
353 "rev 8", "rev 9", "rev 10", "rev 11",
354 "rev 12", "rev 13", "rev 14", "rev 15",
355 };
356
357 /* Stepping for PXA27x */
358 static const char * const pxa27x_steppings[16] = {
359 "step A-0", "step A-1", "step B-0", "step B-1",
360 "step C-0", "rev 5", "rev 6", "rev 7",
361 "rev 8", "rev 9", "rev 10", "rev 11",
362 "rev 12", "rev 13", "rev 14", "rev 15",
363 };
364
365 static const char * const ixp425_steppings[16] = {
366 "step 0", "rev 1", "rev 2", "rev 3",
367 "rev 4", "rev 5", "rev 6", "rev 7",
368 "rev 8", "rev 9", "rev 10", "rev 11",
369 "rev 12", "rev 13", "rev 14", "rev 15",
370 };
371
372 struct cpuidtab {
373 uint32_t cpuid;
374 enum cpu_class cpu_class;
375 const char *cpu_classname;
376 const char * const *cpu_steppings;
377 char cpu_arch[8];
378 };
379
380 const struct cpuidtab cpuids[] = {
381 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
382 generic_steppings, "2" },
383 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
384 generic_steppings, "2" },
385
386 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
387 generic_steppings, "2A" },
388
389 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
390 generic_steppings, "3" },
391 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
392 generic_steppings, "3" },
393 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
394 generic_steppings, "3" },
395
396 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
397 generic_steppings, "3" },
398 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
399 generic_steppings, "3" },
400 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
401 generic_steppings, "3" },
402 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
403 generic_steppings, "3" },
404 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
405 generic_steppings, "3" },
406
407 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
408 generic_steppings, "4" },
409
410 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
411 sa110_steppings, "4" },
412 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
413 sa1100_steppings, "4" },
414 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
415 sa1110_steppings, "4" },
416
417 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
418 generic_steppings, "4" },
419
420 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
421 ixp12x0_steppings, "4" },
422
423 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
424 generic_steppings, "4T" },
425 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
426 generic_steppings, "4T" },
427 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
428 generic_steppings, "4T" },
429 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
430 generic_steppings, "4T" },
431 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
432 generic_steppings, "4T" },
433 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
434 generic_steppings, "4T" },
435 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
436 generic_steppings, "4T" },
437 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
438 generic_steppings, "4T" },
439
440 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
441 generic_steppings, "5TE" },
442 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
443 generic_steppings, "5TE" },
444 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
445 generic_steppings, "5TE" },
446 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
447 generic_steppings, "5TE" },
448 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
449 generic_steppings, "5TE" },
450
451 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
452 xscale_steppings, "5TE" },
453
454 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
455 i80321_steppings, "5TE" },
456 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
457 i80321_steppings, "5TE" },
458 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
459 i80321_steppings, "5TE" },
460 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
461 i80321_steppings, "5TE" },
462
463 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
464 i80219_steppings, "5TE" },
465 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
466 i80219_steppings, "5TE" },
467
468 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
469 pxa27x_steppings, "5TE" },
470 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
471 pxa2x0_steppings, "5TE" },
472 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
473 pxa2x0_steppings, "5TE" },
474 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
475 pxa2x0_steppings, "5TE" },
476 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
477 pxa2x0_steppings, "5TE" },
478 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
479 pxa255_steppings, "5TE" },
480 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
481 pxa2x0_steppings, "5TE" },
482
483 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
484 ixp425_steppings, "5TE" },
485 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
486 ixp425_steppings, "5TE" },
487 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
488 ixp425_steppings, "5TE" },
489
490 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
491 generic_steppings, "5TE" },
492 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
493 generic_steppings, "5TE" },
494
495 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
496 generic_steppings, "5TEJ" },
497 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
498 generic_steppings, "5TEJ" },
499
500 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
501 pN_steppings, "6J" },
502 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
503 pN_steppings, "6J" },
504 #if 0
505 /* The ARM1156T2-S only has a memory protection unit */
506 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
507 pN_steppings, "6T2" },
508 #endif
509 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
510 pN_steppings, "6ZK" },
511
512 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
513 generic_steppings, "6K" },
514
515 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
516 pN_steppings, "7A" },
517 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0",
518 pN_steppings, "7A" },
519 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
520 pN_steppings, "7A" },
521 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
522 pN_steppings, "7A" },
523 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
524 pN_steppings, "7A" },
525 { CPU_ID_CORTEXA9R1, CPU_CLASS_CORTEX, "Cortex-A9 r1",
526 pN_steppings, "7A" },
527 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
528 pN_steppings, "7A" },
529 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
530 pN_steppings, "7A" },
531 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
532 pN_steppings, "7A" },
533 { CPU_ID_CORTEXA12R0, CPU_CLASS_CORTEX, "Cortex-A17(A12) r0", /* A12 was rebranded A17 */
534 pN_steppings, "7A" },
535 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
536 pN_steppings, "7A" },
537 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
538 pN_steppings, "7A" },
539 { CPU_ID_CORTEXA15R4, CPU_CLASS_CORTEX, "Cortex-A15 r4",
540 pN_steppings, "7A" },
541 { CPU_ID_CORTEXA17R1, CPU_CLASS_CORTEX, "Cortex-A17 r1",
542 pN_steppings, "7A" },
543 { CPU_ID_CORTEXA35R0, CPU_CLASS_CORTEX, "Cortex-A35 r0",
544 pN_steppings, "8A" },
545 { CPU_ID_CORTEXA53R0, CPU_CLASS_CORTEX, "Cortex-A53 r0",
546 pN_steppings, "8A" },
547 { CPU_ID_CORTEXA57R0, CPU_CLASS_CORTEX, "Cortex-A57 r0",
548 pN_steppings, "8A" },
549 { CPU_ID_CORTEXA57R1, CPU_CLASS_CORTEX, "Cortex-A57 r1",
550 pN_steppings, "8A" },
551 { CPU_ID_CORTEXA72R0, CPU_CLASS_CORTEX, "Cortex-A72 r0",
552 pN_steppings, "8A" },
553
554 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
555 generic_steppings },
556 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
557 generic_steppings },
558 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
559 generic_steppings },
560 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
561 generic_steppings },
562 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
563 generic_steppings },
564 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
565 generic_steppings },
566 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
567 generic_steppings },
568
569
570 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
571 };
572
573 struct cpu_classtab {
574 const char *class_name;
575 const char *class_option;
576 };
577
578 const struct cpu_classtab cpu_classes[] = {
579 [CPU_CLASS_NONE] = { "unknown", NULL },
580 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
581 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
582 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
583 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
584 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
585 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
586 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
587 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
588 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
589 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
590 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
591 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
592 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
593 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
594 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
595 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
596 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
597 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
598 };
599
600 /*
601 * Report the type of the specified arm processor. This uses the generic and
602 * arm specific information in the CPU structure to identify the processor.
603 * The remaining fields in the CPU structure are filled in appropriately.
604 */
605
606 static const char * const wtnames[] = {
607 "write-through",
608 "write-back",
609 "write-back",
610 "**unknown 3**",
611 "**unknown 4**",
612 "write-back-locking", /* XXX XScale-specific? */
613 "write-back-locking-A",
614 "write-back-locking-B",
615 "**unknown 8**",
616 "**unknown 9**",
617 "**unknown 10**",
618 "**unknown 11**",
619 "write-back",
620 "write-back-locking-line",
621 "write-back-locking-C",
622 "write-back-locking-D",
623 };
624
625 static void
626 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
627 {
628 if (info->cache_unified) {
629 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
630 info->dcache_size / 1024,
631 info->dcache_line_size, info->dcache_ways,
632 wtnames[info->cache_type], level + 1,
633 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
634 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
635 } else {
636 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
637 info->icache_size / 1024,
638 info->icache_line_size, info->icache_ways, level + 1,
639 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
640 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
641 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
642 info->dcache_size / 1024,
643 info->dcache_line_size, info->dcache_ways,
644 wtnames[info->cache_type], level + 1,
645 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
646 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
647 }
648 }
649
650 static enum cpu_class
651 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
652 {
653 enum cpu_class cpu_class = CPU_CLASS_NONE;
654 for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
655 if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
656 const char *steppingstr =
657 id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
658 cpu_arch = id->cpu_arch;
659 cpu_class = id->cpu_class;
660 snprintf(buf, len, "%s%s%s (%s V%s core)",
661 id->cpu_classname,
662 steppingstr[0] == '*' ? "" : " ",
663 &steppingstr[steppingstr[0] == '*'],
664 cpu_classes[cpu_class].class_name,
665 cpu_arch);
666 return cpu_class;
667 }
668 }
669
670 snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
671 return cpu_class;
672 }
673
674 void
675 identify_arm_cpu(device_t dv, struct cpu_info *ci)
676 {
677 const uint32_t arm_cpuid = ci->ci_arm_cpuid;
678 const char * const xname = device_xname(dv);
679 char model[128];
680
681 if (arm_cpuid == 0) {
682 aprint_error("Processor failed probe - no CPU ID\n");
683 return;
684 }
685
686 const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
687 model, sizeof(model));
688 if (ci->ci_cpuid == 0) {
689 cpu_setmodel("%s", model);
690 }
691
692 if (ci->ci_data.cpu_cc_freq != 0) {
693 char freqbuf[10];
694 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
695 "Hz", 1000);
696
697 aprint_naive(": %s %s\n", freqbuf, model);
698 aprint_normal(": %s %s\n", freqbuf, model);
699 } else {
700 aprint_naive(": %s\n", model);
701 aprint_normal(": %s\n", model);
702 }
703
704 aprint_debug_dev(dv, "midr: %#x\n", arm_cpuid);
705
706 aprint_normal("%s:", xname);
707
708 switch (cpu_class) {
709 case CPU_CLASS_ARM6:
710 case CPU_CLASS_ARM7:
711 case CPU_CLASS_ARM7TDMI:
712 case CPU_CLASS_ARM8:
713 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
714 aprint_normal(" IDC disabled");
715 else
716 aprint_normal(" IDC enabled");
717 break;
718 case CPU_CLASS_ARM9TDMI:
719 case CPU_CLASS_ARM9ES:
720 case CPU_CLASS_ARM9EJS:
721 case CPU_CLASS_ARM10E:
722 case CPU_CLASS_ARM10EJ:
723 case CPU_CLASS_SA1:
724 case CPU_CLASS_XSCALE:
725 case CPU_CLASS_ARM11J:
726 case CPU_CLASS_ARMV4:
727 case CPU_CLASS_CORTEX:
728 case CPU_CLASS_PJ4B:
729 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
730 aprint_normal(" DC disabled");
731 else
732 aprint_normal(" DC enabled");
733 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
734 aprint_normal(" IC disabled");
735 else
736 aprint_normal(" IC enabled");
737 break;
738 default:
739 break;
740 }
741 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
742 aprint_normal(" WB disabled");
743 else
744 aprint_normal(" WB enabled");
745
746 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
747 aprint_normal(" LABT");
748 else
749 aprint_normal(" EABT");
750
751 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
752 aprint_normal(" branch prediction enabled");
753
754 aprint_normal("\n");
755
756 if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
757 identify_features(dv);
758 }
759
760 /* Print cache info. */
761 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
762 print_cache_info(dv, &arm_pcache, 0);
763 }
764 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
765 print_cache_info(dv, &arm_scache, 1);
766 }
767
768
769 switch (cpu_class) {
770 #ifdef CPU_ARM6
771 case CPU_CLASS_ARM6:
772 #endif
773 #ifdef CPU_ARM7
774 case CPU_CLASS_ARM7:
775 #endif
776 #ifdef CPU_ARM7TDMI
777 case CPU_CLASS_ARM7TDMI:
778 #endif
779 #ifdef CPU_ARM8
780 case CPU_CLASS_ARM8:
781 #endif
782 #ifdef CPU_ARM9
783 case CPU_CLASS_ARM9TDMI:
784 #endif
785 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
786 case CPU_CLASS_ARM9ES:
787 case CPU_CLASS_ARM9EJS:
788 #endif
789 #ifdef CPU_ARM10
790 case CPU_CLASS_ARM10E:
791 case CPU_CLASS_ARM10EJ:
792 #endif
793 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
794 defined(CPU_SA1110) || defined(CPU_IXP12X0)
795 case CPU_CLASS_SA1:
796 #endif
797 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
798 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
799 case CPU_CLASS_XSCALE:
800 #endif
801 #if defined(CPU_ARM11)
802 case CPU_CLASS_ARM11J:
803 #endif
804 #if defined(CPU_CORTEX)
805 case CPU_CLASS_CORTEX:
806 #endif
807 #if defined(CPU_PJ4B)
808 case CPU_CLASS_PJ4B:
809 #endif
810 #if defined(CPU_FA526)
811 case CPU_CLASS_ARMV4:
812 #endif
813 break;
814 default:
815 if (cpu_classes[cpu_class].class_option == NULL) {
816 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
817 ostype);
818 } else {
819 aprint_error_dev(dv, "This kernel does not fully support "
820 "this CPU.\n");
821 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
822 "correct this.\n", cpu_classes[cpu_class].class_option);
823 }
824 break;
825 }
826 }
827
828 extern int cpu_instruction_set_attributes[6];
829 extern int cpu_memory_model_features[4];
830 extern int cpu_processor_features[2];
831 extern int cpu_simd_present;
832 extern int cpu_simdex_present;
833
834 void
835 identify_features(device_t dv)
836 {
837 cpu_instruction_set_attributes[0] = armreg_isar0_read();
838 cpu_instruction_set_attributes[1] = armreg_isar1_read();
839 cpu_instruction_set_attributes[2] = armreg_isar2_read();
840 cpu_instruction_set_attributes[3] = armreg_isar3_read();
841 cpu_instruction_set_attributes[4] = armreg_isar4_read();
842 cpu_instruction_set_attributes[5] = armreg_isar5_read();
843
844 cpu_hwdiv_present =
845 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
846 cpu_simd_present =
847 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
848 cpu_simdex_present = cpu_simd_present
849 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
850 cpu_synchprim_present =
851 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
852 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
853
854 cpu_memory_model_features[0] = armreg_mmfr0_read();
855 cpu_memory_model_features[1] = armreg_mmfr1_read();
856 cpu_memory_model_features[2] = armreg_mmfr2_read();
857 cpu_memory_model_features[3] = armreg_mmfr3_read();
858
859 #if 0
860 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
861 /*
862 * Updates to the translation tables do not require a clean
863 * to the point of unification to ensure visibility by
864 * subsequent translation table walks.
865 */
866 pmap_needs_pte_sync = 0;
867 }
868 #endif
869
870 cpu_processor_features[0] = armreg_pfr0_read();
871 cpu_processor_features[1] = armreg_pfr1_read();
872
873 aprint_debug_dev(dv, "sctlr: %#x\n", armreg_sctlr_read());
874 aprint_debug_dev(dv, "actlr: %#x\n", armreg_auxctl_read());
875 aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read());
876 #ifdef MULTIPROCESSOR
877 aprint_debug_dev(dv, "mpidr: %#x\n", armreg_mpidr_read());
878 #endif
879 aprint_debug_dev(dv,
880 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
881 cpu_instruction_set_attributes[0],
882 cpu_instruction_set_attributes[1],
883 cpu_instruction_set_attributes[2],
884 cpu_instruction_set_attributes[3],
885 cpu_instruction_set_attributes[4],
886 cpu_instruction_set_attributes[5]);
887 aprint_debug_dev(dv,
888 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
889 cpu_memory_model_features[0], cpu_memory_model_features[1],
890 cpu_memory_model_features[2], cpu_memory_model_features[3]);
891 aprint_debug_dev(dv,
892 "pfr: [0]=%#x [1]=%#x\n",
893 cpu_processor_features[0], cpu_processor_features[1]);
894 }
895