cpu.c revision 1.150 1 /* $NetBSD: cpu.c,v 1.150 2021/10/11 07:19:37 rin Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 #include "opt_multiprocessor.h"
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.150 2021/10/11 07:19:37 rin Exp $");
50
51 #include <sys/param.h>
52
53 #include <sys/conf.h>
54 #include <sys/cpu.h>
55 #include <sys/device.h>
56 #include <sys/kmem.h>
57 #include <sys/proc.h>
58 #include <sys/reboot.h>
59 #include <sys/systm.h>
60
61 #include <uvm/uvm_extern.h>
62
63 #include <arm/locore.h>
64 #include <arm/undefined.h>
65 #include <arm/cpu_topology.h>
66
67 extern const char *cpu_arch;
68
69 #ifdef MULTIPROCESSOR
70 #ifdef MPDEBUG
71 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
72 #endif
73
74 #endif
75
76 /* Prototypes */
77 void identify_arm_cpu(device_t, struct cpu_info *);
78 void identify_cortex_caches(device_t);
79 void identify_features(device_t);
80
81 /*
82 * Identify the master (boot) CPU
83 */
84
85 void
86 cpu_attach(device_t dv, cpuid_t id)
87 {
88 const char * const xname = device_xname(dv);
89 const int unit = device_unit(dv);
90 struct cpu_info *ci;
91
92 if (unit == 0) {
93 ci = curcpu();
94
95 /* Read SCTLR from cpu */
96 ci->ci_ctrl = cpu_control(0, 0);
97
98 /* Get the CPU ID from coprocessor 15 */
99
100 ci->ci_cpuid = id;
101 ci->ci_arm_cpuid = cpu_idnum();
102 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
103 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
104 } else {
105 #ifdef MULTIPROCESSOR
106 if ((boothowto & RB_MD1) != 0) {
107 aprint_naive("\n");
108 aprint_normal(": multiprocessor boot disabled\n");
109 return;
110 }
111
112 KASSERT(unit < MAXCPUS);
113 ci = &cpu_info_store[unit];
114
115 KASSERT(cpu_info[unit] == NULL);
116 ci->ci_cpl = IPL_HIGH;
117 ci->ci_cpuid = id;
118 ci->ci_data.cpu_cc_freq = cpu_info_store[0].ci_data.cpu_cc_freq;
119
120 ci->ci_undefsave[2] = cpu_info_store[0].ci_undefsave[2];
121
122 cpu_info[unit] = ci;
123 if (cpu_hatched_p(unit) == false) {
124 ci->ci_dev = dv;
125 dv->dv_private = ci;
126 aprint_naive(": disabled\n");
127 aprint_normal(": disabled (unresponsive)\n");
128 return;
129 }
130 #else
131 aprint_naive(": disabled\n");
132 aprint_normal(": disabled (uniprocessor kernel)\n");
133 return;
134 #endif
135 }
136
137 ci->ci_dev = dv;
138 dv->dv_private = ci;
139
140 arm_cpu_do_topology(ci);
141
142 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
143 NULL, xname, "arm700swibug");
144
145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
146 NULL, xname, "vector abort");
147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
148 NULL, xname, "terminal abort");
149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
150 NULL, xname, "external linefetch abort (S)");
151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
152 NULL, xname, "external linefetch abort (P)");
153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
154 NULL, xname, "external non-linefetch abort (S)");
155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
156 NULL, xname, "external non-linefetch abort (P)");
157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
158 NULL, xname, "external translation abort (L1)");
159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
160 NULL, xname, "external translation abort (L2)");
161 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
162 NULL, xname, "alignment abort (0)");
163 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
164 NULL, xname, "alignment abort (1)");
165 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
166 NULL, xname, "translation abort (S)");
167 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
168 NULL, xname, "translation abort (P)");
169 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
170 NULL, xname, "domain abort (S)");
171 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
172 NULL, xname, "domain abort (P)");
173 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
174 NULL, xname, "permission abort (S)");
175 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
176 NULL, xname, "permission abort (P)");
177 evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
178 NULL, xname, "undefined insn traps");
179 evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
180 NULL, xname, "undefined cp15 insn traps");
181
182 ci->ci_kfpu_spl = -1;
183
184 #ifdef MULTIPROCESSOR
185 /*
186 * and we are done if this is a secondary processor.
187 */
188 if (unit != 0) {
189 aprint_naive("\n");
190 aprint_normal("\n");
191 mi_cpu_attach(ci);
192 #ifdef ARM_MMU_EXTENDED
193 pmap_tlb_info_attach(&pmap_tlb0_info, ci);
194 #endif
195 return;
196 }
197 #endif
198
199 identify_arm_cpu(dv, ci);
200
201 #ifdef CPU_STRONGARM
202 if (ci->ci_arm_cputype == CPU_ID_SA110 &&
203 ci->ci_arm_cpurev < 3) {
204 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
205 }
206 #endif
207
208 #ifdef CPU_ARM8
209 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
210 int clock = arm8_clock_config(0, 0);
211 char *fclk;
212 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
213 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
214 aprint_normal("%s", (clock & 2) ? " sync" : "");
215 switch ((clock >> 2) & 3) {
216 case 0:
217 fclk = "bus clock";
218 break;
219 case 1:
220 fclk = "ref clock";
221 break;
222 case 3:
223 fclk = "pll";
224 break;
225 default:
226 fclk = "illegal";
227 break;
228 }
229 aprint_normal(" fclk source=%s\n", fclk);
230 }
231 #endif
232
233 vfp_attach(ci); /* XXX SMP */
234 }
235
236 enum cpu_class {
237 CPU_CLASS_NONE,
238 CPU_CLASS_ARM2,
239 CPU_CLASS_ARM2AS,
240 CPU_CLASS_ARM3,
241 CPU_CLASS_ARM6,
242 CPU_CLASS_ARM7,
243 CPU_CLASS_ARM7TDMI,
244 CPU_CLASS_ARM8,
245 CPU_CLASS_ARM9TDMI,
246 CPU_CLASS_ARM9ES,
247 CPU_CLASS_ARM9EJS,
248 CPU_CLASS_ARM10E,
249 CPU_CLASS_ARM10EJ,
250 CPU_CLASS_SA1,
251 CPU_CLASS_XSCALE,
252 CPU_CLASS_ARM11J,
253 CPU_CLASS_ARMV4,
254 CPU_CLASS_CORTEX,
255 CPU_CLASS_PJ4B,
256 };
257
258 static const char * const generic_steppings[16] = {
259 "rev 0", "rev 1", "rev 2", "rev 3",
260 "rev 4", "rev 5", "rev 6", "rev 7",
261 "rev 8", "rev 9", "rev 10", "rev 11",
262 "rev 12", "rev 13", "rev 14", "rev 15",
263 };
264
265 static const char * const pN_steppings[16] = {
266 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
267 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
268 };
269
270 static const char * const sa110_steppings[16] = {
271 "rev 0", "step J", "step K", "step S",
272 "step T", "rev 5", "rev 6", "rev 7",
273 "rev 8", "rev 9", "rev 10", "rev 11",
274 "rev 12", "rev 13", "rev 14", "rev 15",
275 };
276
277 static const char * const sa1100_steppings[16] = {
278 "rev 0", "step B", "step C", "rev 3",
279 "rev 4", "rev 5", "rev 6", "rev 7",
280 "step D", "step E", "rev 10" "step G",
281 "rev 12", "rev 13", "rev 14", "rev 15",
282 };
283
284 static const char * const sa1110_steppings[16] = {
285 "step A-0", "rev 1", "rev 2", "rev 3",
286 "step B-0", "step B-1", "step B-2", "step B-3",
287 "step B-4", "step B-5", "rev 10", "rev 11",
288 "rev 12", "rev 13", "rev 14", "rev 15",
289 };
290
291 static const char * const ixp12x0_steppings[16] = {
292 "(IXP1200 step A)", "(IXP1200 step B)",
293 "rev 2", "(IXP1200 step C)",
294 "(IXP1200 step D)", "(IXP1240/1250 step A)",
295 "(IXP1240 step B)", "(IXP1250 step B)",
296 "rev 8", "rev 9", "rev 10", "rev 11",
297 "rev 12", "rev 13", "rev 14", "rev 15",
298 };
299
300 static const char * const xscale_steppings[16] = {
301 "step A-0", "step A-1", "step B-0", "step C-0",
302 "step D-0", "rev 5", "rev 6", "rev 7",
303 "rev 8", "rev 9", "rev 10", "rev 11",
304 "rev 12", "rev 13", "rev 14", "rev 15",
305 };
306
307 static const char * const i80321_steppings[16] = {
308 "step A-0", "step B-0", "rev 2", "rev 3",
309 "rev 4", "rev 5", "rev 6", "rev 7",
310 "rev 8", "rev 9", "rev 10", "rev 11",
311 "rev 12", "rev 13", "rev 14", "rev 15",
312 };
313
314 static const char * const i80219_steppings[16] = {
315 "step A-0", "rev 1", "rev 2", "rev 3",
316 "rev 4", "rev 5", "rev 6", "rev 7",
317 "rev 8", "rev 9", "rev 10", "rev 11",
318 "rev 12", "rev 13", "rev 14", "rev 15",
319 };
320
321 /* Steppings for PXA2[15]0 */
322 static const char * const pxa2x0_steppings[16] = {
323 "step A-0", "step A-1", "step B-0", "step B-1",
324 "step B-2", "step C-0", "rev 6", "rev 7",
325 "rev 8", "rev 9", "rev 10", "rev 11",
326 "rev 12", "rev 13", "rev 14", "rev 15",
327 };
328
329 /* Steppings for PXA255/26x.
330 * rev 5: PXA26x B0, rev 6: PXA255 A0
331 */
332 static const char * const pxa255_steppings[16] = {
333 "rev 0", "rev 1", "rev 2", "step A-0",
334 "rev 4", "step B-0", "step A-0", "rev 7",
335 "rev 8", "rev 9", "rev 10", "rev 11",
336 "rev 12", "rev 13", "rev 14", "rev 15",
337 };
338
339 /* Stepping for PXA27x */
340 static const char * const pxa27x_steppings[16] = {
341 "step A-0", "step A-1", "step B-0", "step B-1",
342 "step C-0", "rev 5", "rev 6", "rev 7",
343 "rev 8", "rev 9", "rev 10", "rev 11",
344 "rev 12", "rev 13", "rev 14", "rev 15",
345 };
346
347 static const char * const ixp425_steppings[16] = {
348 "step 0", "rev 1", "rev 2", "rev 3",
349 "rev 4", "rev 5", "rev 6", "rev 7",
350 "rev 8", "rev 9", "rev 10", "rev 11",
351 "rev 12", "rev 13", "rev 14", "rev 15",
352 };
353
354 struct cpuidtab {
355 uint32_t cpuid;
356 enum cpu_class cpu_class;
357 const char *cpu_classname;
358 const char * const *cpu_steppings;
359 char cpu_arch[8];
360 };
361
362 const struct cpuidtab cpuids[] = {
363 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
364 generic_steppings, "2" },
365 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
366 generic_steppings, "2" },
367
368 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
369 generic_steppings, "2A" },
370
371 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
372 generic_steppings, "3" },
373 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
374 generic_steppings, "3" },
375 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
376 generic_steppings, "3" },
377
378 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
379 generic_steppings, "3" },
380 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
381 generic_steppings, "3" },
382 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
383 generic_steppings, "3" },
384 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
385 generic_steppings, "3" },
386 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
387 generic_steppings, "3" },
388
389 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
390 generic_steppings, "4" },
391
392 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
393 sa110_steppings, "4" },
394 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
395 sa1100_steppings, "4" },
396 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
397 sa1110_steppings, "4" },
398
399 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
400 generic_steppings, "4" },
401
402 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
403 ixp12x0_steppings, "4" },
404
405 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
406 generic_steppings, "4T" },
407 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
408 generic_steppings, "4T" },
409 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
410 generic_steppings, "4T" },
411 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
412 generic_steppings, "4T" },
413 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
414 generic_steppings, "4T" },
415 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
416 generic_steppings, "4T" },
417 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
418 generic_steppings, "4T" },
419 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
420 generic_steppings, "4T" },
421
422 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
423 generic_steppings, "5TE" },
424 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
425 generic_steppings, "5TE" },
426 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
427 generic_steppings, "5TE" },
428 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
429 generic_steppings, "5TE" },
430 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
431 generic_steppings, "5TE" },
432
433 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
434 xscale_steppings, "5TE" },
435
436 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
437 i80321_steppings, "5TE" },
438 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
439 i80321_steppings, "5TE" },
440 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
441 i80321_steppings, "5TE" },
442 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
443 i80321_steppings, "5TE" },
444
445 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
446 i80219_steppings, "5TE" },
447 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
448 i80219_steppings, "5TE" },
449
450 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
451 pxa27x_steppings, "5TE" },
452 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
453 pxa2x0_steppings, "5TE" },
454 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
455 pxa2x0_steppings, "5TE" },
456 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
457 pxa2x0_steppings, "5TE" },
458 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
459 pxa2x0_steppings, "5TE" },
460 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
461 pxa255_steppings, "5TE" },
462 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
463 pxa2x0_steppings, "5TE" },
464
465 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
466 ixp425_steppings, "5TE" },
467 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
468 ixp425_steppings, "5TE" },
469 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
470 ixp425_steppings, "5TE" },
471
472 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
473 generic_steppings, "5TE" },
474 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
475 generic_steppings, "5TE" },
476
477 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
478 generic_steppings, "5TEJ" },
479 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S r0",
480 pN_steppings, "5TEJ" },
481
482 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
483 pN_steppings, "6J" },
484 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
485 pN_steppings, "6J" },
486 #if 0
487 /* The ARM1156T2-S only has a memory protection unit */
488 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0",
489 pN_steppings, "6T2" },
490 #endif
491 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0",
492 pN_steppings, "6ZK" },
493
494 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
495 generic_steppings, "6K" },
496
497 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0",
498 pN_steppings, "7A" },
499 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0",
500 pN_steppings, "7A" },
501 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
502 pN_steppings, "7A" },
503 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
504 pN_steppings, "7A" },
505 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
506 pN_steppings, "7A" },
507 { CPU_ID_CORTEXA9R1, CPU_CLASS_CORTEX, "Cortex-A9 r1",
508 pN_steppings, "7A" },
509 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2",
510 pN_steppings, "7A" },
511 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3",
512 pN_steppings, "7A" },
513 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4",
514 pN_steppings, "7A" },
515 { CPU_ID_CORTEXA12R0, CPU_CLASS_CORTEX, "Cortex-A17(A12) r0", /* A12 was rebranded A17 */
516 pN_steppings, "7A" },
517 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2",
518 pN_steppings, "7A" },
519 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3",
520 pN_steppings, "7A" },
521 { CPU_ID_CORTEXA15R4, CPU_CLASS_CORTEX, "Cortex-A15 r4",
522 pN_steppings, "7A" },
523 { CPU_ID_CORTEXA17R1, CPU_CLASS_CORTEX, "Cortex-A17 r1",
524 pN_steppings, "7A" },
525 { CPU_ID_CORTEXA35R0, CPU_CLASS_CORTEX, "Cortex-A35 r0",
526 pN_steppings, "8A" },
527 { CPU_ID_CORTEXA53R0, CPU_CLASS_CORTEX, "Cortex-A53 r0",
528 pN_steppings, "8A" },
529 { CPU_ID_CORTEXA57R0, CPU_CLASS_CORTEX, "Cortex-A57 r0",
530 pN_steppings, "8A" },
531 { CPU_ID_CORTEXA57R1, CPU_CLASS_CORTEX, "Cortex-A57 r1",
532 pN_steppings, "8A" },
533 { CPU_ID_CORTEXA72R0, CPU_CLASS_CORTEX, "Cortex-A72 r0",
534 pN_steppings, "8A" },
535
536 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
537 generic_steppings },
538 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
539 generic_steppings },
540 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
541 generic_steppings },
542 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x",
543 generic_steppings },
544 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
545 generic_steppings },
546 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
547 generic_steppings },
548 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x",
549 generic_steppings },
550
551
552 { 0, CPU_CLASS_NONE, NULL, NULL, "" }
553 };
554
555 struct cpu_classtab {
556 const char *class_name;
557 const char *class_option;
558 };
559
560 const struct cpu_classtab cpu_classes[] = {
561 [CPU_CLASS_NONE] = { "unknown", NULL },
562 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
563 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
564 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
565 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
566 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
567 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
568 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
569 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
570 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
571 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
572 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
573 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
574 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
575 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
576 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
577 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
578 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
579 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" },
580 };
581
582 /*
583 * Report the type of the specified arm processor. This uses the generic and
584 * arm specific information in the CPU structure to identify the processor.
585 * The remaining fields in the CPU structure are filled in appropriately.
586 */
587
588 static const char * const wtnames[] = {
589 "write-through",
590 "write-back",
591 "write-back",
592 "**unknown 3**",
593 "**unknown 4**",
594 "write-back-locking", /* XXX XScale-specific? */
595 "write-back-locking-A",
596 "write-back-locking-B",
597 "**unknown 8**",
598 "**unknown 9**",
599 "**unknown 10**",
600 "**unknown 11**",
601 "write-back",
602 "write-back-locking-line",
603 "write-back-locking-C",
604 "write-back-locking-D",
605 };
606
607 static void
608 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
609 {
610 if (info->cache_unified) {
611 aprint_normal_dev(dv, "L%u %dKB/%dB %d-way (%u set) %s %cI%cT Unified cache\n",
612 level + 1,
613 info->dcache_size / 1024,
614 info->dcache_line_size, info->dcache_ways,
615 info->dcache_sets,
616 wtnames[info->cache_type],
617 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
618 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
619 } else {
620 aprint_normal_dev(dv, "L%u %dKB/%dB %d-way (%u set) %cI%cT Instruction cache\n",
621 level + 1,
622 info->icache_size / 1024,
623 info->icache_line_size, info->icache_ways,
624 info->icache_sets,
625 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
626 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
627 aprint_normal_dev(dv, "L%u %dKB/%dB %d-way (%u set) %s %cI%cT Data cache\n",
628 level + 1,
629 info->dcache_size / 1024,
630 info->dcache_line_size, info->dcache_ways,
631 info->dcache_sets,
632 wtnames[info->cache_type],
633 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
634 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
635 }
636 }
637
638 static enum cpu_class
639 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
640 {
641 enum cpu_class cpu_class = CPU_CLASS_NONE;
642 for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
643 if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
644 const char *steppingstr =
645 id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
646 cpu_arch = id->cpu_arch;
647 cpu_class = id->cpu_class;
648 snprintf(buf, len, "%s%s%s (%s V%s core)",
649 id->cpu_classname,
650 steppingstr[0] == '*' ? "" : " ",
651 &steppingstr[steppingstr[0] == '*'],
652 cpu_classes[cpu_class].class_name,
653 cpu_arch);
654 return cpu_class;
655 }
656 }
657
658 snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
659 return cpu_class;
660 }
661
662 void
663 identify_arm_cpu(device_t dv, struct cpu_info *ci)
664 {
665 const uint32_t arm_cpuid = ci->ci_arm_cpuid;
666 const char * const xname = device_xname(dv);
667 char model[128];
668 const char *m;
669
670 if (arm_cpuid == 0) {
671 aprint_error("Processor failed probe - no CPU ID\n");
672 return;
673 }
674
675 const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
676 model, sizeof(model));
677 if (ci->ci_cpuid == 0) {
678 m = cpu_getmodel();
679 if (m == NULL || *m == 0)
680 cpu_setmodel("%s", model);
681 }
682
683 if (ci->ci_data.cpu_cc_freq != 0) {
684 char freqbuf[10];
685 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
686 "Hz", 1000);
687
688 aprint_naive(": %s %s\n", freqbuf, model);
689 aprint_normal(": %s %s\n", freqbuf, model);
690 } else {
691 aprint_naive(": %s\n", model);
692 aprint_normal(": %s\n", model);
693 }
694
695 aprint_debug_dev(dv, "midr: %#x\n", arm_cpuid);
696
697 aprint_normal("%s:", xname);
698
699 switch (cpu_class) {
700 case CPU_CLASS_ARM6:
701 case CPU_CLASS_ARM7:
702 case CPU_CLASS_ARM7TDMI:
703 case CPU_CLASS_ARM8:
704 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
705 aprint_normal(" IDC disabled");
706 else
707 aprint_normal(" IDC enabled");
708 break;
709 case CPU_CLASS_ARM9TDMI:
710 case CPU_CLASS_ARM9ES:
711 case CPU_CLASS_ARM9EJS:
712 case CPU_CLASS_ARM10E:
713 case CPU_CLASS_ARM10EJ:
714 case CPU_CLASS_SA1:
715 case CPU_CLASS_XSCALE:
716 case CPU_CLASS_ARM11J:
717 case CPU_CLASS_ARMV4:
718 case CPU_CLASS_CORTEX:
719 case CPU_CLASS_PJ4B:
720 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
721 aprint_normal(" DC disabled");
722 else
723 aprint_normal(" DC enabled");
724 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
725 aprint_normal(" IC disabled");
726 else
727 aprint_normal(" IC enabled");
728 break;
729 default:
730 break;
731 }
732 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
733 aprint_normal(" WB disabled");
734 else
735 aprint_normal(" WB enabled");
736
737 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
738 aprint_normal(" LABT");
739 else
740 aprint_normal(" EABT");
741
742 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
743 aprint_normal(" branch prediction enabled");
744
745 aprint_normal("\n");
746
747 if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
748 if ((arm_cpuid & CPU_ID_CPU_MASK) != CPU_ID_ARM1136JS &&
749 (arm_cpuid & CPU_ID_CPU_MASK) != CPU_ID_ARM1176JZS) {
750 identify_features(dv);
751 }
752 }
753
754 /* Print cache info. */
755 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
756 print_cache_info(dv, &arm_pcache, 0);
757 }
758 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
759 print_cache_info(dv, &arm_scache, 1);
760 }
761
762
763 switch (cpu_class) {
764 #ifdef CPU_ARM6
765 case CPU_CLASS_ARM6:
766 #endif
767 #ifdef CPU_ARM7
768 case CPU_CLASS_ARM7:
769 #endif
770 #ifdef CPU_ARM7TDMI
771 case CPU_CLASS_ARM7TDMI:
772 #endif
773 #ifdef CPU_ARM8
774 case CPU_CLASS_ARM8:
775 #endif
776 #ifdef CPU_ARM9
777 case CPU_CLASS_ARM9TDMI:
778 #endif
779 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
780 case CPU_CLASS_ARM9ES:
781 case CPU_CLASS_ARM9EJS:
782 #endif
783 #ifdef CPU_ARM10
784 case CPU_CLASS_ARM10E:
785 case CPU_CLASS_ARM10EJ:
786 #endif
787 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
788 defined(CPU_SA1110) || defined(CPU_IXP12X0)
789 case CPU_CLASS_SA1:
790 #endif
791 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
792 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
793 case CPU_CLASS_XSCALE:
794 #endif
795 #if defined(CPU_ARM11)
796 case CPU_CLASS_ARM11J:
797 #endif
798 #if defined(CPU_CORTEX)
799 case CPU_CLASS_CORTEX:
800 #endif
801 #if defined(CPU_PJ4B)
802 case CPU_CLASS_PJ4B:
803 #endif
804 #if defined(CPU_FA526)
805 case CPU_CLASS_ARMV4:
806 #endif
807 break;
808 default:
809 if (cpu_classes[cpu_class].class_option == NULL) {
810 aprint_error_dev(dv, "%s does not fully support this CPU.\n",
811 ostype);
812 } else {
813 aprint_error_dev(dv, "This kernel does not fully support "
814 "this CPU.\n");
815 aprint_normal_dev(dv, "Recompile with \"options %s\" to "
816 "correct this.\n", cpu_classes[cpu_class].class_option);
817 }
818 break;
819 }
820 }
821
822 extern int cpu_instruction_set_attributes[6];
823 extern int cpu_memory_model_features[4];
824 extern int cpu_processor_features[2];
825 extern int cpu_simd_present;
826 extern int cpu_simdex_present;
827
828 void
829 identify_features(device_t dv)
830 {
831 cpu_instruction_set_attributes[0] = armreg_isar0_read();
832 cpu_instruction_set_attributes[1] = armreg_isar1_read();
833 cpu_instruction_set_attributes[2] = armreg_isar2_read();
834 cpu_instruction_set_attributes[3] = armreg_isar3_read();
835 cpu_instruction_set_attributes[4] = armreg_isar4_read();
836 cpu_instruction_set_attributes[5] = armreg_isar5_read();
837
838 cpu_hwdiv_present =
839 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
840 cpu_simd_present =
841 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
842 cpu_simdex_present = cpu_simd_present
843 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
844 cpu_synchprim_present =
845 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
846 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
847
848 cpu_memory_model_features[0] = armreg_mmfr0_read();
849 cpu_memory_model_features[1] = armreg_mmfr1_read();
850 cpu_memory_model_features[2] = armreg_mmfr2_read();
851 cpu_memory_model_features[3] = armreg_mmfr3_read();
852
853 #if 0
854 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
855 /*
856 * Updates to the translation tables do not require a clean
857 * to the point of unification to ensure visibility by
858 * subsequent translation table walks.
859 */
860 pmap_needs_pte_sync = 0;
861 }
862 #endif
863
864 cpu_processor_features[0] = armreg_pfr0_read();
865 cpu_processor_features[1] = armreg_pfr1_read();
866
867 aprint_debug_dev(dv, "sctlr: %#x\n", armreg_sctlr_read());
868 aprint_debug_dev(dv, "actlr: %#x\n", armreg_auxctl_read());
869 aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read());
870 #ifdef MULTIPROCESSOR
871 aprint_debug_dev(dv, "mpidr: %#x\n", armreg_mpidr_read());
872 #endif
873 aprint_debug_dev(dv,
874 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
875 cpu_instruction_set_attributes[0],
876 cpu_instruction_set_attributes[1],
877 cpu_instruction_set_attributes[2],
878 cpu_instruction_set_attributes[3],
879 cpu_instruction_set_attributes[4],
880 cpu_instruction_set_attributes[5]);
881 aprint_debug_dev(dv,
882 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
883 cpu_memory_model_features[0], cpu_memory_model_features[1],
884 cpu_memory_model_features[2], cpu_memory_model_features[3]);
885 aprint_debug_dev(dv,
886 "pfr: [0]=%#x [1]=%#x\n",
887 cpu_processor_features[0], cpu_processor_features[1]);
888 }
889
890 #ifdef _ARM_ARCH_6
891 int
892 cpu_maxproc_hook(int nmaxproc)
893 {
894
895 #ifdef ARM_MMU_EXTENDED
896 return pmap_maxproc_set(nmaxproc);
897 #else
898 return 0;
899 #endif
900 }
901 #endif
902