cpu.c revision 1.16 1 /* $NetBSD: cpu.c,v 1.16 2002/02/17 20:41:02 bjh21 Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/device.h>
51 #include <sys/proc.h>
52 #include <uvm/uvm_extern.h>
53 #include <machine/conf.h>
54 #include <machine/cpu.h>
55 #include <arm/undefined.h>
56
57 #include <arm/cpus.h>
58
59 #ifdef ARMFPE
60 #include <machine/bootconfig.h> /* For boot args */
61 #include <arm/fpe-arm/armfpe.h>
62 #endif
63
64 cpu_t cpus[MAX_CPUS];
65
66 char cpu_model[64];
67 volatile int undefined_test; /* Used for FPA test */
68 extern int cpuctrl; /* cpu control register value */
69
70 /* Prototypes */
71 void identify_master_cpu(struct device *dv, int cpu_number);
72 void identify_arm_cpu(struct device *dv, int cpu_number);
73 void identify_arm_fpu(struct device *dv, int cpu_number);
74 int fpa_test(u_int, u_int, trapframe_t *, int);
75 int fpa_handler(u_int, u_int, trapframe_t *, int);
76
77 /*
78 * void cpusattach(struct device *parent, struct device *dev, void *aux)
79 *
80 * Attach the main cpu
81 */
82
83 void
84 cpu_attach(struct device *dv)
85 {
86
87 identify_master_cpu(dv, CPU_MASTER);
88 }
89
90 /*
91 * Used to test for an FPA. The following function is installed as a coproc1
92 * handler on the undefined instruction vector and then we issue a FPA
93 * instruction. If undefined_test is non zero then the FPA did not handle
94 * the instruction so must be absent.
95 */
96
97 int
98 fpa_test(u_int address, u_int instruction, trapframe_t *frame, int fault_code)
99 {
100
101 frame->tf_pc += INSN_SIZE;
102 ++undefined_test;
103 return(0);
104 }
105
106 /*
107 * If an FPA was found then this function is installed as the coproc1 handler
108 * on the undefined instruction vector. Currently we don't support FPA's
109 * so this just triggers an exception.
110 */
111
112 int
113 fpa_handler(u_int address, u_int instruction, trapframe_t *frame,
114 int fault_code)
115 {
116 u_int fpsr;
117
118 __asm __volatile("stmfd sp!, {r0};"
119 "rfs r0;"
120 "mov %0, r0;"
121 "ldmfd sp!, {r0}" : "=r" (fpsr));
122
123 printf("FPA exception: fpsr = %08x\n", fpsr);
124
125 return(1);
126 }
127
128
129 /*
130 * Identify the master (boot) CPU
131 * This also probes for an FPU and will install an FPE if necessary
132 */
133
134 void
135 identify_master_cpu(struct device *dv, int cpu_number)
136 {
137 u_int fpsr;
138 void *uh;
139
140 cpus[cpu_number].cpu_ctrl = cpuctrl;
141
142 /* Get the cpu ID from coprocessor 15 */
143
144 cpus[cpu_number].cpu_id = cpu_id();
145
146 identify_arm_cpu(dv, cpu_number);
147 strcpy(cpu_model, cpus[cpu_number].cpu_model);
148
149 if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
150 && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
151 printf("%s: SA-110 with bugged STM^ instruction\n",
152 dv->dv_xname);
153 }
154
155 #ifdef CPU_ARM8
156 if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
157 int clock = arm8_clock_config(0, 0);
158 char *fclk;
159 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
160 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
161 printf("%s", (clock & 2) ? " sync" : "");
162 switch ((clock >> 2) & 3) {
163 case 0:
164 fclk = "bus clock";
165 break;
166 case 1:
167 fclk = "ref clock";
168 break;
169 case 3:
170 fclk = "pll";
171 break;
172 default:
173 fclk = "illegal";
174 break;
175 }
176 printf(" fclk source=%s\n", fclk);
177 }
178 #endif
179
180 /*
181 * Ok now we test for an FPA
182 * At this point no floating point emulator has been installed.
183 * This means any FP instruction will cause undefined exception.
184 * We install a temporay coproc 1 handler which will modify
185 * undefined_test if it is called.
186 * We then try to read the FP status register. If undefined_test
187 * has been decremented then the instruction was not handled by
188 * an FPA so we know the FPA is missing. If undefined_test is
189 * still 1 then we know the instruction was handled by an FPA.
190 * We then remove our test handler and look at the
191 * FP status register for identification.
192 */
193
194 uh = install_coproc_handler(FP_COPROC, fpa_test);
195
196 undefined_test = 0;
197
198 __asm __volatile("stmfd sp!, {r0};"
199 "rfs r0;"
200 "mov %0, r0;"
201 "ldmfd sp!, {r0}" : "=r" (fpsr));
202
203 remove_coproc_handler(uh);
204
205 if (undefined_test == 0) {
206 cpus[cpu_number].fpu_type = (fpsr >> 24);
207 switch (fpsr >> 24) {
208 case 0x81:
209 cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
210 break;
211
212 default:
213 cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
214 break;
215 }
216 cpus[cpu_number].fpu_flags = 0;
217 install_coproc_handler(FP_COPROC, fpa_handler);
218 } else {
219 cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
220 cpus[cpu_number].fpu_flags = 0;
221
222 /*
223 * Ok if ARMFPE is defined and the boot options request the
224 * ARM FPE then it will be installed as the FPE.
225 * This is just while I work on integrating the new FPE.
226 * It means the new FPE gets installed if compiled int (ARMFPE
227 * defined) and also gives me a on/off option when I boot in
228 * case the new FPE is causing panics.
229 */
230
231 #ifdef ARMFPE
232 if (boot_args) {
233 int usearmfpe = 1;
234
235 get_bootconf_option(boot_args, "armfpe",
236 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
237 if (usearmfpe) {
238 if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
239 identify_arm_fpu(dv, cpu_number);
240 }
241 }
242
243 #endif
244 }
245
246 identify_arm_fpu(dv, cpu_number);
247 }
248
249 static const char *generic_steppings[16] = {
250 "rev 0", "rev 1", "rev 2", "rev 3",
251 "rev 4", "rev 5", "rev 6", "rev 7",
252 "rev 8", "rev 9", "rev 10", "rev 11",
253 "rev 12", "rev 13", "rev 14", "rev 15",
254 };
255
256 static const char *sa110_steppings[16] = {
257 "rev 0", "step J", "step K", "step S",
258 "step T", "rev 5", "rev 6", "rev 7",
259 "rev 8", "rev 9", "rev 10", "rev 11",
260 "rev 12", "rev 13", "rev 14", "rev 15",
261 };
262
263 static const char *sa1100_steppings[16] = {
264 "rev 0", "step B", "step C", "rev 3",
265 "rev 4", "rev 5", "rev 6", "rev 7",
266 "step D", "step E", "rev 10" "step G",
267 "rev 12", "rev 13", "rev 14", "rev 15",
268 };
269
270 static const char *sa1110_steppings[16] = {
271 "step A-0", "rev 1", "rev 2", "rev 3",
272 "step B-0", "step B-1", "step B-2", "step B-3",
273 "step B-4", "step B-5", "rev 10", "rev 11",
274 "rev 12", "rev 13", "rev 14", "rev 15",
275 };
276
277 static const char *i80200_steppings[16] = {
278 "step A-0", "step A-1", "step B-0", "step C-0",
279 "rev 4", "rev 5", "rev 6", "rev 7",
280 "rev 8", "rev 9", "rev 10", "rev 11",
281 "rev 12", "rev 13", "rev 14", "rev 15",
282 };
283
284 struct cpuidtab {
285 u_int32_t cpuid;
286 enum cpu_class cpu_class;
287 const char *cpu_name;
288 const char **cpu_steppings;
289 };
290
291 const struct cpuidtab cpuids[] = {
292 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
293 generic_steppings },
294 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
295 generic_steppings },
296
297 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
298 generic_steppings },
299
300 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
301 generic_steppings },
302 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
303 generic_steppings },
304 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
305 generic_steppings },
306
307 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
308 generic_steppings },
309 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
310 generic_steppings },
311 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
312 generic_steppings },
313 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
314 generic_steppings },
315 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
316 generic_steppings },
317 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
318 generic_steppings },
319 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
320 generic_steppings },
321 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
322 generic_steppings },
323 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
324 generic_steppings },
325
326 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
327 generic_steppings },
328
329 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
330 generic_steppings },
331 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
332 generic_steppings },
333 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
334 generic_steppings },
335 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
336 generic_steppings },
337 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
338 generic_steppings },
339 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
340 generic_steppings },
341
342 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
343 sa110_steppings },
344 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
345 sa1100_steppings },
346 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
347 sa1110_steppings },
348
349 { CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
350 i80200_steppings },
351
352 { 0, CPU_CLASS_NONE, NULL, NULL }
353 };
354
355 struct cpu_classtab {
356 const char *class_name;
357 const char *class_option;
358 };
359
360 const struct cpu_classtab cpu_classes[] = {
361 { "unknown", NULL }, /* CPU_CLASS_NONE */
362 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
363 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
364 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
365 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
366 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
367 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
368 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
369 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
370 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
371 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
372 { "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
373 };
374
375 /*
376 * Report the type of the specifed arm processor. This uses the generic and
377 * arm specific information in the cpu structure to identify the processor.
378 * The remaining fields in the cpu structure are filled in appropriately.
379 */
380
381 static const char *wtnames[] = {
382 "write-through",
383 "write-back",
384 "write-back",
385 "**unknown 3**",
386 "**unknown 4**",
387 "write-back-locking", /* XXX XScale-specific? */
388 "write-back-locking-A",
389 "write-back-locking-B",
390 "**unknown 8**",
391 "**unknown 9**",
392 "**unknown 10**",
393 "**unknown 11**",
394 "**unknown 12**",
395 "**unknown 13**",
396 "**unknown 14**",
397 "**unknown 15**",
398 };
399
400 void
401 identify_arm_cpu(struct device *dv, int cpu_number)
402 {
403 cpu_t *cpu;
404 u_int cpuid;
405 int i;
406
407 cpu = &cpus[cpu_number];
408 cpuid = cpu->cpu_id;
409
410 if (cpuid == 0) {
411 printf("Processor failed probe - no CPU ID\n");
412 return;
413 }
414
415 for (i = 0; cpuids[i].cpuid != 0; i++)
416 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
417 cpu->cpu_class = cpuids[i].cpu_class;
418 sprintf(cpu->cpu_model, "%s %s (%s core)",
419 cpuids[i].cpu_name,
420 cpuids[i].cpu_steppings[cpuid &
421 CPU_ID_REVISION_MASK],
422 cpu_classes[cpu->cpu_class].class_name);
423 break;
424 }
425
426 if (cpuids[i].cpuid == 0)
427 sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
428
429 switch (cpu->cpu_class) {
430 case CPU_CLASS_ARM6:
431 case CPU_CLASS_ARM7:
432 case CPU_CLASS_ARM7TDMI:
433 case CPU_CLASS_ARM8:
434 if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
435 strcat(cpu->cpu_model, " IDC disabled");
436 else
437 strcat(cpu->cpu_model, " IDC enabled");
438 break;
439 case CPU_CLASS_ARM9TDMI:
440 case CPU_CLASS_SA1:
441 case CPU_CLASS_XSCALE:
442 if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
443 strcat(cpu->cpu_model, " DC disabled");
444 else
445 strcat(cpu->cpu_model, " DC enabled");
446 if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
447 strcat(cpu->cpu_model, " IC disabled");
448 else
449 strcat(cpu->cpu_model, " IC enabled");
450 break;
451 }
452 if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
453 strcat(cpu->cpu_model, " WB disabled");
454 else
455 strcat(cpu->cpu_model, " WB enabled");
456
457 if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
458 strcat(cpu->cpu_model, " LABT");
459 else
460 strcat(cpu->cpu_model, " EABT");
461
462 if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
463 strcat(cpu->cpu_model, " branch prediction enabled");
464
465 /* Print the info */
466 printf(": %s\n", cpu->cpu_model);
467
468 /* Print cache info. */
469 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
470 goto skip_pcache;
471
472 if (arm_pcache_unified) {
473 printf("%s: %dKB/%dB %d-way %s unified cache\n",
474 dv->dv_xname, arm_pdcache_size / 1024,
475 arm_pdcache_line_size, arm_pdcache_ways,
476 wtnames[arm_pcache_type]);
477 } else {
478 printf("%s: %dKB/%dB %d-way Instruction cache\n",
479 dv->dv_xname, arm_picache_size / 1024,
480 arm_picache_line_size, arm_picache_ways);
481 printf("%s: %dKB/%dB %d-way %s Data cache\n",
482 dv->dv_xname, arm_pdcache_size / 1024,
483 arm_pdcache_line_size, arm_pdcache_ways,
484 wtnames[arm_pcache_type]);
485 }
486
487 skip_pcache:
488
489 switch (cpu->cpu_class) {
490 #ifdef CPU_ARM2
491 case CPU_CLASS_ARM2:
492 #endif
493 #ifdef CPU_ARM250
494 case CPU_CLASS_ARM2AS:
495 #endif
496 #ifdef CPU_ARM3
497 case CPU_CLASS_ARM3:
498 #endif
499 #ifdef CPU_ARM6
500 case CPU_CLASS_ARM6:
501 #endif
502 #ifdef CPU_ARM7
503 case CPU_CLASS_ARM7:
504 #endif
505 #ifdef CPU_ARM7TDMI
506 case CPU_CLASS_ARM7TDMI:
507 #endif
508 #ifdef CPU_ARM8
509 case CPU_CLASS_ARM8:
510 #endif
511 #ifdef CPU_ARM9
512 case CPU_CLASS_ARM9TDMI:
513 #endif
514 #ifdef CPU_SA110
515 case CPU_CLASS_SA1:
516 #endif
517 #ifdef CPU_XSCALE
518 case CPU_CLASS_XSCALE:
519 #endif
520 break;
521 default:
522 if (cpu_classes[cpu->cpu_class].class_option != NULL)
523 printf("%s: %s does not fully support this CPU."
524 "\n", dv->dv_xname, ostype);
525 else {
526 printf("%s: This kernel does not fully support "
527 "this CPU.\n", dv->dv_xname);
528 printf("%s: Recompile with \"options %s\" to "
529 "correct this.\n", dv->dv_xname,
530 cpu_classes[cpu->cpu_class].class_option);
531 }
532 break;
533 }
534
535 }
536
537
538 /*
539 * Report the type of the specifed arm fpu. This uses the generic and arm
540 * specific information in the cpu structure to identify the fpu. The
541 * remaining fields in the cpu structure are filled in appropriately.
542 */
543
544 void
545 identify_arm_fpu(struct device *dv, int cpu_number)
546 {
547 cpu_t *cpu;
548
549 cpu = &cpus[cpu_number];
550
551 /* Now for the FP info */
552
553 switch (cpu->fpu_class) {
554 case FPU_CLASS_NONE :
555 strcpy(cpu->fpu_model, "None");
556 break;
557 case FPU_CLASS_FPE :
558 printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
559 printf("%s: no FP hardware found\n", dv->dv_xname);
560 break;
561 case FPU_CLASS_FPA :
562 printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
563 if (cpu->fpu_type == FPU_TYPE_FPA11) {
564 strcpy(cpu->fpu_model, "FPA11");
565 printf("%s: FPA11 found\n", dv->dv_xname);
566 } else {
567 strcpy(cpu->fpu_model, "FPA");
568 printf("%s: FPA10 found\n", dv->dv_xname);
569 }
570 if ((cpu->fpu_flags & 4) == 0)
571 strcat(cpu->fpu_model, "");
572 else
573 strcat(cpu->fpu_model, " clk/2");
574 break;
575 case FPU_CLASS_FPU :
576 sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
577 cpu->fpu_type);
578 printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
579 break;
580 }
581 }
582
583 /* End of cpu.c */
584