Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.2
      1 /*	$NetBSD: cpu.c,v 1.2 2001/05/13 13:53:08 bjh21 Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_cputypes.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/malloc.h>
     50 #include <sys/device.h>
     51 #include <sys/proc.h>
     52 #include <uvm/uvm_extern.h>
     53 #include <machine/conf.h>
     54 #include <machine/cpu.h>
     55 #include <machine/cpus.h>
     56 #include <machine/undefined.h>
     57 
     58 #ifdef ARMFPE
     59 #include <machine/bootconfig.h> /* For boot args */
     60 #include <arm32/fpe-arm/armfpe.h>
     61 #endif	/* ARMFPE */
     62 
     63 cpu_t cpus[MAX_CPUS];
     64 
     65 char cpu_model[64];
     66 volatile int undefined_test;	/* Used for FPA test */
     67 extern int cpuctrl;		/* cpu control register value */
     68 
     69 /* Prototypes */
     70 void identify_master_cpu __P((struct device *dv, int cpu_number));
     71 void identify_arm_cpu	__P((struct device *dv, int cpu_number));
     72 void identify_arm_fpu	__P((struct device *dv, int cpu_number));
     73 
     74 
     75 /*
     76  * void cpusattach(struct device *parent, struct device *dev, void *aux)
     77  *
     78  * Attach the main cpu
     79  */
     80 
     81 void
     82 cpu_attach(dv)
     83 	struct device *dv;
     84 {
     85 	identify_master_cpu(dv, CPU_MASTER);
     86 }
     87 
     88 /*
     89  * Used to test for an FPA. The following function is installed as a coproc1
     90  * handler on the undefined instruction vector and then we issue a FPA
     91  * instruction. If undefined_test is non zero then the FPA did not handle
     92  * the instruction so must be absent.
     93  */
     94 
     95 int
     96 fpa_test(address, instruction, frame)
     97 	u_int address;
     98 	u_int instruction;
     99 	trapframe_t *frame;
    100 {
    101 
    102 	frame->tf_pc += INSN_SIZE;
    103 	++undefined_test;
    104 	return(0);
    105 }
    106 
    107 /*
    108  * If an FPA was found then this function is installed as the coproc1 handler
    109  * on the undefined instruction vector. Currently we don't support FPA's
    110  * so this just triggers an exception.
    111  */
    112 
    113 int
    114 fpa_handler(address, instruction, frame, fault_code)
    115 	u_int address;
    116 	u_int instruction;
    117 	trapframe_t *frame;
    118 	int fault_code;
    119 {
    120 	u_int fpsr;
    121 
    122 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    123 
    124 	printf("FPA exception: fpsr = %08x\n", fpsr);
    125 
    126 	return(1);
    127 }
    128 
    129 
    130 /*
    131  * Identify the master (boot) CPU
    132  * This also probes for an FPU and will install an FPE if necessary
    133  */
    134 
    135 void
    136 identify_master_cpu(dv, cpu_number)
    137 	struct device *dv;
    138 	int cpu_number;
    139 {
    140 	u_int fpsr;
    141 	void *uh;
    142 
    143 	cpus[cpu_number].cpu_ctrl = cpuctrl;
    144 
    145 	/* Get the cpu ID from coprocessor 15 */
    146 
    147 	cpus[cpu_number].cpu_id = cpu_id();
    148 
    149 	identify_arm_cpu(dv, cpu_number);
    150 	strcpy(cpu_model, cpus[cpu_number].cpu_model);
    151 
    152 	if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
    153 	    && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
    154 		printf("%s: SA-110 with bugged STM^ instruction\n",
    155 		       dv->dv_xname);
    156 	}
    157 
    158 #ifdef CPU_ARM8
    159 	if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    160 		int clock = arm8_clock_config(0, 0);
    161 		char *fclk;
    162 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    163 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    164 		printf("%s", (clock & 2) ? " sync" : "");
    165 		switch ((clock >> 2) & 3) {
    166 		case 0 :
    167 			fclk = "bus clock";
    168 			break;
    169 		case 1 :
    170 			fclk = "ref clock";
    171 			break;
    172 		case 3 :
    173 			fclk = "pll";
    174 			break;
    175 		default :
    176 			fclk = "illegal";
    177 			break;
    178 		}
    179 		printf(" fclk source=%s\n", fclk);
    180  	}
    181 #endif
    182 
    183 	/*
    184 	 * Ok now we test for an FPA
    185 	 * At this point no floating point emulator has been installed.
    186 	 * This means any FP instruction will cause undefined exception.
    187 	 * We install a temporay coproc 1 handler which will modify
    188 	 * undefined_test if it is called.
    189 	 * We then try to read the FP status register. If undefined_test
    190 	 * has been decremented then the instruction was not handled by
    191 	 * an FPA so we know the FPA is missing. If undefined_test is
    192 	 * still 1 then we know the instruction was handled by an FPA.
    193 	 * We then remove our test handler and look at the
    194 	 * FP status register for identification.
    195 	 */
    196 
    197 	uh = install_coproc_handler(FP_COPROC, fpa_test);
    198 
    199 	undefined_test = 0;
    200 
    201 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    202 
    203 	remove_coproc_handler(uh);
    204 
    205 	if (undefined_test == 0) {
    206 		cpus[cpu_number].fpu_type = (fpsr >> 24);
    207 	        switch (fpsr >> 24) {
    208 		case 0x81 :
    209 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
    210 			break;
    211 
    212 		default :
    213 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
    214 			break;
    215 		}
    216 		cpus[cpu_number].fpu_flags = 0;
    217 		install_coproc_handler(FP_COPROC, fpa_handler);
    218 	} else {
    219 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
    220 		cpus[cpu_number].fpu_flags = 0;
    221 
    222 		/*
    223 		 * Ok if ARMFPE is defined and the boot options request the
    224 		 * ARM FPE then it will be installed as the FPE.
    225 		 * This is just while I work on integrating the new FPE.
    226 		 * It means the new FPE gets installed if compiled int (ARMFPE
    227 		 * defined) and also gives me a on/off option when I boot in
    228 		 * case the new FPE is causing panics.
    229 		 */
    230 
    231 #ifdef ARMFPE
    232 		if (boot_args) {
    233 			int usearmfpe = 1;
    234 
    235 			get_bootconf_option(boot_args, "armfpe",
    236 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    237 			if (usearmfpe) {
    238 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
    239 					identify_arm_fpu(dv, cpu_number);
    240 			}
    241 		}
    242 
    243 #endif
    244 	}
    245 
    246 	identify_arm_fpu(dv, cpu_number);
    247 }
    248 
    249 struct cpuidtab {
    250 	u_int32_t	cpuid;
    251 	enum		cpu_class cpu_class;
    252 	char *		cpu_name;
    253 };
    254 
    255 const struct cpuidtab cpuids[] = {
    256 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2" },
    257 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250" },
    258 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3" },
    259 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600" },
    260 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610" },
    261 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620" },
    262 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700" },
    263 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710" },
    264 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500" },
    265 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a" },
    266 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE" },
    267 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T" },
    268 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T" },
    269 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
    270 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
    271 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810" },
    272 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T" },
    273 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T" },
    274 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T" },
    275 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S" },
    276 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
    277 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S (Rev 1)" },
    278 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110" },
    279 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100" },
    280 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110" },
    281 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"80200" },
    282 	{ 0, CPU_CLASS_NONE, NULL }
    283 };
    284 
    285 struct cpu_classtab {
    286 	char	*class_name;
    287 	char	*class_option;
    288 };
    289 
    290 const struct cpu_classtab cpu_classes[] = {
    291 	{ "unknown",	NULL },		/* CPU_CLASS_NONE */
    292 	{ "ARM2",	"CPU_ARM2" },	/* CPU_CLASS_ARM2 */
    293 	{ "ARM2as",	"CPU_ARM250" },	/* CPU_CLASS_ARM2AS */
    294 	{ "ARM3",	"CPU_ARM3" },	/* CPU_CLASS_ARM3 */
    295 	{ "ARM6",	"CPU_ARM6" },	/* CPU_CLASS_ARM6 */
    296 	{ "ARM7",	"CPU_ARM7" },	/* CPU_CLASS_ARM7 */
    297 	{ "ARM7TDMI",	NULL },		/* CPU_CLASS_ARM7TDMI */
    298 	{ "ARM8",	"CPU_ARM8" },	/* CPU_CLASS_ARM8 */
    299 	{ "ARM9TDMI",	NULL },		/* CPU_CLASS_ARM9TDMI */
    300 	{ "ARM9E-S",	NULL },		/* CPU_CLASS_ARM9ES */
    301 	{ "SA-1",	"CPU_SA110" },	/* CPU_CLASS_SA1 */
    302 	{ "Xscale",	NULL },		/* CPU_CLASS_XSCALE */
    303 };
    304 
    305 /*
    306  * Report the type of the specifed arm processor. This uses the generic and
    307  * arm specific information in the cpu structure to identify the processor.
    308  * The remaining fields in the cpu structure are filled in appropriately.
    309  */
    310 
    311 void
    312 identify_arm_cpu(dv, cpu_number)
    313 	struct device *dv;
    314 	int cpu_number;
    315 {
    316 	cpu_t *cpu;
    317 	u_int cpuid;
    318 	int i;
    319 
    320 	cpu = &cpus[cpu_number];
    321 	cpuid = cpu->cpu_id;
    322 
    323 	if (cpuid == 0) {
    324 		printf("Processor failed probe - no CPU ID\n");
    325 		return;
    326 	}
    327 
    328 	for (i = 0; cpuids[i].cpuid != 0; i++)
    329 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    330 			cpu->cpu_class = cpuids[i].cpu_class;
    331 			sprintf(cpu->cpu_model, "%s rev %d (%s core)",
    332 			    cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
    333 			    cpu_classes[cpu->cpu_class].class_name);
    334 			break;
    335 		}
    336 
    337 	if (cpuids[i].cpuid == 0)
    338 		sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    339 
    340 	switch (cpu->cpu_class) {
    341 	case CPU_CLASS_ARM6:
    342 	case CPU_CLASS_ARM7:
    343 	case CPU_CLASS_ARM8:
    344 		if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    345 			strcat(cpu->cpu_model, " IDC disabled");
    346 		else
    347 			strcat(cpu->cpu_model, " IDC enabled");
    348 		break;
    349 	case CPU_CLASS_SA1:
    350 		if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    351 			strcat(cpu->cpu_model, " DC disabled");
    352 		else
    353 			strcat(cpu->cpu_model, " DC enabled");
    354 		if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    355 			strcat(cpu->cpu_model, " IC disabled");
    356 		else
    357 			strcat(cpu->cpu_model, " IC enabled");
    358 		break;
    359 	}
    360 	if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    361 		strcat(cpu->cpu_model, " WB disabled");
    362 	else
    363 		strcat(cpu->cpu_model, " WB enabled");
    364 
    365 	if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
    366 		strcat(cpu->cpu_model, " LABT");
    367 	else
    368 		strcat(cpu->cpu_model, " EABT");
    369 
    370 	if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
    371 		strcat(cpu->cpu_model, " branch prediction enabled");
    372 
    373 	/* Print the info */
    374 
    375 	printf(": %s\n", cpu->cpu_model);
    376 
    377 	switch (cpu->cpu_class) {
    378 #ifdef CPU_ARM2
    379 	case CPU_CLASS_ARM2:
    380 #endif
    381 #ifdef CPU_ARM250
    382 	case CPU_CLASS_ARM2AS:
    383 #endif
    384 #ifdef CPU_ARM3
    385 	case CPU_CLASS_ARM3:
    386 #endif
    387 #ifdef CPU_ARM6
    388 	case CPU_CLASS_ARM6:
    389 #endif
    390 #ifdef CPU_ARM7
    391 	case CPU_CLASS_ARM7:
    392 #endif
    393 #ifdef CPU_ARM8
    394 	case CPU_CLASS_ARM8:
    395 #endif
    396 #ifdef CPU_SA110
    397 	case CPU_CLASS_SA1:
    398 #endif
    399 		break;
    400 	default:
    401 		if (cpu_classes[cpu->cpu_class].class_option != NULL)
    402 			printf("%s: %s does not fully support this CPU."
    403 			       "\n", dv->dv_xname, ostype);
    404 		else {
    405 			printf("%s: This kernel does not fully support "
    406 			       "this CPU.\n", dv->dv_xname);
    407 			printf("%s: Recompile with \"options %s\" to "
    408 			       "correct this.\n", dv->dv_xname,
    409 			       cpu_classes[cpu->cpu_class].class_option);
    410 		}
    411 		break;
    412 	}
    413 
    414 }
    415 
    416 
    417 /*
    418  * Report the type of the specifed arm fpu. This uses the generic and arm
    419  * specific information in the cpu structure to identify the fpu. The
    420  * remaining fields in the cpu structure are filled in appropriately.
    421  */
    422 
    423 void
    424 identify_arm_fpu(dv, cpu_number)
    425 	struct device *dv;
    426 	int cpu_number;
    427 {
    428 	cpu_t *cpu;
    429 
    430 	cpu = &cpus[cpu_number];
    431 
    432 	/* Now for the FP info */
    433 
    434 	switch (cpu->fpu_class) {
    435 	case FPU_CLASS_NONE :
    436 		strcpy(cpu->fpu_model, "None");
    437 		break;
    438 	case FPU_CLASS_FPE :
    439 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    440 		printf("%s: no FP hardware found\n", dv->dv_xname);
    441 		break;
    442 	case FPU_CLASS_FPA :
    443 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    444 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
    445 			strcpy(cpu->fpu_model, "FPA11");
    446 			printf("%s: FPA11 found\n", dv->dv_xname);
    447 		} else {
    448 			strcpy(cpu->fpu_model, "FPA");
    449 			printf("%s: FPA10 found\n", dv->dv_xname);
    450 		}
    451 		if ((cpu->fpu_flags & 4) == 0)
    452 			strcat(cpu->fpu_model, "");
    453 		else
    454 			strcat(cpu->fpu_model, " clk/2");
    455 		break;
    456 	case FPU_CLASS_FPU :
    457 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
    458 		    cpu->fpu_type);
    459 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
    460 		break;
    461 	}
    462 }
    463 
    464 /* End of cpu.c */
    465