cpu.c revision 1.29 1 /* $NetBSD: cpu.c,v 1.29 2002/03/16 18:47:51 bjh21 Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.29 2002/03/16 18:47:51 bjh21 Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <uvm/uvm_extern.h>
56 #include <machine/conf.h>
57 #include <machine/cpu.h>
58 #include <arm/undefined.h>
59
60 #ifdef ARMFPE
61 #include <machine/bootconfig.h> /* For boot args */
62 #include <arm/fpe-arm/armfpe.h>
63 #endif
64
65 char cpu_model[256];
66
67 /* Prototypes */
68 void identify_arm_cpu(struct device *dv, struct cpu_info *);
69
70 /*
71 * Identify the master (boot) CPU
72 */
73
74 void
75 cpu_attach(struct device *dv)
76 {
77 int usearmfpe;
78
79 usearmfpe = 1; /* when compiled in, its enabled by default */
80
81 curcpu()->ci_dev = dv;
82
83 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
84 NULL, dv->dv_xname, "arm700swibug");
85
86 /* Get the cpu ID from coprocessor 15 */
87
88 curcpu()->ci_cpuid = cpu_id();
89
90 identify_arm_cpu(dv, curcpu());
91
92 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_SA110
93 && (curcpu()->ci_cpuid & CPU_ID_REVISION_MASK) < 3) {
94 printf("%s: SA-110 with bugged STM^ instruction\n",
95 dv->dv_xname);
96 }
97
98 #ifdef CPU_ARM8
99 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
100 int clock = arm8_clock_config(0, 0);
101 char *fclk;
102 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
103 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
104 printf("%s", (clock & 2) ? " sync" : "");
105 switch ((clock >> 2) & 3) {
106 case 0:
107 fclk = "bus clock";
108 break;
109 case 1:
110 fclk = "ref clock";
111 break;
112 case 3:
113 fclk = "pll";
114 break;
115 default:
116 fclk = "illegal";
117 break;
118 }
119 printf(" fclk source=%s\n", fclk);
120 }
121 #endif
122
123 #ifdef ARMFPE
124 /*
125 * Ok now we test for an FPA
126 * At this point no floating point emulator has been installed.
127 * This means any FP instruction will cause undefined exception.
128 * We install a temporay coproc 1 handler which will modify
129 * undefined_test if it is called.
130 * We then try to read the FP status register. If undefined_test
131 * has been decremented then the instruction was not handled by
132 * an FPA so we know the FPA is missing. If undefined_test is
133 * still 1 then we know the instruction was handled by an FPA.
134 * We then remove our test handler and look at the
135 * FP status register for identification.
136 */
137
138 /*
139 * Ok if ARMFPE is defined and the boot options request the
140 * ARM FPE then it will be installed as the FPE.
141 * This is just while I work on integrating the new FPE.
142 * It means the new FPE gets installed if compiled int (ARMFPE
143 * defined) and also gives me a on/off option when I boot in
144 * case the new FPE is causing panics.
145 */
146
147
148 if (boot_args)
149 get_bootconf_option(boot_args, "armfpe",
150 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
151 if (usearmfpe)
152 initialise_arm_fpe();
153 #endif
154 }
155
156 enum cpu_class {
157 CPU_CLASS_NONE,
158 CPU_CLASS_ARM2,
159 CPU_CLASS_ARM2AS,
160 CPU_CLASS_ARM3,
161 CPU_CLASS_ARM6,
162 CPU_CLASS_ARM7,
163 CPU_CLASS_ARM7TDMI,
164 CPU_CLASS_ARM8,
165 CPU_CLASS_ARM9TDMI,
166 CPU_CLASS_ARM9ES,
167 CPU_CLASS_SA1,
168 CPU_CLASS_XSCALE,
169 CPU_CLASS_ARM10E
170 };
171
172 static const char *generic_steppings[16] = {
173 "rev 0", "rev 1", "rev 2", "rev 3",
174 "rev 4", "rev 5", "rev 6", "rev 7",
175 "rev 8", "rev 9", "rev 10", "rev 11",
176 "rev 12", "rev 13", "rev 14", "rev 15",
177 };
178
179 static const char *sa110_steppings[16] = {
180 "rev 0", "step J", "step K", "step S",
181 "step T", "rev 5", "rev 6", "rev 7",
182 "rev 8", "rev 9", "rev 10", "rev 11",
183 "rev 12", "rev 13", "rev 14", "rev 15",
184 };
185
186 static const char *sa1100_steppings[16] = {
187 "rev 0", "step B", "step C", "rev 3",
188 "rev 4", "rev 5", "rev 6", "rev 7",
189 "step D", "step E", "rev 10" "step G",
190 "rev 12", "rev 13", "rev 14", "rev 15",
191 };
192
193 static const char *sa1110_steppings[16] = {
194 "step A-0", "rev 1", "rev 2", "rev 3",
195 "step B-0", "step B-1", "step B-2", "step B-3",
196 "step B-4", "step B-5", "rev 10", "rev 11",
197 "rev 12", "rev 13", "rev 14", "rev 15",
198 };
199
200 static const char *i80200_steppings[16] = {
201 "step A-0", "step A-1", "step B-0", "step C-0",
202 "rev 4", "rev 5", "rev 6", "rev 7",
203 "rev 8", "rev 9", "rev 10", "rev 11",
204 "rev 12", "rev 13", "rev 14", "rev 15",
205 };
206
207 struct cpuidtab {
208 u_int32_t cpuid;
209 enum cpu_class cpu_class;
210 const char *cpu_name;
211 const char **cpu_steppings;
212 };
213
214 const struct cpuidtab cpuids[] = {
215 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
216 generic_steppings },
217 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
218 generic_steppings },
219
220 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
221 generic_steppings },
222
223 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
224 generic_steppings },
225 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
226 generic_steppings },
227 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
228 generic_steppings },
229
230 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
231 generic_steppings },
232 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
233 generic_steppings },
234 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
235 generic_steppings },
236 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
237 generic_steppings },
238 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
239 generic_steppings },
240 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
241 generic_steppings },
242 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
243 generic_steppings },
244 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
245 generic_steppings },
246 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
247 generic_steppings },
248
249 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
250 generic_steppings },
251
252 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
253 generic_steppings },
254 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
255 generic_steppings },
256 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
257 generic_steppings },
258 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
259 generic_steppings },
260 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
261 generic_steppings },
262 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
263 generic_steppings },
264
265 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
266 sa110_steppings },
267 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
268 sa1100_steppings },
269 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
270 sa1110_steppings },
271
272 { CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
273 i80200_steppings },
274
275 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
276 generic_steppings },
277
278 { 0, CPU_CLASS_NONE, NULL, NULL }
279 };
280
281 struct cpu_classtab {
282 const char *class_name;
283 const char *class_option;
284 };
285
286 const struct cpu_classtab cpu_classes[] = {
287 { "unknown", NULL }, /* CPU_CLASS_NONE */
288 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
289 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
290 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
291 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
292 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
293 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
294 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
295 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
296 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
297 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
298 { "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
299 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
300 };
301
302 /*
303 * Report the type of the specifed arm processor. This uses the generic and
304 * arm specific information in the cpu structure to identify the processor.
305 * The remaining fields in the cpu structure are filled in appropriately.
306 */
307
308 static const char *wtnames[] = {
309 "write-through",
310 "write-back",
311 "write-back",
312 "**unknown 3**",
313 "**unknown 4**",
314 "write-back-locking", /* XXX XScale-specific? */
315 "write-back-locking-A",
316 "write-back-locking-B",
317 "**unknown 8**",
318 "**unknown 9**",
319 "**unknown 10**",
320 "**unknown 11**",
321 "**unknown 12**",
322 "**unknown 13**",
323 "**unknown 14**",
324 "**unknown 15**",
325 };
326
327 void
328 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
329 {
330 u_int cpuid;
331 enum cpu_class cpu_class;
332 int i;
333
334 cpuid = ci->ci_cpuid;
335
336 if (cpuid == 0) {
337 printf("Processor failed probe - no CPU ID\n");
338 return;
339 }
340
341 for (i = 0; cpuids[i].cpuid != 0; i++)
342 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
343 cpu_class = cpuids[i].cpu_class;
344 sprintf(cpu_model, "%s %s (%s core)",
345 cpuids[i].cpu_name,
346 cpuids[i].cpu_steppings[cpuid &
347 CPU_ID_REVISION_MASK],
348 cpu_classes[cpu_class].class_name);
349 break;
350 }
351
352 if (cpuids[i].cpuid == 0)
353 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
354
355 printf(": %s\n", cpu_model);
356
357 printf("%s:", dv->dv_xname);
358
359 switch (cpu_class) {
360 case CPU_CLASS_ARM6:
361 case CPU_CLASS_ARM7:
362 case CPU_CLASS_ARM7TDMI:
363 case CPU_CLASS_ARM8:
364 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
365 printf(" IDC disabled");
366 else
367 printf(" IDC enabled");
368 break;
369 case CPU_CLASS_ARM9TDMI:
370 case CPU_CLASS_SA1:
371 case CPU_CLASS_XSCALE:
372 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
373 printf(" DC disabled");
374 else
375 printf(" DC enabled");
376 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
377 printf(" IC disabled");
378 else
379 printf(" IC enabled");
380 break;
381 default:
382 break;
383 }
384 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
385 printf(" WB disabled");
386 else
387 printf(" WB enabled");
388
389 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
390 printf(" LABT");
391 else
392 printf(" EABT");
393
394 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
395 printf(" branch prediction enabled");
396
397 printf("\n");
398
399 /* Print cache info. */
400 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
401 goto skip_pcache;
402
403 if (arm_pcache_unified) {
404 printf("%s: %dKB/%dB %d-way %s unified cache\n",
405 dv->dv_xname, arm_pdcache_size / 1024,
406 arm_pdcache_line_size, arm_pdcache_ways,
407 wtnames[arm_pcache_type]);
408 } else {
409 printf("%s: %dKB/%dB %d-way Instruction cache\n",
410 dv->dv_xname, arm_picache_size / 1024,
411 arm_picache_line_size, arm_picache_ways);
412 printf("%s: %dKB/%dB %d-way %s Data cache\n",
413 dv->dv_xname, arm_pdcache_size / 1024,
414 arm_pdcache_line_size, arm_pdcache_ways,
415 wtnames[arm_pcache_type]);
416 }
417
418 skip_pcache:
419
420 switch (cpu_class) {
421 #ifdef CPU_ARM2
422 case CPU_CLASS_ARM2:
423 #endif
424 #ifdef CPU_ARM250
425 case CPU_CLASS_ARM2AS:
426 #endif
427 #ifdef CPU_ARM3
428 case CPU_CLASS_ARM3:
429 #endif
430 #ifdef CPU_ARM6
431 case CPU_CLASS_ARM6:
432 #endif
433 #ifdef CPU_ARM7
434 case CPU_CLASS_ARM7:
435 #endif
436 #ifdef CPU_ARM7TDMI
437 case CPU_CLASS_ARM7TDMI:
438 #endif
439 #ifdef CPU_ARM8
440 case CPU_CLASS_ARM8:
441 #endif
442 #ifdef CPU_ARM9
443 case CPU_CLASS_ARM9TDMI:
444 #endif
445 #ifdef CPU_SA110
446 case CPU_CLASS_SA1:
447 #endif
448 #ifdef CPU_XSCALE
449 case CPU_CLASS_XSCALE:
450 #endif
451 break;
452 default:
453 if (cpu_classes[cpu_class].class_option != NULL)
454 printf("%s: %s does not fully support this CPU."
455 "\n", dv->dv_xname, ostype);
456 else {
457 printf("%s: This kernel does not fully support "
458 "this CPU.\n", dv->dv_xname);
459 printf("%s: Recompile with \"options %s\" to "
460 "correct this.\n", dv->dv_xname,
461 cpu_classes[cpu_class].class_option);
462 }
463 break;
464 }
465
466 }
467
468 /* End of cpu.c */
469