cpu.c revision 1.30 1 /* $NetBSD: cpu.c,v 1.30 2002/03/24 22:02:58 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.30 2002/03/24 22:02:58 thorpej Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <uvm/uvm_extern.h>
56 #include <machine/conf.h>
57 #include <machine/cpu.h>
58 #include <arm/undefined.h>
59
60 #ifdef ARMFPE
61 #include <machine/bootconfig.h> /* For boot args */
62 #include <arm/fpe-arm/armfpe.h>
63 #endif
64
65 char cpu_model[256];
66
67 /* Prototypes */
68 void identify_arm_cpu(struct device *dv, struct cpu_info *);
69
70 /*
71 * Identify the master (boot) CPU
72 */
73
74 void
75 cpu_attach(struct device *dv)
76 {
77 int usearmfpe;
78
79 usearmfpe = 1; /* when compiled in, its enabled by default */
80
81 curcpu()->ci_dev = dv;
82
83 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
84 NULL, dv->dv_xname, "arm700swibug");
85
86 /* Get the cpu ID from coprocessor 15 */
87
88 curcpu()->ci_cpuid = cpu_id();
89 curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
90 curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
91
92 identify_arm_cpu(dv, curcpu());
93
94 if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
95 printf("%s: SA-110 with bugged STM^ instruction\n",
96 dv->dv_xname);
97 }
98
99 #ifdef CPU_ARM8
100 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
101 int clock = arm8_clock_config(0, 0);
102 char *fclk;
103 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
104 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
105 printf("%s", (clock & 2) ? " sync" : "");
106 switch ((clock >> 2) & 3) {
107 case 0:
108 fclk = "bus clock";
109 break;
110 case 1:
111 fclk = "ref clock";
112 break;
113 case 3:
114 fclk = "pll";
115 break;
116 default:
117 fclk = "illegal";
118 break;
119 }
120 printf(" fclk source=%s\n", fclk);
121 }
122 #endif
123
124 #ifdef ARMFPE
125 /*
126 * Ok now we test for an FPA
127 * At this point no floating point emulator has been installed.
128 * This means any FP instruction will cause undefined exception.
129 * We install a temporay coproc 1 handler which will modify
130 * undefined_test if it is called.
131 * We then try to read the FP status register. If undefined_test
132 * has been decremented then the instruction was not handled by
133 * an FPA so we know the FPA is missing. If undefined_test is
134 * still 1 then we know the instruction was handled by an FPA.
135 * We then remove our test handler and look at the
136 * FP status register for identification.
137 */
138
139 /*
140 * Ok if ARMFPE is defined and the boot options request the
141 * ARM FPE then it will be installed as the FPE.
142 * This is just while I work on integrating the new FPE.
143 * It means the new FPE gets installed if compiled int (ARMFPE
144 * defined) and also gives me a on/off option when I boot in
145 * case the new FPE is causing panics.
146 */
147
148
149 if (boot_args)
150 get_bootconf_option(boot_args, "armfpe",
151 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
152 if (usearmfpe)
153 initialise_arm_fpe();
154 #endif
155 }
156
157 enum cpu_class {
158 CPU_CLASS_NONE,
159 CPU_CLASS_ARM2,
160 CPU_CLASS_ARM2AS,
161 CPU_CLASS_ARM3,
162 CPU_CLASS_ARM6,
163 CPU_CLASS_ARM7,
164 CPU_CLASS_ARM7TDMI,
165 CPU_CLASS_ARM8,
166 CPU_CLASS_ARM9TDMI,
167 CPU_CLASS_ARM9ES,
168 CPU_CLASS_SA1,
169 CPU_CLASS_XSCALE,
170 CPU_CLASS_ARM10E
171 };
172
173 static const char *generic_steppings[16] = {
174 "rev 0", "rev 1", "rev 2", "rev 3",
175 "rev 4", "rev 5", "rev 6", "rev 7",
176 "rev 8", "rev 9", "rev 10", "rev 11",
177 "rev 12", "rev 13", "rev 14", "rev 15",
178 };
179
180 static const char *sa110_steppings[16] = {
181 "rev 0", "step J", "step K", "step S",
182 "step T", "rev 5", "rev 6", "rev 7",
183 "rev 8", "rev 9", "rev 10", "rev 11",
184 "rev 12", "rev 13", "rev 14", "rev 15",
185 };
186
187 static const char *sa1100_steppings[16] = {
188 "rev 0", "step B", "step C", "rev 3",
189 "rev 4", "rev 5", "rev 6", "rev 7",
190 "step D", "step E", "rev 10" "step G",
191 "rev 12", "rev 13", "rev 14", "rev 15",
192 };
193
194 static const char *sa1110_steppings[16] = {
195 "step A-0", "rev 1", "rev 2", "rev 3",
196 "step B-0", "step B-1", "step B-2", "step B-3",
197 "step B-4", "step B-5", "rev 10", "rev 11",
198 "rev 12", "rev 13", "rev 14", "rev 15",
199 };
200
201 static const char *i80200_steppings[16] = {
202 "step A-0", "step A-1", "step B-0", "step C-0",
203 "rev 4", "rev 5", "rev 6", "rev 7",
204 "rev 8", "rev 9", "rev 10", "rev 11",
205 "rev 12", "rev 13", "rev 14", "rev 15",
206 };
207
208 struct cpuidtab {
209 u_int32_t cpuid;
210 enum cpu_class cpu_class;
211 const char *cpu_name;
212 const char **cpu_steppings;
213 };
214
215 const struct cpuidtab cpuids[] = {
216 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
217 generic_steppings },
218 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
219 generic_steppings },
220
221 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
222 generic_steppings },
223
224 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
225 generic_steppings },
226 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
227 generic_steppings },
228 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
229 generic_steppings },
230
231 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
232 generic_steppings },
233 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
234 generic_steppings },
235 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
236 generic_steppings },
237 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
238 generic_steppings },
239 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
240 generic_steppings },
241 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
242 generic_steppings },
243 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
244 generic_steppings },
245 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
246 generic_steppings },
247 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
248 generic_steppings },
249
250 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
251 generic_steppings },
252
253 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
254 generic_steppings },
255 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
256 generic_steppings },
257 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
258 generic_steppings },
259 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
260 generic_steppings },
261 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
262 generic_steppings },
263 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
264 generic_steppings },
265
266 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
267 sa110_steppings },
268 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
269 sa1100_steppings },
270 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
271 sa1110_steppings },
272
273 { CPU_ID_I80200, CPU_CLASS_XSCALE, "i80200",
274 i80200_steppings },
275
276 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
277 generic_steppings },
278
279 { 0, CPU_CLASS_NONE, NULL, NULL }
280 };
281
282 struct cpu_classtab {
283 const char *class_name;
284 const char *class_option;
285 };
286
287 const struct cpu_classtab cpu_classes[] = {
288 { "unknown", NULL }, /* CPU_CLASS_NONE */
289 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
290 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
291 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
292 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
293 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
294 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
295 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
296 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
297 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
298 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
299 { "XScale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
300 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
301 };
302
303 /*
304 * Report the type of the specifed arm processor. This uses the generic and
305 * arm specific information in the cpu structure to identify the processor.
306 * The remaining fields in the cpu structure are filled in appropriately.
307 */
308
309 static const char *wtnames[] = {
310 "write-through",
311 "write-back",
312 "write-back",
313 "**unknown 3**",
314 "**unknown 4**",
315 "write-back-locking", /* XXX XScale-specific? */
316 "write-back-locking-A",
317 "write-back-locking-B",
318 "**unknown 8**",
319 "**unknown 9**",
320 "**unknown 10**",
321 "**unknown 11**",
322 "**unknown 12**",
323 "**unknown 13**",
324 "**unknown 14**",
325 "**unknown 15**",
326 };
327
328 void
329 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
330 {
331 u_int cpuid;
332 enum cpu_class cpu_class;
333 int i;
334
335 cpuid = ci->ci_cpuid;
336
337 if (cpuid == 0) {
338 printf("Processor failed probe - no CPU ID\n");
339 return;
340 }
341
342 for (i = 0; cpuids[i].cpuid != 0; i++)
343 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
344 cpu_class = cpuids[i].cpu_class;
345 sprintf(cpu_model, "%s %s (%s core)",
346 cpuids[i].cpu_name,
347 cpuids[i].cpu_steppings[cpuid &
348 CPU_ID_REVISION_MASK],
349 cpu_classes[cpu_class].class_name);
350 break;
351 }
352
353 if (cpuids[i].cpuid == 0)
354 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
355
356 printf(": %s\n", cpu_model);
357
358 printf("%s:", dv->dv_xname);
359
360 switch (cpu_class) {
361 case CPU_CLASS_ARM6:
362 case CPU_CLASS_ARM7:
363 case CPU_CLASS_ARM7TDMI:
364 case CPU_CLASS_ARM8:
365 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
366 printf(" IDC disabled");
367 else
368 printf(" IDC enabled");
369 break;
370 case CPU_CLASS_ARM9TDMI:
371 case CPU_CLASS_SA1:
372 case CPU_CLASS_XSCALE:
373 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
374 printf(" DC disabled");
375 else
376 printf(" DC enabled");
377 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
378 printf(" IC disabled");
379 else
380 printf(" IC enabled");
381 break;
382 default:
383 break;
384 }
385 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
386 printf(" WB disabled");
387 else
388 printf(" WB enabled");
389
390 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
391 printf(" LABT");
392 else
393 printf(" EABT");
394
395 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
396 printf(" branch prediction enabled");
397
398 printf("\n");
399
400 /* Print cache info. */
401 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
402 goto skip_pcache;
403
404 if (arm_pcache_unified) {
405 printf("%s: %dKB/%dB %d-way %s unified cache\n",
406 dv->dv_xname, arm_pdcache_size / 1024,
407 arm_pdcache_line_size, arm_pdcache_ways,
408 wtnames[arm_pcache_type]);
409 } else {
410 printf("%s: %dKB/%dB %d-way Instruction cache\n",
411 dv->dv_xname, arm_picache_size / 1024,
412 arm_picache_line_size, arm_picache_ways);
413 printf("%s: %dKB/%dB %d-way %s Data cache\n",
414 dv->dv_xname, arm_pdcache_size / 1024,
415 arm_pdcache_line_size, arm_pdcache_ways,
416 wtnames[arm_pcache_type]);
417 }
418
419 skip_pcache:
420
421 switch (cpu_class) {
422 #ifdef CPU_ARM2
423 case CPU_CLASS_ARM2:
424 #endif
425 #ifdef CPU_ARM250
426 case CPU_CLASS_ARM2AS:
427 #endif
428 #ifdef CPU_ARM3
429 case CPU_CLASS_ARM3:
430 #endif
431 #ifdef CPU_ARM6
432 case CPU_CLASS_ARM6:
433 #endif
434 #ifdef CPU_ARM7
435 case CPU_CLASS_ARM7:
436 #endif
437 #ifdef CPU_ARM7TDMI
438 case CPU_CLASS_ARM7TDMI:
439 #endif
440 #ifdef CPU_ARM8
441 case CPU_CLASS_ARM8:
442 #endif
443 #ifdef CPU_ARM9
444 case CPU_CLASS_ARM9TDMI:
445 #endif
446 #ifdef CPU_SA110
447 case CPU_CLASS_SA1:
448 #endif
449 #ifdef CPU_XSCALE
450 case CPU_CLASS_XSCALE:
451 #endif
452 break;
453 default:
454 if (cpu_classes[cpu_class].class_option != NULL)
455 printf("%s: %s does not fully support this CPU."
456 "\n", dv->dv_xname, ostype);
457 else {
458 printf("%s: This kernel does not fully support "
459 "this CPU.\n", dv->dv_xname);
460 printf("%s: Recompile with \"options %s\" to "
461 "correct this.\n", dv->dv_xname,
462 cpu_classes[cpu_class].class_option);
463 }
464 break;
465 }
466
467 }
468
469 /* End of cpu.c */
470