Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.34
      1 /*	$NetBSD: cpu.c,v 1.34 2002/05/02 22:57:36 rjs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 
     46 #include <sys/param.h>
     47 
     48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.34 2002/05/02 22:57:36 rjs Exp $");
     49 
     50 #include <sys/systm.h>
     51 #include <sys/malloc.h>
     52 #include <sys/device.h>
     53 #include <sys/proc.h>
     54 #include <uvm/uvm_extern.h>
     55 #include <machine/conf.h>
     56 #include <machine/cpu.h>
     57 
     58 #include <arm/cpuconf.h>
     59 #include <arm/undefined.h>
     60 
     61 #ifdef ARMFPE
     62 #include <machine/bootconfig.h> /* For boot args */
     63 #include <arm/fpe-arm/armfpe.h>
     64 #endif
     65 
     66 char cpu_model[256];
     67 
     68 /* Prototypes */
     69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     70 
     71 /*
     72  * Identify the master (boot) CPU
     73  */
     74 
     75 void
     76 cpu_attach(struct device *dv)
     77 {
     78 	int usearmfpe;
     79 
     80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     81 
     82 	curcpu()->ci_dev = dv;
     83 
     84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     85 	    NULL, dv->dv_xname, "arm700swibug");
     86 
     87 	/* Get the cpu ID from coprocessor 15 */
     88 
     89 	curcpu()->ci_cpuid = cpu_id();
     90 	curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
     91 	curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
     92 
     93 	identify_arm_cpu(dv, curcpu());
     94 
     95 	if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
     96 		printf("%s: SA-110 with bugged STM^ instruction\n",
     97 		       dv->dv_xname);
     98 	}
     99 
    100 #ifdef CPU_ARM8
    101 	if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    102 		int clock = arm8_clock_config(0, 0);
    103 		char *fclk;
    104 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    105 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    106 		printf("%s", (clock & 2) ? " sync" : "");
    107 		switch ((clock >> 2) & 3) {
    108 		case 0:
    109 			fclk = "bus clock";
    110 			break;
    111 		case 1:
    112 			fclk = "ref clock";
    113 			break;
    114 		case 3:
    115 			fclk = "pll";
    116 			break;
    117 		default:
    118 			fclk = "illegal";
    119 			break;
    120 		}
    121 		printf(" fclk source=%s\n", fclk);
    122  	}
    123 #endif
    124 
    125 #ifdef ARMFPE
    126 	/*
    127 	 * Ok now we test for an FPA
    128 	 * At this point no floating point emulator has been installed.
    129 	 * This means any FP instruction will cause undefined exception.
    130 	 * We install a temporay coproc 1 handler which will modify
    131 	 * undefined_test if it is called.
    132 	 * We then try to read the FP status register. If undefined_test
    133 	 * has been decremented then the instruction was not handled by
    134 	 * an FPA so we know the FPA is missing. If undefined_test is
    135 	 * still 1 then we know the instruction was handled by an FPA.
    136 	 * We then remove our test handler and look at the
    137 	 * FP status register for identification.
    138 	 */
    139 
    140 	/*
    141 	 * Ok if ARMFPE is defined and the boot options request the
    142 	 * ARM FPE then it will be installed as the FPE.
    143 	 * This is just while I work on integrating the new FPE.
    144 	 * It means the new FPE gets installed if compiled int (ARMFPE
    145 	 * defined) and also gives me a on/off option when I boot in
    146 	 * case the new FPE is causing panics.
    147 	 */
    148 
    149 
    150 	if (boot_args)
    151 		get_bootconf_option(boot_args, "armfpe",
    152 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    153 	if (usearmfpe)
    154 		initialise_arm_fpe();
    155 #endif
    156 }
    157 
    158 enum cpu_class {
    159 	CPU_CLASS_NONE,
    160 	CPU_CLASS_ARM2,
    161 	CPU_CLASS_ARM2AS,
    162 	CPU_CLASS_ARM3,
    163 	CPU_CLASS_ARM6,
    164 	CPU_CLASS_ARM7,
    165 	CPU_CLASS_ARM7TDMI,
    166 	CPU_CLASS_ARM8,
    167 	CPU_CLASS_ARM9TDMI,
    168 	CPU_CLASS_ARM9ES,
    169 	CPU_CLASS_SA1,
    170 	CPU_CLASS_XSCALE,
    171 	CPU_CLASS_ARM10E
    172 };
    173 
    174 static const char *generic_steppings[16] = {
    175 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    176 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    177 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    178 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    179 };
    180 
    181 static const char *sa110_steppings[16] = {
    182 	"rev 0",	"step J",	"step K",	"step S",
    183 	"step T",	"rev 5",	"rev 6",	"rev 7",
    184 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    185 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    186 };
    187 
    188 static const char *sa1100_steppings[16] = {
    189 	"rev 0",	"step B",	"step C",	"rev 3",
    190 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    191 	"step D",	"step E",	"rev 10"	"step G",
    192 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    193 };
    194 
    195 static const char *sa1110_steppings[16] = {
    196 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    197 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    198 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    199 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    200 };
    201 
    202 static const char *xscale_steppings[16] = {
    203 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    204 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    205 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    206 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    207 };
    208 
    209 struct cpuidtab {
    210 	u_int32_t	cpuid;
    211 	enum		cpu_class cpu_class;
    212 	const char	*cpu_name;
    213 	const char	**cpu_steppings;
    214 };
    215 
    216 const struct cpuidtab cpuids[] = {
    217 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    218 	  generic_steppings },
    219 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    220 	  generic_steppings },
    221 
    222 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    223 	  generic_steppings },
    224 
    225 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    226 	  generic_steppings },
    227 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    228 	  generic_steppings },
    229 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    230 	  generic_steppings },
    231 
    232 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    233 	  generic_steppings },
    234 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    235 	  generic_steppings },
    236 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    237 	  generic_steppings },
    238 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    239 	  generic_steppings },
    240 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    241 	  generic_steppings },
    242 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    243 	  generic_steppings },
    244 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    245 	  generic_steppings },
    246 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    247 	  generic_steppings },
    248 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    249 	  generic_steppings },
    250 
    251 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    252 	  generic_steppings },
    253 
    254 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    255 	  generic_steppings },
    256 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    257 	  generic_steppings },
    258 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    259 	  generic_steppings },
    260 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    261 	  generic_steppings },
    262 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    263 	  generic_steppings },
    264 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    265 	  generic_steppings },
    266 
    267 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    268 	  sa110_steppings },
    269 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    270 	  sa1100_steppings },
    271 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    272 	  sa1110_steppings },
    273 
    274 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    275 	  xscale_steppings },
    276 
    277 	{ CPU_ID_80321,		CPU_CLASS_XSCALE,	"i80321",
    278 	  xscale_steppings },
    279 
    280 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
    281 	  generic_steppings },
    282 
    283 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    284 };
    285 
    286 struct cpu_classtab {
    287 	const char	*class_name;
    288 	const char	*class_option;
    289 };
    290 
    291 const struct cpu_classtab cpu_classes[] = {
    292 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    293 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    294 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    295 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    296 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    297 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    298 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    299 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    300 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    301 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    302 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    303 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    304 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
    305 };
    306 
    307 /*
    308  * Report the type of the specifed arm processor. This uses the generic and
    309  * arm specific information in the cpu structure to identify the processor.
    310  * The remaining fields in the cpu structure are filled in appropriately.
    311  */
    312 
    313 static const char *wtnames[] = {
    314 	"write-through",
    315 	"write-back",
    316 	"write-back",
    317 	"**unknown 3**",
    318 	"**unknown 4**",
    319 	"write-back-locking",		/* XXX XScale-specific? */
    320 	"write-back-locking-A",
    321 	"write-back-locking-B",
    322 	"**unknown 8**",
    323 	"**unknown 9**",
    324 	"**unknown 10**",
    325 	"**unknown 11**",
    326 	"**unknown 12**",
    327 	"**unknown 13**",
    328 	"**unknown 14**",
    329 	"**unknown 15**",
    330 };
    331 
    332 void
    333 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    334 {
    335 	u_int cpuid;
    336 	enum cpu_class cpu_class;
    337 	int i;
    338 
    339 	cpuid = ci->ci_cpuid;
    340 
    341 	if (cpuid == 0) {
    342 		printf("Processor failed probe - no CPU ID\n");
    343 		return;
    344 	}
    345 
    346 	for (i = 0; cpuids[i].cpuid != 0; i++)
    347 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    348 			cpu_class = cpuids[i].cpu_class;
    349 			sprintf(cpu_model, "%s %s (%s core)",
    350 			    cpuids[i].cpu_name,
    351 			    cpuids[i].cpu_steppings[cpuid &
    352 						    CPU_ID_REVISION_MASK],
    353 			    cpu_classes[cpu_class].class_name);
    354 			break;
    355 		}
    356 
    357 	if (cpuids[i].cpuid == 0)
    358 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    359 
    360 	printf(": %s\n", cpu_model);
    361 
    362 	printf("%s:", dv->dv_xname);
    363 
    364 	switch (cpu_class) {
    365 	case CPU_CLASS_ARM6:
    366 	case CPU_CLASS_ARM7:
    367 	case CPU_CLASS_ARM7TDMI:
    368 	case CPU_CLASS_ARM8:
    369 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    370 			printf(" IDC disabled");
    371 		else
    372 			printf(" IDC enabled");
    373 		break;
    374 	case CPU_CLASS_ARM9TDMI:
    375 	case CPU_CLASS_SA1:
    376 	case CPU_CLASS_XSCALE:
    377 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    378 			printf(" DC disabled");
    379 		else
    380 			printf(" DC enabled");
    381 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    382 			printf(" IC disabled");
    383 		else
    384 			printf(" IC enabled");
    385 		break;
    386 	default:
    387 		break;
    388 	}
    389 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    390 		printf(" WB disabled");
    391 	else
    392 		printf(" WB enabled");
    393 
    394 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    395 		printf(" LABT");
    396 	else
    397 		printf(" EABT");
    398 
    399 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    400 		printf(" branch prediction enabled");
    401 
    402 	printf("\n");
    403 
    404 	/* Print cache info. */
    405 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    406 		goto skip_pcache;
    407 
    408 	if (arm_pcache_unified) {
    409 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
    410 		    dv->dv_xname, arm_pdcache_size / 1024,
    411 		    arm_pdcache_line_size, arm_pdcache_ways,
    412 		    wtnames[arm_pcache_type]);
    413 	} else {
    414 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
    415 		    dv->dv_xname, arm_picache_size / 1024,
    416 		    arm_picache_line_size, arm_picache_ways);
    417 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
    418 		    dv->dv_xname, arm_pdcache_size / 1024,
    419 		    arm_pdcache_line_size, arm_pdcache_ways,
    420 		    wtnames[arm_pcache_type]);
    421 	}
    422 
    423  skip_pcache:
    424 
    425 	switch (cpu_class) {
    426 #ifdef CPU_ARM2
    427 	case CPU_CLASS_ARM2:
    428 #endif
    429 #ifdef CPU_ARM250
    430 	case CPU_CLASS_ARM2AS:
    431 #endif
    432 #ifdef CPU_ARM3
    433 	case CPU_CLASS_ARM3:
    434 #endif
    435 #ifdef CPU_ARM6
    436 	case CPU_CLASS_ARM6:
    437 #endif
    438 #ifdef CPU_ARM7
    439 	case CPU_CLASS_ARM7:
    440 #endif
    441 #ifdef CPU_ARM7TDMI
    442 	case CPU_CLASS_ARM7TDMI:
    443 #endif
    444 #ifdef CPU_ARM8
    445 	case CPU_CLASS_ARM8:
    446 #endif
    447 #ifdef CPU_ARM9
    448 	case CPU_CLASS_ARM9TDMI:
    449 #endif
    450 #if defined(CPU_SA110) || defined(CPU_SA1100) || defined(CPU_SA1110)
    451 	case CPU_CLASS_SA1:
    452 #endif
    453 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321)
    454 	case CPU_CLASS_XSCALE:
    455 #endif
    456 		break;
    457 	default:
    458 		if (cpu_classes[cpu_class].class_option != NULL)
    459 			printf("%s: %s does not fully support this CPU."
    460 			       "\n", dv->dv_xname, ostype);
    461 		else {
    462 			printf("%s: This kernel does not fully support "
    463 			       "this CPU.\n", dv->dv_xname);
    464 			printf("%s: Recompile with \"options %s\" to "
    465 			       "correct this.\n", dv->dv_xname,
    466 			       cpu_classes[cpu_class].class_option);
    467 		}
    468 		break;
    469 	}
    470 
    471 }
    472 
    473 /* End of cpu.c */
    474