Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.36
      1 /*	$NetBSD: cpu.c,v 1.36 2002/05/10 17:50:25 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 
     46 #include <sys/param.h>
     47 
     48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.36 2002/05/10 17:50:25 thorpej Exp $");
     49 
     50 #include <sys/systm.h>
     51 #include <sys/malloc.h>
     52 #include <sys/device.h>
     53 #include <sys/proc.h>
     54 #include <uvm/uvm_extern.h>
     55 #include <machine/conf.h>
     56 #include <machine/cpu.h>
     57 
     58 #include <arm/cpuconf.h>
     59 #include <arm/undefined.h>
     60 
     61 #ifdef ARMFPE
     62 #include <machine/bootconfig.h> /* For boot args */
     63 #include <arm/fpe-arm/armfpe.h>
     64 #endif
     65 
     66 char cpu_model[256];
     67 
     68 /* Prototypes */
     69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     70 
     71 /*
     72  * Identify the master (boot) CPU
     73  */
     74 
     75 void
     76 cpu_attach(struct device *dv)
     77 {
     78 	int usearmfpe;
     79 
     80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     81 
     82 	curcpu()->ci_dev = dv;
     83 
     84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     85 	    NULL, dv->dv_xname, "arm700swibug");
     86 
     87 	/* Get the cpu ID from coprocessor 15 */
     88 
     89 	curcpu()->ci_cpuid = cpu_id();
     90 	curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
     91 	curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
     92 
     93 	identify_arm_cpu(dv, curcpu());
     94 
     95 	if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
     96 		printf("%s: SA-110 with bugged STM^ instruction\n",
     97 		       dv->dv_xname);
     98 	}
     99 
    100 #ifdef CPU_ARM8
    101 	if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    102 		int clock = arm8_clock_config(0, 0);
    103 		char *fclk;
    104 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    105 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    106 		printf("%s", (clock & 2) ? " sync" : "");
    107 		switch ((clock >> 2) & 3) {
    108 		case 0:
    109 			fclk = "bus clock";
    110 			break;
    111 		case 1:
    112 			fclk = "ref clock";
    113 			break;
    114 		case 3:
    115 			fclk = "pll";
    116 			break;
    117 		default:
    118 			fclk = "illegal";
    119 			break;
    120 		}
    121 		printf(" fclk source=%s\n", fclk);
    122  	}
    123 #endif
    124 
    125 #ifdef ARMFPE
    126 	/*
    127 	 * Ok now we test for an FPA
    128 	 * At this point no floating point emulator has been installed.
    129 	 * This means any FP instruction will cause undefined exception.
    130 	 * We install a temporay coproc 1 handler which will modify
    131 	 * undefined_test if it is called.
    132 	 * We then try to read the FP status register. If undefined_test
    133 	 * has been decremented then the instruction was not handled by
    134 	 * an FPA so we know the FPA is missing. If undefined_test is
    135 	 * still 1 then we know the instruction was handled by an FPA.
    136 	 * We then remove our test handler and look at the
    137 	 * FP status register for identification.
    138 	 */
    139 
    140 	/*
    141 	 * Ok if ARMFPE is defined and the boot options request the
    142 	 * ARM FPE then it will be installed as the FPE.
    143 	 * This is just while I work on integrating the new FPE.
    144 	 * It means the new FPE gets installed if compiled int (ARMFPE
    145 	 * defined) and also gives me a on/off option when I boot in
    146 	 * case the new FPE is causing panics.
    147 	 */
    148 
    149 
    150 	if (boot_args)
    151 		get_bootconf_option(boot_args, "armfpe",
    152 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    153 	if (usearmfpe)
    154 		initialise_arm_fpe();
    155 #endif
    156 }
    157 
    158 enum cpu_class {
    159 	CPU_CLASS_NONE,
    160 	CPU_CLASS_ARM2,
    161 	CPU_CLASS_ARM2AS,
    162 	CPU_CLASS_ARM3,
    163 	CPU_CLASS_ARM6,
    164 	CPU_CLASS_ARM7,
    165 	CPU_CLASS_ARM7TDMI,
    166 	CPU_CLASS_ARM8,
    167 	CPU_CLASS_ARM9TDMI,
    168 	CPU_CLASS_ARM9ES,
    169 	CPU_CLASS_SA1,
    170 	CPU_CLASS_XSCALE,
    171 	CPU_CLASS_ARM10E
    172 };
    173 
    174 static const char *generic_steppings[16] = {
    175 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    176 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    177 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    178 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    179 };
    180 
    181 static const char *sa110_steppings[16] = {
    182 	"rev 0",	"step J",	"step K",	"step S",
    183 	"step T",	"rev 5",	"rev 6",	"rev 7",
    184 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    185 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    186 };
    187 
    188 static const char *sa1100_steppings[16] = {
    189 	"rev 0",	"step B",	"step C",	"rev 3",
    190 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    191 	"step D",	"step E",	"rev 10"	"step G",
    192 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    193 };
    194 
    195 static const char *sa1110_steppings[16] = {
    196 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    197 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    198 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    199 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    200 };
    201 
    202 static const char *ixp1200_steppings[16] = {
    203 	"step A",	"step B",	"rev 2",	"step C",
    204 	"rev 4",	"step A (IXP1250)","rev 6",	"rev 7",
    205 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    206 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    207 };
    208 
    209 static const char *xscale_steppings[16] = {
    210 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    211 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    212 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    214 };
    215 
    216 static const char *pxa2x0_steppings[16] = {
    217 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    218 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    219 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    221 };
    222 
    223 struct cpuidtab {
    224 	u_int32_t	cpuid;
    225 	enum		cpu_class cpu_class;
    226 	const char	*cpu_name;
    227 	const char	**cpu_steppings;
    228 };
    229 
    230 const struct cpuidtab cpuids[] = {
    231 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    232 	  generic_steppings },
    233 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    234 	  generic_steppings },
    235 
    236 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    237 	  generic_steppings },
    238 
    239 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    240 	  generic_steppings },
    241 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    242 	  generic_steppings },
    243 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    244 	  generic_steppings },
    245 
    246 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    247 	  generic_steppings },
    248 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    249 	  generic_steppings },
    250 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    251 	  generic_steppings },
    252 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    253 	  generic_steppings },
    254 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    255 	  generic_steppings },
    256 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    257 	  generic_steppings },
    258 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    259 	  generic_steppings },
    260 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    261 	  generic_steppings },
    262 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    263 	  generic_steppings },
    264 
    265 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    266 	  generic_steppings },
    267 
    268 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    269 	  generic_steppings },
    270 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    271 	  generic_steppings },
    272 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    273 	  generic_steppings },
    274 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    275 	  generic_steppings },
    276 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    277 	  generic_steppings },
    278 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    279 	  generic_steppings },
    280 
    281 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    282 	  sa110_steppings },
    283 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    284 	  sa1100_steppings },
    285 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    286 	  sa1110_steppings },
    287 
    288 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    289 	  ixp1200_steppings },
    290 
    291 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    292 	  xscale_steppings },
    293 
    294 	{ CPU_ID_80321,		CPU_CLASS_XSCALE,	"i80321",
    295 	  xscale_steppings },
    296 
    297 	{ CPU_ID_PXA250,	CPU_CLASS_XSCALE,	"PXA250",
    298 	  pxa2x0_steppings },
    299 	{ CPU_ID_PXA210,	CPU_CLASS_XSCALE,	"PXA210",
    300 	  pxa2x0_steppings },	/* XXX */
    301 
    302 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
    303 	  generic_steppings },
    304 
    305 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    306 };
    307 
    308 struct cpu_classtab {
    309 	const char	*class_name;
    310 	const char	*class_option;
    311 };
    312 
    313 const struct cpu_classtab cpu_classes[] = {
    314 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    315 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    316 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    317 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    318 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    319 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    320 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    321 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    322 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    323 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    324 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    325 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    326 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
    327 };
    328 
    329 /*
    330  * Report the type of the specifed arm processor. This uses the generic and
    331  * arm specific information in the cpu structure to identify the processor.
    332  * The remaining fields in the cpu structure are filled in appropriately.
    333  */
    334 
    335 static const char *wtnames[] = {
    336 	"write-through",
    337 	"write-back",
    338 	"write-back",
    339 	"**unknown 3**",
    340 	"**unknown 4**",
    341 	"write-back-locking",		/* XXX XScale-specific? */
    342 	"write-back-locking-A",
    343 	"write-back-locking-B",
    344 	"**unknown 8**",
    345 	"**unknown 9**",
    346 	"**unknown 10**",
    347 	"**unknown 11**",
    348 	"**unknown 12**",
    349 	"**unknown 13**",
    350 	"**unknown 14**",
    351 	"**unknown 15**",
    352 };
    353 
    354 void
    355 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    356 {
    357 	u_int cpuid;
    358 	enum cpu_class cpu_class;
    359 	int i;
    360 
    361 	cpuid = ci->ci_cpuid;
    362 
    363 	if (cpuid == 0) {
    364 		printf("Processor failed probe - no CPU ID\n");
    365 		return;
    366 	}
    367 
    368 	for (i = 0; cpuids[i].cpuid != 0; i++)
    369 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    370 			cpu_class = cpuids[i].cpu_class;
    371 			sprintf(cpu_model, "%s %s (%s core)",
    372 			    cpuids[i].cpu_name,
    373 			    cpuids[i].cpu_steppings[cpuid &
    374 						    CPU_ID_REVISION_MASK],
    375 			    cpu_classes[cpu_class].class_name);
    376 			break;
    377 		}
    378 
    379 	if (cpuids[i].cpuid == 0)
    380 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    381 
    382 	printf(": %s\n", cpu_model);
    383 
    384 	printf("%s:", dv->dv_xname);
    385 
    386 	switch (cpu_class) {
    387 	case CPU_CLASS_ARM6:
    388 	case CPU_CLASS_ARM7:
    389 	case CPU_CLASS_ARM7TDMI:
    390 	case CPU_CLASS_ARM8:
    391 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    392 			printf(" IDC disabled");
    393 		else
    394 			printf(" IDC enabled");
    395 		break;
    396 	case CPU_CLASS_ARM9TDMI:
    397 	case CPU_CLASS_SA1:
    398 	case CPU_CLASS_XSCALE:
    399 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    400 			printf(" DC disabled");
    401 		else
    402 			printf(" DC enabled");
    403 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    404 			printf(" IC disabled");
    405 		else
    406 			printf(" IC enabled");
    407 		break;
    408 	default:
    409 		break;
    410 	}
    411 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    412 		printf(" WB disabled");
    413 	else
    414 		printf(" WB enabled");
    415 
    416 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    417 		printf(" LABT");
    418 	else
    419 		printf(" EABT");
    420 
    421 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    422 		printf(" branch prediction enabled");
    423 
    424 	printf("\n");
    425 
    426 	/* Print cache info. */
    427 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    428 		goto skip_pcache;
    429 
    430 	if (arm_pcache_unified) {
    431 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
    432 		    dv->dv_xname, arm_pdcache_size / 1024,
    433 		    arm_pdcache_line_size, arm_pdcache_ways,
    434 		    wtnames[arm_pcache_type]);
    435 	} else {
    436 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
    437 		    dv->dv_xname, arm_picache_size / 1024,
    438 		    arm_picache_line_size, arm_picache_ways);
    439 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
    440 		    dv->dv_xname, arm_pdcache_size / 1024,
    441 		    arm_pdcache_line_size, arm_pdcache_ways,
    442 		    wtnames[arm_pcache_type]);
    443 	}
    444 
    445  skip_pcache:
    446 
    447 	switch (cpu_class) {
    448 #ifdef CPU_ARM2
    449 	case CPU_CLASS_ARM2:
    450 #endif
    451 #ifdef CPU_ARM250
    452 	case CPU_CLASS_ARM2AS:
    453 #endif
    454 #ifdef CPU_ARM3
    455 	case CPU_CLASS_ARM3:
    456 #endif
    457 #ifdef CPU_ARM6
    458 	case CPU_CLASS_ARM6:
    459 #endif
    460 #ifdef CPU_ARM7
    461 	case CPU_CLASS_ARM7:
    462 #endif
    463 #ifdef CPU_ARM7TDMI
    464 	case CPU_CLASS_ARM7TDMI:
    465 #endif
    466 #ifdef CPU_ARM8
    467 	case CPU_CLASS_ARM8:
    468 #endif
    469 #ifdef CPU_ARM9
    470 	case CPU_CLASS_ARM9TDMI:
    471 #endif
    472 #if defined(CPU_SA110) || defined(CPU_SA1100) || defined(CPU_SA1110)
    473 	case CPU_CLASS_SA1:
    474 #endif
    475 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    476     defined(CPU_XSCALE_PXA2X0)
    477 	case CPU_CLASS_XSCALE:
    478 #endif
    479 		break;
    480 	default:
    481 		if (cpu_classes[cpu_class].class_option != NULL)
    482 			printf("%s: %s does not fully support this CPU."
    483 			       "\n", dv->dv_xname, ostype);
    484 		else {
    485 			printf("%s: This kernel does not fully support "
    486 			       "this CPU.\n", dv->dv_xname);
    487 			printf("%s: Recompile with \"options %s\" to "
    488 			       "correct this.\n", dv->dv_xname,
    489 			       cpu_classes[cpu_class].class_option);
    490 		}
    491 		break;
    492 	}
    493 
    494 }
    495 
    496 /* End of cpu.c */
    497