cpu.c revision 1.36 1 /* $NetBSD: cpu.c,v 1.36 2002/05/10 17:50:25 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45
46 #include <sys/param.h>
47
48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.36 2002/05/10 17:50:25 thorpej Exp $");
49
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <uvm/uvm_extern.h>
55 #include <machine/conf.h>
56 #include <machine/cpu.h>
57
58 #include <arm/cpuconf.h>
59 #include <arm/undefined.h>
60
61 #ifdef ARMFPE
62 #include <machine/bootconfig.h> /* For boot args */
63 #include <arm/fpe-arm/armfpe.h>
64 #endif
65
66 char cpu_model[256];
67
68 /* Prototypes */
69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70
71 /*
72 * Identify the master (boot) CPU
73 */
74
75 void
76 cpu_attach(struct device *dv)
77 {
78 int usearmfpe;
79
80 usearmfpe = 1; /* when compiled in, its enabled by default */
81
82 curcpu()->ci_dev = dv;
83
84 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 NULL, dv->dv_xname, "arm700swibug");
86
87 /* Get the cpu ID from coprocessor 15 */
88
89 curcpu()->ci_cpuid = cpu_id();
90 curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
91 curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
92
93 identify_arm_cpu(dv, curcpu());
94
95 if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
96 printf("%s: SA-110 with bugged STM^ instruction\n",
97 dv->dv_xname);
98 }
99
100 #ifdef CPU_ARM8
101 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
102 int clock = arm8_clock_config(0, 0);
103 char *fclk;
104 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
105 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
106 printf("%s", (clock & 2) ? " sync" : "");
107 switch ((clock >> 2) & 3) {
108 case 0:
109 fclk = "bus clock";
110 break;
111 case 1:
112 fclk = "ref clock";
113 break;
114 case 3:
115 fclk = "pll";
116 break;
117 default:
118 fclk = "illegal";
119 break;
120 }
121 printf(" fclk source=%s\n", fclk);
122 }
123 #endif
124
125 #ifdef ARMFPE
126 /*
127 * Ok now we test for an FPA
128 * At this point no floating point emulator has been installed.
129 * This means any FP instruction will cause undefined exception.
130 * We install a temporay coproc 1 handler which will modify
131 * undefined_test if it is called.
132 * We then try to read the FP status register. If undefined_test
133 * has been decremented then the instruction was not handled by
134 * an FPA so we know the FPA is missing. If undefined_test is
135 * still 1 then we know the instruction was handled by an FPA.
136 * We then remove our test handler and look at the
137 * FP status register for identification.
138 */
139
140 /*
141 * Ok if ARMFPE is defined and the boot options request the
142 * ARM FPE then it will be installed as the FPE.
143 * This is just while I work on integrating the new FPE.
144 * It means the new FPE gets installed if compiled int (ARMFPE
145 * defined) and also gives me a on/off option when I boot in
146 * case the new FPE is causing panics.
147 */
148
149
150 if (boot_args)
151 get_bootconf_option(boot_args, "armfpe",
152 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
153 if (usearmfpe)
154 initialise_arm_fpe();
155 #endif
156 }
157
158 enum cpu_class {
159 CPU_CLASS_NONE,
160 CPU_CLASS_ARM2,
161 CPU_CLASS_ARM2AS,
162 CPU_CLASS_ARM3,
163 CPU_CLASS_ARM6,
164 CPU_CLASS_ARM7,
165 CPU_CLASS_ARM7TDMI,
166 CPU_CLASS_ARM8,
167 CPU_CLASS_ARM9TDMI,
168 CPU_CLASS_ARM9ES,
169 CPU_CLASS_SA1,
170 CPU_CLASS_XSCALE,
171 CPU_CLASS_ARM10E
172 };
173
174 static const char *generic_steppings[16] = {
175 "rev 0", "rev 1", "rev 2", "rev 3",
176 "rev 4", "rev 5", "rev 6", "rev 7",
177 "rev 8", "rev 9", "rev 10", "rev 11",
178 "rev 12", "rev 13", "rev 14", "rev 15",
179 };
180
181 static const char *sa110_steppings[16] = {
182 "rev 0", "step J", "step K", "step S",
183 "step T", "rev 5", "rev 6", "rev 7",
184 "rev 8", "rev 9", "rev 10", "rev 11",
185 "rev 12", "rev 13", "rev 14", "rev 15",
186 };
187
188 static const char *sa1100_steppings[16] = {
189 "rev 0", "step B", "step C", "rev 3",
190 "rev 4", "rev 5", "rev 6", "rev 7",
191 "step D", "step E", "rev 10" "step G",
192 "rev 12", "rev 13", "rev 14", "rev 15",
193 };
194
195 static const char *sa1110_steppings[16] = {
196 "step A-0", "rev 1", "rev 2", "rev 3",
197 "step B-0", "step B-1", "step B-2", "step B-3",
198 "step B-4", "step B-5", "rev 10", "rev 11",
199 "rev 12", "rev 13", "rev 14", "rev 15",
200 };
201
202 static const char *ixp1200_steppings[16] = {
203 "step A", "step B", "rev 2", "step C",
204 "rev 4", "step A (IXP1250)","rev 6", "rev 7",
205 "rev 8", "rev 9", "rev 10", "rev 11",
206 "rev 12", "rev 13", "rev 14", "rev 15",
207 };
208
209 static const char *xscale_steppings[16] = {
210 "step A-0", "step A-1", "step B-0", "step C-0",
211 "rev 4", "rev 5", "rev 6", "rev 7",
212 "rev 8", "rev 9", "rev 10", "rev 11",
213 "rev 12", "rev 13", "rev 14", "rev 15",
214 };
215
216 static const char *pxa2x0_steppings[16] = {
217 "step A-0", "step A-1", "step B-0", "step B-1",
218 "rev 4", "rev 5", "rev 6", "rev 7",
219 "rev 8", "rev 9", "rev 10", "rev 11",
220 "rev 12", "rev 13", "rev 14", "rev 15",
221 };
222
223 struct cpuidtab {
224 u_int32_t cpuid;
225 enum cpu_class cpu_class;
226 const char *cpu_name;
227 const char **cpu_steppings;
228 };
229
230 const struct cpuidtab cpuids[] = {
231 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
232 generic_steppings },
233 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
234 generic_steppings },
235
236 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
237 generic_steppings },
238
239 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
240 generic_steppings },
241 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
242 generic_steppings },
243 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
244 generic_steppings },
245
246 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
247 generic_steppings },
248 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
249 generic_steppings },
250 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
251 generic_steppings },
252 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
253 generic_steppings },
254 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
255 generic_steppings },
256 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
257 generic_steppings },
258 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
259 generic_steppings },
260 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
261 generic_steppings },
262 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
263 generic_steppings },
264
265 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
266 generic_steppings },
267
268 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
269 generic_steppings },
270 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
271 generic_steppings },
272 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
273 generic_steppings },
274 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
275 generic_steppings },
276 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
277 generic_steppings },
278 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
279 generic_steppings },
280
281 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
282 sa110_steppings },
283 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
284 sa1100_steppings },
285 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
286 sa1110_steppings },
287
288 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
289 ixp1200_steppings },
290
291 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
292 xscale_steppings },
293
294 { CPU_ID_80321, CPU_CLASS_XSCALE, "i80321",
295 xscale_steppings },
296
297 { CPU_ID_PXA250, CPU_CLASS_XSCALE, "PXA250",
298 pxa2x0_steppings },
299 { CPU_ID_PXA210, CPU_CLASS_XSCALE, "PXA210",
300 pxa2x0_steppings }, /* XXX */
301
302 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
303 generic_steppings },
304
305 { 0, CPU_CLASS_NONE, NULL, NULL }
306 };
307
308 struct cpu_classtab {
309 const char *class_name;
310 const char *class_option;
311 };
312
313 const struct cpu_classtab cpu_classes[] = {
314 { "unknown", NULL }, /* CPU_CLASS_NONE */
315 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
316 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
317 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
318 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
319 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
320 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
321 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
322 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
323 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
324 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
325 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
326 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
327 };
328
329 /*
330 * Report the type of the specifed arm processor. This uses the generic and
331 * arm specific information in the cpu structure to identify the processor.
332 * The remaining fields in the cpu structure are filled in appropriately.
333 */
334
335 static const char *wtnames[] = {
336 "write-through",
337 "write-back",
338 "write-back",
339 "**unknown 3**",
340 "**unknown 4**",
341 "write-back-locking", /* XXX XScale-specific? */
342 "write-back-locking-A",
343 "write-back-locking-B",
344 "**unknown 8**",
345 "**unknown 9**",
346 "**unknown 10**",
347 "**unknown 11**",
348 "**unknown 12**",
349 "**unknown 13**",
350 "**unknown 14**",
351 "**unknown 15**",
352 };
353
354 void
355 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
356 {
357 u_int cpuid;
358 enum cpu_class cpu_class;
359 int i;
360
361 cpuid = ci->ci_cpuid;
362
363 if (cpuid == 0) {
364 printf("Processor failed probe - no CPU ID\n");
365 return;
366 }
367
368 for (i = 0; cpuids[i].cpuid != 0; i++)
369 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
370 cpu_class = cpuids[i].cpu_class;
371 sprintf(cpu_model, "%s %s (%s core)",
372 cpuids[i].cpu_name,
373 cpuids[i].cpu_steppings[cpuid &
374 CPU_ID_REVISION_MASK],
375 cpu_classes[cpu_class].class_name);
376 break;
377 }
378
379 if (cpuids[i].cpuid == 0)
380 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
381
382 printf(": %s\n", cpu_model);
383
384 printf("%s:", dv->dv_xname);
385
386 switch (cpu_class) {
387 case CPU_CLASS_ARM6:
388 case CPU_CLASS_ARM7:
389 case CPU_CLASS_ARM7TDMI:
390 case CPU_CLASS_ARM8:
391 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
392 printf(" IDC disabled");
393 else
394 printf(" IDC enabled");
395 break;
396 case CPU_CLASS_ARM9TDMI:
397 case CPU_CLASS_SA1:
398 case CPU_CLASS_XSCALE:
399 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
400 printf(" DC disabled");
401 else
402 printf(" DC enabled");
403 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
404 printf(" IC disabled");
405 else
406 printf(" IC enabled");
407 break;
408 default:
409 break;
410 }
411 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
412 printf(" WB disabled");
413 else
414 printf(" WB enabled");
415
416 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
417 printf(" LABT");
418 else
419 printf(" EABT");
420
421 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
422 printf(" branch prediction enabled");
423
424 printf("\n");
425
426 /* Print cache info. */
427 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
428 goto skip_pcache;
429
430 if (arm_pcache_unified) {
431 printf("%s: %dKB/%dB %d-way %s unified cache\n",
432 dv->dv_xname, arm_pdcache_size / 1024,
433 arm_pdcache_line_size, arm_pdcache_ways,
434 wtnames[arm_pcache_type]);
435 } else {
436 printf("%s: %dKB/%dB %d-way Instruction cache\n",
437 dv->dv_xname, arm_picache_size / 1024,
438 arm_picache_line_size, arm_picache_ways);
439 printf("%s: %dKB/%dB %d-way %s Data cache\n",
440 dv->dv_xname, arm_pdcache_size / 1024,
441 arm_pdcache_line_size, arm_pdcache_ways,
442 wtnames[arm_pcache_type]);
443 }
444
445 skip_pcache:
446
447 switch (cpu_class) {
448 #ifdef CPU_ARM2
449 case CPU_CLASS_ARM2:
450 #endif
451 #ifdef CPU_ARM250
452 case CPU_CLASS_ARM2AS:
453 #endif
454 #ifdef CPU_ARM3
455 case CPU_CLASS_ARM3:
456 #endif
457 #ifdef CPU_ARM6
458 case CPU_CLASS_ARM6:
459 #endif
460 #ifdef CPU_ARM7
461 case CPU_CLASS_ARM7:
462 #endif
463 #ifdef CPU_ARM7TDMI
464 case CPU_CLASS_ARM7TDMI:
465 #endif
466 #ifdef CPU_ARM8
467 case CPU_CLASS_ARM8:
468 #endif
469 #ifdef CPU_ARM9
470 case CPU_CLASS_ARM9TDMI:
471 #endif
472 #if defined(CPU_SA110) || defined(CPU_SA1100) || defined(CPU_SA1110)
473 case CPU_CLASS_SA1:
474 #endif
475 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
476 defined(CPU_XSCALE_PXA2X0)
477 case CPU_CLASS_XSCALE:
478 #endif
479 break;
480 default:
481 if (cpu_classes[cpu_class].class_option != NULL)
482 printf("%s: %s does not fully support this CPU."
483 "\n", dv->dv_xname, ostype);
484 else {
485 printf("%s: This kernel does not fully support "
486 "this CPU.\n", dv->dv_xname);
487 printf("%s: Recompile with \"options %s\" to "
488 "correct this.\n", dv->dv_xname,
489 cpu_classes[cpu_class].class_option);
490 }
491 break;
492 }
493
494 }
495
496 /* End of cpu.c */
497