cpu.c revision 1.37 1 /* $NetBSD: cpu.c,v 1.37 2002/05/12 15:05:41 ichiro Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45
46 #include <sys/param.h>
47
48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.37 2002/05/12 15:05:41 ichiro Exp $");
49
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <uvm/uvm_extern.h>
55 #include <machine/conf.h>
56 #include <machine/cpu.h>
57
58 #include <arm/cpuconf.h>
59 #include <arm/undefined.h>
60
61 #ifdef ARMFPE
62 #include <machine/bootconfig.h> /* For boot args */
63 #include <arm/fpe-arm/armfpe.h>
64 #endif
65
66 char cpu_model[256];
67
68 /* Prototypes */
69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70
71 /*
72 * Identify the master (boot) CPU
73 */
74
75 void
76 cpu_attach(struct device *dv)
77 {
78 int usearmfpe;
79
80 usearmfpe = 1; /* when compiled in, its enabled by default */
81
82 curcpu()->ci_dev = dv;
83
84 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 NULL, dv->dv_xname, "arm700swibug");
86
87 /* Get the cpu ID from coprocessor 15 */
88
89 curcpu()->ci_cpuid = cpu_id();
90 curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
91 curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
92
93 identify_arm_cpu(dv, curcpu());
94
95 if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
96 printf("%s: SA-110 with bugged STM^ instruction\n",
97 dv->dv_xname);
98 }
99
100 #ifdef CPU_ARM8
101 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
102 int clock = arm8_clock_config(0, 0);
103 char *fclk;
104 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
105 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
106 printf("%s", (clock & 2) ? " sync" : "");
107 switch ((clock >> 2) & 3) {
108 case 0:
109 fclk = "bus clock";
110 break;
111 case 1:
112 fclk = "ref clock";
113 break;
114 case 3:
115 fclk = "pll";
116 break;
117 default:
118 fclk = "illegal";
119 break;
120 }
121 printf(" fclk source=%s\n", fclk);
122 }
123 #endif
124
125 #ifdef ARMFPE
126 /*
127 * Ok now we test for an FPA
128 * At this point no floating point emulator has been installed.
129 * This means any FP instruction will cause undefined exception.
130 * We install a temporay coproc 1 handler which will modify
131 * undefined_test if it is called.
132 * We then try to read the FP status register. If undefined_test
133 * has been decremented then the instruction was not handled by
134 * an FPA so we know the FPA is missing. If undefined_test is
135 * still 1 then we know the instruction was handled by an FPA.
136 * We then remove our test handler and look at the
137 * FP status register for identification.
138 */
139
140 /*
141 * Ok if ARMFPE is defined and the boot options request the
142 * ARM FPE then it will be installed as the FPE.
143 * This is just while I work on integrating the new FPE.
144 * It means the new FPE gets installed if compiled int (ARMFPE
145 * defined) and also gives me a on/off option when I boot in
146 * case the new FPE is causing panics.
147 */
148
149
150 if (boot_args)
151 get_bootconf_option(boot_args, "armfpe",
152 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
153 if (usearmfpe)
154 initialise_arm_fpe();
155 #endif
156 }
157
158 enum cpu_class {
159 CPU_CLASS_NONE,
160 CPU_CLASS_ARM2,
161 CPU_CLASS_ARM2AS,
162 CPU_CLASS_ARM3,
163 CPU_CLASS_ARM6,
164 CPU_CLASS_ARM7,
165 CPU_CLASS_ARM7TDMI,
166 CPU_CLASS_ARM8,
167 CPU_CLASS_ARM9TDMI,
168 CPU_CLASS_ARM9ES,
169 CPU_CLASS_SA1,
170 CPU_CLASS_XSCALE,
171 CPU_CLASS_ARM10E
172 };
173
174 static const char *generic_steppings[16] = {
175 "rev 0", "rev 1", "rev 2", "rev 3",
176 "rev 4", "rev 5", "rev 6", "rev 7",
177 "rev 8", "rev 9", "rev 10", "rev 11",
178 "rev 12", "rev 13", "rev 14", "rev 15",
179 };
180
181 static const char *sa110_steppings[16] = {
182 "rev 0", "step J", "step K", "step S",
183 "step T", "rev 5", "rev 6", "rev 7",
184 "rev 8", "rev 9", "rev 10", "rev 11",
185 "rev 12", "rev 13", "rev 14", "rev 15",
186 };
187
188 static const char *sa1100_steppings[16] = {
189 "rev 0", "step B", "step C", "rev 3",
190 "rev 4", "rev 5", "rev 6", "rev 7",
191 "step D", "step E", "rev 10" "step G",
192 "rev 12", "rev 13", "rev 14", "rev 15",
193 };
194
195 static const char *sa1110_steppings[16] = {
196 "step A-0", "rev 1", "rev 2", "rev 3",
197 "step B-0", "step B-1", "step B-2", "step B-3",
198 "step B-4", "step B-5", "rev 10", "rev 11",
199 "rev 12", "rev 13", "rev 14", "rev 15",
200 };
201
202 static const char *ixp12x0_steppings[16] = {
203 "(IXP1200 step A)", "(IXP1200 step B)",
204 "rev 2", "(IXP1200 step C)",
205 "(IXP1200 step D)", "(IXP1240/1250 step A)",
206 "(IXP1240 step B)", "(IXP1250 step B)",
207 "rev 8", "rev 9", "rev 10", "rev 11",
208 "rev 12", "rev 13", "rev 14", "rev 15",
209 };
210
211 static const char *xscale_steppings[16] = {
212 "step A-0", "step A-1", "step B-0", "step C-0",
213 "rev 4", "rev 5", "rev 6", "rev 7",
214 "rev 8", "rev 9", "rev 10", "rev 11",
215 "rev 12", "rev 13", "rev 14", "rev 15",
216 };
217
218 static const char *pxa2x0_steppings[16] = {
219 "step A-0", "step A-1", "step B-0", "step B-1",
220 "rev 4", "rev 5", "rev 6", "rev 7",
221 "rev 8", "rev 9", "rev 10", "rev 11",
222 "rev 12", "rev 13", "rev 14", "rev 15",
223 };
224
225 struct cpuidtab {
226 u_int32_t cpuid;
227 enum cpu_class cpu_class;
228 const char *cpu_name;
229 const char **cpu_steppings;
230 };
231
232 const struct cpuidtab cpuids[] = {
233 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
234 generic_steppings },
235 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
236 generic_steppings },
237
238 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
239 generic_steppings },
240
241 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
242 generic_steppings },
243 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
244 generic_steppings },
245 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
246 generic_steppings },
247
248 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
249 generic_steppings },
250 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
251 generic_steppings },
252 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
253 generic_steppings },
254 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
255 generic_steppings },
256 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
257 generic_steppings },
258 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
259 generic_steppings },
260 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
261 generic_steppings },
262 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
263 generic_steppings },
264 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
265 generic_steppings },
266
267 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
268 generic_steppings },
269
270 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
271 generic_steppings },
272 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
273 generic_steppings },
274 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
275 generic_steppings },
276 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
277 generic_steppings },
278 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
279 generic_steppings },
280 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
281 generic_steppings },
282
283 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
284 sa110_steppings },
285 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
286 sa1100_steppings },
287 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
288 sa1110_steppings },
289
290 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
291 ixp12x0_steppings },
292
293 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
294 xscale_steppings },
295
296 { CPU_ID_80321, CPU_CLASS_XSCALE, "i80321",
297 xscale_steppings },
298
299 { CPU_ID_PXA250, CPU_CLASS_XSCALE, "PXA250",
300 pxa2x0_steppings },
301 { CPU_ID_PXA210, CPU_CLASS_XSCALE, "PXA210",
302 pxa2x0_steppings }, /* XXX */
303
304 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
305 generic_steppings },
306
307 { 0, CPU_CLASS_NONE, NULL, NULL }
308 };
309
310 struct cpu_classtab {
311 const char *class_name;
312 const char *class_option;
313 };
314
315 const struct cpu_classtab cpu_classes[] = {
316 { "unknown", NULL }, /* CPU_CLASS_NONE */
317 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
318 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
319 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
320 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
321 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
322 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
323 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
324 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
325 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
326 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
327 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
328 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
329 };
330
331 /*
332 * Report the type of the specifed arm processor. This uses the generic and
333 * arm specific information in the cpu structure to identify the processor.
334 * The remaining fields in the cpu structure are filled in appropriately.
335 */
336
337 static const char *wtnames[] = {
338 "write-through",
339 "write-back",
340 "write-back",
341 "**unknown 3**",
342 "**unknown 4**",
343 "write-back-locking", /* XXX XScale-specific? */
344 "write-back-locking-A",
345 "write-back-locking-B",
346 "**unknown 8**",
347 "**unknown 9**",
348 "**unknown 10**",
349 "**unknown 11**",
350 "**unknown 12**",
351 "**unknown 13**",
352 "**unknown 14**",
353 "**unknown 15**",
354 };
355
356 void
357 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
358 {
359 u_int cpuid;
360 enum cpu_class cpu_class;
361 int i;
362
363 cpuid = ci->ci_cpuid;
364
365 if (cpuid == 0) {
366 printf("Processor failed probe - no CPU ID\n");
367 return;
368 }
369
370 for (i = 0; cpuids[i].cpuid != 0; i++)
371 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
372 cpu_class = cpuids[i].cpu_class;
373 sprintf(cpu_model, "%s %s (%s core)",
374 cpuids[i].cpu_name,
375 cpuids[i].cpu_steppings[cpuid &
376 CPU_ID_REVISION_MASK],
377 cpu_classes[cpu_class].class_name);
378 break;
379 }
380
381 if (cpuids[i].cpuid == 0)
382 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
383
384 printf(": %s\n", cpu_model);
385
386 printf("%s:", dv->dv_xname);
387
388 switch (cpu_class) {
389 case CPU_CLASS_ARM6:
390 case CPU_CLASS_ARM7:
391 case CPU_CLASS_ARM7TDMI:
392 case CPU_CLASS_ARM8:
393 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
394 printf(" IDC disabled");
395 else
396 printf(" IDC enabled");
397 break;
398 case CPU_CLASS_ARM9TDMI:
399 case CPU_CLASS_SA1:
400 case CPU_CLASS_XSCALE:
401 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
402 printf(" DC disabled");
403 else
404 printf(" DC enabled");
405 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
406 printf(" IC disabled");
407 else
408 printf(" IC enabled");
409 break;
410 default:
411 break;
412 }
413 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
414 printf(" WB disabled");
415 else
416 printf(" WB enabled");
417
418 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
419 printf(" LABT");
420 else
421 printf(" EABT");
422
423 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
424 printf(" branch prediction enabled");
425
426 printf("\n");
427
428 /* Print cache info. */
429 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
430 goto skip_pcache;
431
432 if (arm_pcache_unified) {
433 printf("%s: %dKB/%dB %d-way %s unified cache\n",
434 dv->dv_xname, arm_pdcache_size / 1024,
435 arm_pdcache_line_size, arm_pdcache_ways,
436 wtnames[arm_pcache_type]);
437 } else {
438 printf("%s: %dKB/%dB %d-way Instruction cache\n",
439 dv->dv_xname, arm_picache_size / 1024,
440 arm_picache_line_size, arm_picache_ways);
441 printf("%s: %dKB/%dB %d-way %s Data cache\n",
442 dv->dv_xname, arm_pdcache_size / 1024,
443 arm_pdcache_line_size, arm_pdcache_ways,
444 wtnames[arm_pcache_type]);
445 }
446
447 skip_pcache:
448
449 switch (cpu_class) {
450 #ifdef CPU_ARM2
451 case CPU_CLASS_ARM2:
452 #endif
453 #ifdef CPU_ARM250
454 case CPU_CLASS_ARM2AS:
455 #endif
456 #ifdef CPU_ARM3
457 case CPU_CLASS_ARM3:
458 #endif
459 #ifdef CPU_ARM6
460 case CPU_CLASS_ARM6:
461 #endif
462 #ifdef CPU_ARM7
463 case CPU_CLASS_ARM7:
464 #endif
465 #ifdef CPU_ARM7TDMI
466 case CPU_CLASS_ARM7TDMI:
467 #endif
468 #ifdef CPU_ARM8
469 case CPU_CLASS_ARM8:
470 #endif
471 #ifdef CPU_ARM9
472 case CPU_CLASS_ARM9TDMI:
473 #endif
474 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
475 defined(CPU_SA1110) || defined(CPU_IXP12X0)
476 case CPU_CLASS_SA1:
477 #endif
478 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
479 defined(CPU_XSCALE_PXA2X0)
480 case CPU_CLASS_XSCALE:
481 #endif
482 break;
483 default:
484 if (cpu_classes[cpu_class].class_option != NULL)
485 printf("%s: %s does not fully support this CPU."
486 "\n", dv->dv_xname, ostype);
487 else {
488 printf("%s: This kernel does not fully support "
489 "this CPU.\n", dv->dv_xname);
490 printf("%s: Recompile with \"options %s\" to "
491 "correct this.\n", dv->dv_xname,
492 cpu_classes[cpu_class].class_option);
493 }
494 break;
495 }
496
497 }
498
499 /* End of cpu.c */
500