Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.38
      1 /*	$NetBSD: cpu.c,v 1.38 2002/06/07 18:25:28 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 
     46 #include <sys/param.h>
     47 
     48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.38 2002/06/07 18:25:28 thorpej Exp $");
     49 
     50 #include <sys/systm.h>
     51 #include <sys/malloc.h>
     52 #include <sys/device.h>
     53 #include <sys/proc.h>
     54 #include <uvm/uvm_extern.h>
     55 #include <machine/conf.h>
     56 #include <machine/cpu.h>
     57 
     58 #include <arm/cpuconf.h>
     59 #include <arm/undefined.h>
     60 
     61 #ifdef ARMFPE
     62 #include <machine/bootconfig.h> /* For boot args */
     63 #include <arm/fpe-arm/armfpe.h>
     64 #endif
     65 
     66 char cpu_model[256];
     67 
     68 /* Prototypes */
     69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     70 
     71 /*
     72  * Identify the master (boot) CPU
     73  */
     74 
     75 void
     76 cpu_attach(struct device *dv)
     77 {
     78 	int usearmfpe;
     79 
     80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     81 
     82 	curcpu()->ci_dev = dv;
     83 
     84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     85 	    NULL, dv->dv_xname, "arm700swibug");
     86 
     87 	/* Get the cpu ID from coprocessor 15 */
     88 
     89 	curcpu()->ci_cpuid = cpu_id();
     90 	curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
     91 	curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
     92 
     93 	identify_arm_cpu(dv, curcpu());
     94 
     95 	if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
     96 		printf("%s: SA-110 with bugged STM^ instruction\n",
     97 		       dv->dv_xname);
     98 	}
     99 
    100 #ifdef CPU_ARM8
    101 	if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    102 		int clock = arm8_clock_config(0, 0);
    103 		char *fclk;
    104 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    105 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    106 		printf("%s", (clock & 2) ? " sync" : "");
    107 		switch ((clock >> 2) & 3) {
    108 		case 0:
    109 			fclk = "bus clock";
    110 			break;
    111 		case 1:
    112 			fclk = "ref clock";
    113 			break;
    114 		case 3:
    115 			fclk = "pll";
    116 			break;
    117 		default:
    118 			fclk = "illegal";
    119 			break;
    120 		}
    121 		printf(" fclk source=%s\n", fclk);
    122  	}
    123 #endif
    124 
    125 #ifdef ARMFPE
    126 	/*
    127 	 * Ok now we test for an FPA
    128 	 * At this point no floating point emulator has been installed.
    129 	 * This means any FP instruction will cause undefined exception.
    130 	 * We install a temporay coproc 1 handler which will modify
    131 	 * undefined_test if it is called.
    132 	 * We then try to read the FP status register. If undefined_test
    133 	 * has been decremented then the instruction was not handled by
    134 	 * an FPA so we know the FPA is missing. If undefined_test is
    135 	 * still 1 then we know the instruction was handled by an FPA.
    136 	 * We then remove our test handler and look at the
    137 	 * FP status register for identification.
    138 	 */
    139 
    140 	/*
    141 	 * Ok if ARMFPE is defined and the boot options request the
    142 	 * ARM FPE then it will be installed as the FPE.
    143 	 * This is just while I work on integrating the new FPE.
    144 	 * It means the new FPE gets installed if compiled int (ARMFPE
    145 	 * defined) and also gives me a on/off option when I boot in
    146 	 * case the new FPE is causing panics.
    147 	 */
    148 
    149 
    150 	if (boot_args)
    151 		get_bootconf_option(boot_args, "armfpe",
    152 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    153 	if (usearmfpe)
    154 		initialise_arm_fpe();
    155 #endif
    156 }
    157 
    158 enum cpu_class {
    159 	CPU_CLASS_NONE,
    160 	CPU_CLASS_ARM2,
    161 	CPU_CLASS_ARM2AS,
    162 	CPU_CLASS_ARM3,
    163 	CPU_CLASS_ARM6,
    164 	CPU_CLASS_ARM7,
    165 	CPU_CLASS_ARM7TDMI,
    166 	CPU_CLASS_ARM8,
    167 	CPU_CLASS_ARM9TDMI,
    168 	CPU_CLASS_ARM9ES,
    169 	CPU_CLASS_SA1,
    170 	CPU_CLASS_XSCALE,
    171 	CPU_CLASS_ARM10E
    172 };
    173 
    174 static const char *generic_steppings[16] = {
    175 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    176 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    177 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    178 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    179 };
    180 
    181 static const char *sa110_steppings[16] = {
    182 	"rev 0",	"step J",	"step K",	"step S",
    183 	"step T",	"rev 5",	"rev 6",	"rev 7",
    184 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    185 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    186 };
    187 
    188 static const char *sa1100_steppings[16] = {
    189 	"rev 0",	"step B",	"step C",	"rev 3",
    190 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    191 	"step D",	"step E",	"rev 10"	"step G",
    192 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    193 };
    194 
    195 static const char *sa1110_steppings[16] = {
    196 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    197 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    198 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    199 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    200 };
    201 
    202 static const char *ixp12x0_steppings[16] = {
    203 	"(IXP1200 step A)",		"(IXP1200 step B)",
    204 	"rev 2",			"(IXP1200 step C)",
    205 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    206 	"(IXP1240 step B)",		"(IXP1250 step B)",
    207 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    208 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    209 };
    210 
    211 static const char *xscale_steppings[16] = {
    212 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    213 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    214 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    215 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    216 };
    217 
    218 static const char *pxa2x0_steppings[16] = {
    219 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    220 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    221 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    222 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    223 };
    224 
    225 struct cpuidtab {
    226 	u_int32_t	cpuid;
    227 	enum		cpu_class cpu_class;
    228 	const char	*cpu_name;
    229 	const char	**cpu_steppings;
    230 };
    231 
    232 const struct cpuidtab cpuids[] = {
    233 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    234 	  generic_steppings },
    235 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    236 	  generic_steppings },
    237 
    238 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    239 	  generic_steppings },
    240 
    241 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    242 	  generic_steppings },
    243 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    244 	  generic_steppings },
    245 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    246 	  generic_steppings },
    247 
    248 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    249 	  generic_steppings },
    250 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    251 	  generic_steppings },
    252 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    253 	  generic_steppings },
    254 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    255 	  generic_steppings },
    256 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    257 	  generic_steppings },
    258 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    259 	  generic_steppings },
    260 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    261 	  generic_steppings },
    262 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    263 	  generic_steppings },
    264 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    265 	  generic_steppings },
    266 
    267 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    268 	  generic_steppings },
    269 
    270 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    271 	  generic_steppings },
    272 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    273 	  generic_steppings },
    274 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    275 	  generic_steppings },
    276 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    277 	  generic_steppings },
    278 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    279 	  generic_steppings },
    280 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    281 	  generic_steppings },
    282 
    283 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    284 	  sa110_steppings },
    285 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    286 	  sa1100_steppings },
    287 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    288 	  sa1110_steppings },
    289 
    290 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    291 	  ixp12x0_steppings },
    292 
    293 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    294 	  xscale_steppings },
    295 
    296 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    297 	  xscale_steppings },
    298 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    299 	  xscale_steppings },
    300 
    301 	{ CPU_ID_PXA250,	CPU_CLASS_XSCALE,	"PXA250",
    302 	  pxa2x0_steppings },
    303 	{ CPU_ID_PXA210,	CPU_CLASS_XSCALE,	"PXA210",
    304 	  pxa2x0_steppings },	/* XXX */
    305 
    306 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
    307 	  generic_steppings },
    308 
    309 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    310 };
    311 
    312 struct cpu_classtab {
    313 	const char	*class_name;
    314 	const char	*class_option;
    315 };
    316 
    317 const struct cpu_classtab cpu_classes[] = {
    318 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    319 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    320 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    321 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    322 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    323 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    324 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    325 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    326 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    327 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    328 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    329 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    330 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
    331 };
    332 
    333 /*
    334  * Report the type of the specifed arm processor. This uses the generic and
    335  * arm specific information in the cpu structure to identify the processor.
    336  * The remaining fields in the cpu structure are filled in appropriately.
    337  */
    338 
    339 static const char *wtnames[] = {
    340 	"write-through",
    341 	"write-back",
    342 	"write-back",
    343 	"**unknown 3**",
    344 	"**unknown 4**",
    345 	"write-back-locking",		/* XXX XScale-specific? */
    346 	"write-back-locking-A",
    347 	"write-back-locking-B",
    348 	"**unknown 8**",
    349 	"**unknown 9**",
    350 	"**unknown 10**",
    351 	"**unknown 11**",
    352 	"**unknown 12**",
    353 	"**unknown 13**",
    354 	"**unknown 14**",
    355 	"**unknown 15**",
    356 };
    357 
    358 void
    359 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    360 {
    361 	u_int cpuid;
    362 	enum cpu_class cpu_class;
    363 	int i;
    364 
    365 	cpuid = ci->ci_cpuid;
    366 
    367 	if (cpuid == 0) {
    368 		printf("Processor failed probe - no CPU ID\n");
    369 		return;
    370 	}
    371 
    372 	for (i = 0; cpuids[i].cpuid != 0; i++)
    373 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    374 			cpu_class = cpuids[i].cpu_class;
    375 			sprintf(cpu_model, "%s %s (%s core)",
    376 			    cpuids[i].cpu_name,
    377 			    cpuids[i].cpu_steppings[cpuid &
    378 						    CPU_ID_REVISION_MASK],
    379 			    cpu_classes[cpu_class].class_name);
    380 			break;
    381 		}
    382 
    383 	if (cpuids[i].cpuid == 0)
    384 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    385 
    386 	printf(": %s\n", cpu_model);
    387 
    388 	printf("%s:", dv->dv_xname);
    389 
    390 	switch (cpu_class) {
    391 	case CPU_CLASS_ARM6:
    392 	case CPU_CLASS_ARM7:
    393 	case CPU_CLASS_ARM7TDMI:
    394 	case CPU_CLASS_ARM8:
    395 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    396 			printf(" IDC disabled");
    397 		else
    398 			printf(" IDC enabled");
    399 		break;
    400 	case CPU_CLASS_ARM9TDMI:
    401 	case CPU_CLASS_SA1:
    402 	case CPU_CLASS_XSCALE:
    403 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    404 			printf(" DC disabled");
    405 		else
    406 			printf(" DC enabled");
    407 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    408 			printf(" IC disabled");
    409 		else
    410 			printf(" IC enabled");
    411 		break;
    412 	default:
    413 		break;
    414 	}
    415 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    416 		printf(" WB disabled");
    417 	else
    418 		printf(" WB enabled");
    419 
    420 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    421 		printf(" LABT");
    422 	else
    423 		printf(" EABT");
    424 
    425 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    426 		printf(" branch prediction enabled");
    427 
    428 	printf("\n");
    429 
    430 	/* Print cache info. */
    431 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    432 		goto skip_pcache;
    433 
    434 	if (arm_pcache_unified) {
    435 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
    436 		    dv->dv_xname, arm_pdcache_size / 1024,
    437 		    arm_pdcache_line_size, arm_pdcache_ways,
    438 		    wtnames[arm_pcache_type]);
    439 	} else {
    440 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
    441 		    dv->dv_xname, arm_picache_size / 1024,
    442 		    arm_picache_line_size, arm_picache_ways);
    443 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
    444 		    dv->dv_xname, arm_pdcache_size / 1024,
    445 		    arm_pdcache_line_size, arm_pdcache_ways,
    446 		    wtnames[arm_pcache_type]);
    447 	}
    448 
    449  skip_pcache:
    450 
    451 	switch (cpu_class) {
    452 #ifdef CPU_ARM2
    453 	case CPU_CLASS_ARM2:
    454 #endif
    455 #ifdef CPU_ARM250
    456 	case CPU_CLASS_ARM2AS:
    457 #endif
    458 #ifdef CPU_ARM3
    459 	case CPU_CLASS_ARM3:
    460 #endif
    461 #ifdef CPU_ARM6
    462 	case CPU_CLASS_ARM6:
    463 #endif
    464 #ifdef CPU_ARM7
    465 	case CPU_CLASS_ARM7:
    466 #endif
    467 #ifdef CPU_ARM7TDMI
    468 	case CPU_CLASS_ARM7TDMI:
    469 #endif
    470 #ifdef CPU_ARM8
    471 	case CPU_CLASS_ARM8:
    472 #endif
    473 #ifdef CPU_ARM9
    474 	case CPU_CLASS_ARM9TDMI:
    475 #endif
    476 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    477     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    478 	case CPU_CLASS_SA1:
    479 #endif
    480 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    481     defined(CPU_XSCALE_PXA2X0)
    482 	case CPU_CLASS_XSCALE:
    483 #endif
    484 		break;
    485 	default:
    486 		if (cpu_classes[cpu_class].class_option != NULL)
    487 			printf("%s: %s does not fully support this CPU."
    488 			       "\n", dv->dv_xname, ostype);
    489 		else {
    490 			printf("%s: This kernel does not fully support "
    491 			       "this CPU.\n", dv->dv_xname);
    492 			printf("%s: Recompile with \"options %s\" to "
    493 			       "correct this.\n", dv->dv_xname,
    494 			       cpu_classes[cpu_class].class_option);
    495 		}
    496 		break;
    497 	}
    498 
    499 }
    500 
    501 /* End of cpu.c */
    502