cpu.c revision 1.38 1 /* $NetBSD: cpu.c,v 1.38 2002/06/07 18:25:28 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45
46 #include <sys/param.h>
47
48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.38 2002/06/07 18:25:28 thorpej Exp $");
49
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <uvm/uvm_extern.h>
55 #include <machine/conf.h>
56 #include <machine/cpu.h>
57
58 #include <arm/cpuconf.h>
59 #include <arm/undefined.h>
60
61 #ifdef ARMFPE
62 #include <machine/bootconfig.h> /* For boot args */
63 #include <arm/fpe-arm/armfpe.h>
64 #endif
65
66 char cpu_model[256];
67
68 /* Prototypes */
69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70
71 /*
72 * Identify the master (boot) CPU
73 */
74
75 void
76 cpu_attach(struct device *dv)
77 {
78 int usearmfpe;
79
80 usearmfpe = 1; /* when compiled in, its enabled by default */
81
82 curcpu()->ci_dev = dv;
83
84 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 NULL, dv->dv_xname, "arm700swibug");
86
87 /* Get the cpu ID from coprocessor 15 */
88
89 curcpu()->ci_cpuid = cpu_id();
90 curcpu()->ci_cputype = curcpu()->ci_cpuid & CPU_ID_CPU_MASK;
91 curcpu()->ci_cpurev = curcpu()->ci_cpuid & CPU_ID_REVISION_MASK;
92
93 identify_arm_cpu(dv, curcpu());
94
95 if (curcpu()->ci_cputype == CPU_ID_SA110 && curcpu()->ci_cpurev < 3) {
96 printf("%s: SA-110 with bugged STM^ instruction\n",
97 dv->dv_xname);
98 }
99
100 #ifdef CPU_ARM8
101 if ((curcpu()->ci_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
102 int clock = arm8_clock_config(0, 0);
103 char *fclk;
104 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
105 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
106 printf("%s", (clock & 2) ? " sync" : "");
107 switch ((clock >> 2) & 3) {
108 case 0:
109 fclk = "bus clock";
110 break;
111 case 1:
112 fclk = "ref clock";
113 break;
114 case 3:
115 fclk = "pll";
116 break;
117 default:
118 fclk = "illegal";
119 break;
120 }
121 printf(" fclk source=%s\n", fclk);
122 }
123 #endif
124
125 #ifdef ARMFPE
126 /*
127 * Ok now we test for an FPA
128 * At this point no floating point emulator has been installed.
129 * This means any FP instruction will cause undefined exception.
130 * We install a temporay coproc 1 handler which will modify
131 * undefined_test if it is called.
132 * We then try to read the FP status register. If undefined_test
133 * has been decremented then the instruction was not handled by
134 * an FPA so we know the FPA is missing. If undefined_test is
135 * still 1 then we know the instruction was handled by an FPA.
136 * We then remove our test handler and look at the
137 * FP status register for identification.
138 */
139
140 /*
141 * Ok if ARMFPE is defined and the boot options request the
142 * ARM FPE then it will be installed as the FPE.
143 * This is just while I work on integrating the new FPE.
144 * It means the new FPE gets installed if compiled int (ARMFPE
145 * defined) and also gives me a on/off option when I boot in
146 * case the new FPE is causing panics.
147 */
148
149
150 if (boot_args)
151 get_bootconf_option(boot_args, "armfpe",
152 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
153 if (usearmfpe)
154 initialise_arm_fpe();
155 #endif
156 }
157
158 enum cpu_class {
159 CPU_CLASS_NONE,
160 CPU_CLASS_ARM2,
161 CPU_CLASS_ARM2AS,
162 CPU_CLASS_ARM3,
163 CPU_CLASS_ARM6,
164 CPU_CLASS_ARM7,
165 CPU_CLASS_ARM7TDMI,
166 CPU_CLASS_ARM8,
167 CPU_CLASS_ARM9TDMI,
168 CPU_CLASS_ARM9ES,
169 CPU_CLASS_SA1,
170 CPU_CLASS_XSCALE,
171 CPU_CLASS_ARM10E
172 };
173
174 static const char *generic_steppings[16] = {
175 "rev 0", "rev 1", "rev 2", "rev 3",
176 "rev 4", "rev 5", "rev 6", "rev 7",
177 "rev 8", "rev 9", "rev 10", "rev 11",
178 "rev 12", "rev 13", "rev 14", "rev 15",
179 };
180
181 static const char *sa110_steppings[16] = {
182 "rev 0", "step J", "step K", "step S",
183 "step T", "rev 5", "rev 6", "rev 7",
184 "rev 8", "rev 9", "rev 10", "rev 11",
185 "rev 12", "rev 13", "rev 14", "rev 15",
186 };
187
188 static const char *sa1100_steppings[16] = {
189 "rev 0", "step B", "step C", "rev 3",
190 "rev 4", "rev 5", "rev 6", "rev 7",
191 "step D", "step E", "rev 10" "step G",
192 "rev 12", "rev 13", "rev 14", "rev 15",
193 };
194
195 static const char *sa1110_steppings[16] = {
196 "step A-0", "rev 1", "rev 2", "rev 3",
197 "step B-0", "step B-1", "step B-2", "step B-3",
198 "step B-4", "step B-5", "rev 10", "rev 11",
199 "rev 12", "rev 13", "rev 14", "rev 15",
200 };
201
202 static const char *ixp12x0_steppings[16] = {
203 "(IXP1200 step A)", "(IXP1200 step B)",
204 "rev 2", "(IXP1200 step C)",
205 "(IXP1200 step D)", "(IXP1240/1250 step A)",
206 "(IXP1240 step B)", "(IXP1250 step B)",
207 "rev 8", "rev 9", "rev 10", "rev 11",
208 "rev 12", "rev 13", "rev 14", "rev 15",
209 };
210
211 static const char *xscale_steppings[16] = {
212 "step A-0", "step A-1", "step B-0", "step C-0",
213 "rev 4", "rev 5", "rev 6", "rev 7",
214 "rev 8", "rev 9", "rev 10", "rev 11",
215 "rev 12", "rev 13", "rev 14", "rev 15",
216 };
217
218 static const char *pxa2x0_steppings[16] = {
219 "step A-0", "step A-1", "step B-0", "step B-1",
220 "rev 4", "rev 5", "rev 6", "rev 7",
221 "rev 8", "rev 9", "rev 10", "rev 11",
222 "rev 12", "rev 13", "rev 14", "rev 15",
223 };
224
225 struct cpuidtab {
226 u_int32_t cpuid;
227 enum cpu_class cpu_class;
228 const char *cpu_name;
229 const char **cpu_steppings;
230 };
231
232 const struct cpuidtab cpuids[] = {
233 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
234 generic_steppings },
235 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
236 generic_steppings },
237
238 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
239 generic_steppings },
240
241 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
242 generic_steppings },
243 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
244 generic_steppings },
245 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
246 generic_steppings },
247
248 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
249 generic_steppings },
250 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
251 generic_steppings },
252 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
253 generic_steppings },
254 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
255 generic_steppings },
256 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
257 generic_steppings },
258 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
259 generic_steppings },
260 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
261 generic_steppings },
262 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
263 generic_steppings },
264 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
265 generic_steppings },
266
267 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
268 generic_steppings },
269
270 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
271 generic_steppings },
272 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
273 generic_steppings },
274 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
275 generic_steppings },
276 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
277 generic_steppings },
278 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
279 generic_steppings },
280 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
281 generic_steppings },
282
283 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
284 sa110_steppings },
285 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
286 sa1100_steppings },
287 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
288 sa1110_steppings },
289
290 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
291 ixp12x0_steppings },
292
293 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
294 xscale_steppings },
295
296 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
297 xscale_steppings },
298 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
299 xscale_steppings },
300
301 { CPU_ID_PXA250, CPU_CLASS_XSCALE, "PXA250",
302 pxa2x0_steppings },
303 { CPU_ID_PXA210, CPU_CLASS_XSCALE, "PXA210",
304 pxa2x0_steppings }, /* XXX */
305
306 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
307 generic_steppings },
308
309 { 0, CPU_CLASS_NONE, NULL, NULL }
310 };
311
312 struct cpu_classtab {
313 const char *class_name;
314 const char *class_option;
315 };
316
317 const struct cpu_classtab cpu_classes[] = {
318 { "unknown", NULL }, /* CPU_CLASS_NONE */
319 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
320 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
321 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
322 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
323 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
324 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
325 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
326 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
327 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
328 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
329 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
330 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
331 };
332
333 /*
334 * Report the type of the specifed arm processor. This uses the generic and
335 * arm specific information in the cpu structure to identify the processor.
336 * The remaining fields in the cpu structure are filled in appropriately.
337 */
338
339 static const char *wtnames[] = {
340 "write-through",
341 "write-back",
342 "write-back",
343 "**unknown 3**",
344 "**unknown 4**",
345 "write-back-locking", /* XXX XScale-specific? */
346 "write-back-locking-A",
347 "write-back-locking-B",
348 "**unknown 8**",
349 "**unknown 9**",
350 "**unknown 10**",
351 "**unknown 11**",
352 "**unknown 12**",
353 "**unknown 13**",
354 "**unknown 14**",
355 "**unknown 15**",
356 };
357
358 void
359 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
360 {
361 u_int cpuid;
362 enum cpu_class cpu_class;
363 int i;
364
365 cpuid = ci->ci_cpuid;
366
367 if (cpuid == 0) {
368 printf("Processor failed probe - no CPU ID\n");
369 return;
370 }
371
372 for (i = 0; cpuids[i].cpuid != 0; i++)
373 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
374 cpu_class = cpuids[i].cpu_class;
375 sprintf(cpu_model, "%s %s (%s core)",
376 cpuids[i].cpu_name,
377 cpuids[i].cpu_steppings[cpuid &
378 CPU_ID_REVISION_MASK],
379 cpu_classes[cpu_class].class_name);
380 break;
381 }
382
383 if (cpuids[i].cpuid == 0)
384 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
385
386 printf(": %s\n", cpu_model);
387
388 printf("%s:", dv->dv_xname);
389
390 switch (cpu_class) {
391 case CPU_CLASS_ARM6:
392 case CPU_CLASS_ARM7:
393 case CPU_CLASS_ARM7TDMI:
394 case CPU_CLASS_ARM8:
395 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
396 printf(" IDC disabled");
397 else
398 printf(" IDC enabled");
399 break;
400 case CPU_CLASS_ARM9TDMI:
401 case CPU_CLASS_SA1:
402 case CPU_CLASS_XSCALE:
403 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
404 printf(" DC disabled");
405 else
406 printf(" DC enabled");
407 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
408 printf(" IC disabled");
409 else
410 printf(" IC enabled");
411 break;
412 default:
413 break;
414 }
415 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
416 printf(" WB disabled");
417 else
418 printf(" WB enabled");
419
420 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
421 printf(" LABT");
422 else
423 printf(" EABT");
424
425 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
426 printf(" branch prediction enabled");
427
428 printf("\n");
429
430 /* Print cache info. */
431 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
432 goto skip_pcache;
433
434 if (arm_pcache_unified) {
435 printf("%s: %dKB/%dB %d-way %s unified cache\n",
436 dv->dv_xname, arm_pdcache_size / 1024,
437 arm_pdcache_line_size, arm_pdcache_ways,
438 wtnames[arm_pcache_type]);
439 } else {
440 printf("%s: %dKB/%dB %d-way Instruction cache\n",
441 dv->dv_xname, arm_picache_size / 1024,
442 arm_picache_line_size, arm_picache_ways);
443 printf("%s: %dKB/%dB %d-way %s Data cache\n",
444 dv->dv_xname, arm_pdcache_size / 1024,
445 arm_pdcache_line_size, arm_pdcache_ways,
446 wtnames[arm_pcache_type]);
447 }
448
449 skip_pcache:
450
451 switch (cpu_class) {
452 #ifdef CPU_ARM2
453 case CPU_CLASS_ARM2:
454 #endif
455 #ifdef CPU_ARM250
456 case CPU_CLASS_ARM2AS:
457 #endif
458 #ifdef CPU_ARM3
459 case CPU_CLASS_ARM3:
460 #endif
461 #ifdef CPU_ARM6
462 case CPU_CLASS_ARM6:
463 #endif
464 #ifdef CPU_ARM7
465 case CPU_CLASS_ARM7:
466 #endif
467 #ifdef CPU_ARM7TDMI
468 case CPU_CLASS_ARM7TDMI:
469 #endif
470 #ifdef CPU_ARM8
471 case CPU_CLASS_ARM8:
472 #endif
473 #ifdef CPU_ARM9
474 case CPU_CLASS_ARM9TDMI:
475 #endif
476 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
477 defined(CPU_SA1110) || defined(CPU_IXP12X0)
478 case CPU_CLASS_SA1:
479 #endif
480 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
481 defined(CPU_XSCALE_PXA2X0)
482 case CPU_CLASS_XSCALE:
483 #endif
484 break;
485 default:
486 if (cpu_classes[cpu_class].class_option != NULL)
487 printf("%s: %s does not fully support this CPU."
488 "\n", dv->dv_xname, ostype);
489 else {
490 printf("%s: This kernel does not fully support "
491 "this CPU.\n", dv->dv_xname);
492 printf("%s: Recompile with \"options %s\" to "
493 "correct this.\n", dv->dv_xname,
494 cpu_classes[cpu_class].class_option);
495 }
496 break;
497 }
498
499 }
500
501 /* End of cpu.c */
502