Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.45
      1 /*	$NetBSD: cpu.c,v 1.45 2002/10/13 21:14:28 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 
     46 #include <sys/param.h>
     47 
     48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.45 2002/10/13 21:14:28 chris Exp $");
     49 
     50 #include <sys/systm.h>
     51 #include <sys/malloc.h>
     52 #include <sys/device.h>
     53 #include <sys/proc.h>
     54 #include <sys/conf.h>
     55 #include <uvm/uvm_extern.h>
     56 #include <machine/cpu.h>
     57 
     58 #include <arm/cpuconf.h>
     59 #include <arm/undefined.h>
     60 
     61 #ifdef ARMFPE
     62 #include <machine/bootconfig.h> /* For boot args */
     63 #include <arm/fpe-arm/armfpe.h>
     64 #endif
     65 
     66 char cpu_model[256];
     67 
     68 /* Prototypes */
     69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     70 
     71 /*
     72  * Identify the master (boot) CPU
     73  */
     74 
     75 void
     76 cpu_attach(struct device *dv)
     77 {
     78 	int usearmfpe;
     79 
     80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     81 
     82 	curcpu()->ci_dev = dv;
     83 
     84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     85 	    NULL, dv->dv_xname, "arm700swibug");
     86 
     87 	/* Get the cpu ID from coprocessor 15 */
     88 
     89 	curcpu()->ci_arm_cpuid = cpu_id();
     90 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     91 	curcpu()->ci_arm_cpurev =
     92 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     93 
     94 	identify_arm_cpu(dv, curcpu());
     95 
     96 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
     97 	    curcpu()->ci_arm_cpurev < 3) {
     98 		printf("%s: SA-110 with bugged STM^ instruction\n",
     99 		       dv->dv_xname);
    100 	}
    101 
    102 #ifdef CPU_ARM8
    103 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    104 		int clock = arm8_clock_config(0, 0);
    105 		char *fclk;
    106 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    107 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    108 		printf("%s", (clock & 2) ? " sync" : "");
    109 		switch ((clock >> 2) & 3) {
    110 		case 0:
    111 			fclk = "bus clock";
    112 			break;
    113 		case 1:
    114 			fclk = "ref clock";
    115 			break;
    116 		case 3:
    117 			fclk = "pll";
    118 			break;
    119 		default:
    120 			fclk = "illegal";
    121 			break;
    122 		}
    123 		printf(" fclk source=%s\n", fclk);
    124  	}
    125 #endif
    126 
    127 #ifdef ARMFPE
    128 	/*
    129 	 * Ok now we test for an FPA
    130 	 * At this point no floating point emulator has been installed.
    131 	 * This means any FP instruction will cause undefined exception.
    132 	 * We install a temporay coproc 1 handler which will modify
    133 	 * undefined_test if it is called.
    134 	 * We then try to read the FP status register. If undefined_test
    135 	 * has been decremented then the instruction was not handled by
    136 	 * an FPA so we know the FPA is missing. If undefined_test is
    137 	 * still 1 then we know the instruction was handled by an FPA.
    138 	 * We then remove our test handler and look at the
    139 	 * FP status register for identification.
    140 	 */
    141 
    142 	/*
    143 	 * Ok if ARMFPE is defined and the boot options request the
    144 	 * ARM FPE then it will be installed as the FPE.
    145 	 * This is just while I work on integrating the new FPE.
    146 	 * It means the new FPE gets installed if compiled int (ARMFPE
    147 	 * defined) and also gives me a on/off option when I boot in
    148 	 * case the new FPE is causing panics.
    149 	 */
    150 
    151 
    152 	if (boot_args)
    153 		get_bootconf_option(boot_args, "armfpe",
    154 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    155 	if (usearmfpe)
    156 		initialise_arm_fpe();
    157 #endif
    158 }
    159 
    160 enum cpu_class {
    161 	CPU_CLASS_NONE,
    162 	CPU_CLASS_ARM2,
    163 	CPU_CLASS_ARM2AS,
    164 	CPU_CLASS_ARM3,
    165 	CPU_CLASS_ARM6,
    166 	CPU_CLASS_ARM7,
    167 	CPU_CLASS_ARM7TDMI,
    168 	CPU_CLASS_ARM8,
    169 	CPU_CLASS_ARM9TDMI,
    170 	CPU_CLASS_ARM9ES,
    171 	CPU_CLASS_SA1,
    172 	CPU_CLASS_XSCALE,
    173 	CPU_CLASS_ARM10E
    174 };
    175 
    176 static const char * const generic_steppings[16] = {
    177 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    178 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    179 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    180 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    181 };
    182 
    183 static const char * const sa110_steppings[16] = {
    184 	"rev 0",	"step J",	"step K",	"step S",
    185 	"step T",	"rev 5",	"rev 6",	"rev 7",
    186 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    187 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    188 };
    189 
    190 static const char * const sa1100_steppings[16] = {
    191 	"rev 0",	"step B",	"step C",	"rev 3",
    192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    193 	"step D",	"step E",	"rev 10"	"step G",
    194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    195 };
    196 
    197 static const char * const sa1110_steppings[16] = {
    198 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    199 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    200 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    201 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    202 };
    203 
    204 static const char * const ixp12x0_steppings[16] = {
    205 	"(IXP1200 step A)",		"(IXP1200 step B)",
    206 	"rev 2",			"(IXP1200 step C)",
    207 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    208 	"(IXP1240 step B)",		"(IXP1250 step B)",
    209 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    210 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    211 };
    212 
    213 static const char * const xscale_steppings[16] = {
    214 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    215 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    216 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    217 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    218 };
    219 
    220 static const char * const i80321_steppings[16] = {
    221 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    222 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    223 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    224 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    225 };
    226 
    227 static const char * const pxa2x0_steppings[16] = {
    228 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    229 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    230 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    231 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    232 };
    233 
    234 struct cpuidtab {
    235 	u_int32_t	cpuid;
    236 	enum		cpu_class cpu_class;
    237 	const char	*cpu_name;
    238 	const char * const *cpu_steppings;
    239 };
    240 
    241 const struct cpuidtab cpuids[] = {
    242 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    243 	  generic_steppings },
    244 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    245 	  generic_steppings },
    246 
    247 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    248 	  generic_steppings },
    249 
    250 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    251 	  generic_steppings },
    252 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    253 	  generic_steppings },
    254 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    255 	  generic_steppings },
    256 
    257 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    258 	  generic_steppings },
    259 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    260 	  generic_steppings },
    261 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    262 	  generic_steppings },
    263 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    264 	  generic_steppings },
    265 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    266 	  generic_steppings },
    267 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    268 	  generic_steppings },
    269 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    270 	  generic_steppings },
    271 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    272 	  generic_steppings },
    273 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    274 	  generic_steppings },
    275 
    276 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    277 	  generic_steppings },
    278 
    279 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    280 	  generic_steppings },
    281 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    282 	  generic_steppings },
    283 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    284 	  generic_steppings },
    285 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    286 	  generic_steppings },
    287 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    288 	  generic_steppings },
    289 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    290 	  generic_steppings },
    291 
    292 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    293 	  sa110_steppings },
    294 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    295 	  sa1100_steppings },
    296 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    297 	  sa1110_steppings },
    298 
    299 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    300 	  ixp12x0_steppings },
    301 
    302 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    303 	  xscale_steppings },
    304 
    305 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    306 	  i80321_steppings },
    307 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    308 	  i80321_steppings },
    309 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    310 	  i80321_steppings },
    311 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    312 	  i80321_steppings },
    313 
    314 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250(1st ver core)",
    315 	  pxa2x0_steppings },
    316 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210(1st ver core)",
    317 	  pxa2x0_steppings },
    318 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250(3rd ver core)",
    319 	  pxa2x0_steppings },
    320 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210(3rd ver core)",
    321 	  pxa2x0_steppings },
    322 
    323 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
    324 	  generic_steppings },
    325 
    326 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    327 };
    328 
    329 struct cpu_classtab {
    330 	const char	*class_name;
    331 	const char	*class_option;
    332 };
    333 
    334 const struct cpu_classtab cpu_classes[] = {
    335 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    336 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    337 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    338 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    339 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    340 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    341 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    342 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    343 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    344 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    345 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    346 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    347 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
    348 };
    349 
    350 /*
    351  * Report the type of the specifed arm processor. This uses the generic and
    352  * arm specific information in the cpu structure to identify the processor.
    353  * The remaining fields in the cpu structure are filled in appropriately.
    354  */
    355 
    356 static const char * const wtnames[] = {
    357 	"write-through",
    358 	"write-back",
    359 	"write-back",
    360 	"**unknown 3**",
    361 	"**unknown 4**",
    362 	"write-back-locking",		/* XXX XScale-specific? */
    363 	"write-back-locking-A",
    364 	"write-back-locking-B",
    365 	"**unknown 8**",
    366 	"**unknown 9**",
    367 	"**unknown 10**",
    368 	"**unknown 11**",
    369 	"**unknown 12**",
    370 	"**unknown 13**",
    371 	"**unknown 14**",
    372 	"**unknown 15**",
    373 };
    374 
    375 void
    376 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    377 {
    378 	u_int cpuid;
    379 	enum cpu_class cpu_class;
    380 	int i;
    381 
    382 	cpuid = ci->ci_arm_cpuid;
    383 
    384 	if (cpuid == 0) {
    385 		printf("Processor failed probe - no CPU ID\n");
    386 		return;
    387 	}
    388 
    389 	for (i = 0; cpuids[i].cpuid != 0; i++)
    390 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    391 			cpu_class = cpuids[i].cpu_class;
    392 			sprintf(cpu_model, "%s %s (%s core)",
    393 			    cpuids[i].cpu_name,
    394 			    cpuids[i].cpu_steppings[cpuid &
    395 						    CPU_ID_REVISION_MASK],
    396 			    cpu_classes[cpu_class].class_name);
    397 			break;
    398 		}
    399 
    400 	if (cpuids[i].cpuid == 0)
    401 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    402 
    403 	printf(": %s\n", cpu_model);
    404 
    405 	printf("%s:", dv->dv_xname);
    406 
    407 	switch (cpu_class) {
    408 	case CPU_CLASS_ARM6:
    409 	case CPU_CLASS_ARM7:
    410 	case CPU_CLASS_ARM7TDMI:
    411 	case CPU_CLASS_ARM8:
    412 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    413 			printf(" IDC disabled");
    414 		else
    415 			printf(" IDC enabled");
    416 		break;
    417 	case CPU_CLASS_ARM9TDMI:
    418 	case CPU_CLASS_SA1:
    419 	case CPU_CLASS_XSCALE:
    420 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    421 			printf(" DC disabled");
    422 		else
    423 			printf(" DC enabled");
    424 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    425 			printf(" IC disabled");
    426 		else
    427 			printf(" IC enabled");
    428 		break;
    429 	default:
    430 		break;
    431 	}
    432 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    433 		printf(" WB disabled");
    434 	else
    435 		printf(" WB enabled");
    436 
    437 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    438 		printf(" LABT");
    439 	else
    440 		printf(" EABT");
    441 
    442 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    443 		printf(" branch prediction enabled");
    444 
    445 	printf("\n");
    446 
    447 	/* Print cache info. */
    448 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    449 		goto skip_pcache;
    450 
    451 	if (arm_pcache_unified) {
    452 		printf("%s: %dKB/%dB %d-way %s unified cache\n",
    453 		    dv->dv_xname, arm_pdcache_size / 1024,
    454 		    arm_pdcache_line_size, arm_pdcache_ways,
    455 		    wtnames[arm_pcache_type]);
    456 	} else {
    457 		printf("%s: %dKB/%dB %d-way Instruction cache\n",
    458 		    dv->dv_xname, arm_picache_size / 1024,
    459 		    arm_picache_line_size, arm_picache_ways);
    460 		printf("%s: %dKB/%dB %d-way %s Data cache\n",
    461 		    dv->dv_xname, arm_pdcache_size / 1024,
    462 		    arm_pdcache_line_size, arm_pdcache_ways,
    463 		    wtnames[arm_pcache_type]);
    464 	}
    465 
    466  skip_pcache:
    467 
    468 	switch (cpu_class) {
    469 #ifdef CPU_ARM2
    470 	case CPU_CLASS_ARM2:
    471 #endif
    472 #ifdef CPU_ARM250
    473 	case CPU_CLASS_ARM2AS:
    474 #endif
    475 #ifdef CPU_ARM3
    476 	case CPU_CLASS_ARM3:
    477 #endif
    478 #ifdef CPU_ARM6
    479 	case CPU_CLASS_ARM6:
    480 #endif
    481 #ifdef CPU_ARM7
    482 	case CPU_CLASS_ARM7:
    483 #endif
    484 #ifdef CPU_ARM7TDMI
    485 	case CPU_CLASS_ARM7TDMI:
    486 #endif
    487 #ifdef CPU_ARM8
    488 	case CPU_CLASS_ARM8:
    489 #endif
    490 #ifdef CPU_ARM9
    491 	case CPU_CLASS_ARM9TDMI:
    492 #endif
    493 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    494     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    495 	case CPU_CLASS_SA1:
    496 #endif
    497 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    498     defined(CPU_XSCALE_PXA2X0)
    499 	case CPU_CLASS_XSCALE:
    500 #endif
    501 		break;
    502 	default:
    503 		if (cpu_classes[cpu_class].class_option != NULL)
    504 			printf("%s: %s does not fully support this CPU."
    505 			       "\n", dv->dv_xname, ostype);
    506 		else {
    507 			printf("%s: This kernel does not fully support "
    508 			       "this CPU.\n", dv->dv_xname);
    509 			printf("%s: Recompile with \"options %s\" to "
    510 			       "correct this.\n", dv->dv_xname,
    511 			       cpu_classes[cpu_class].class_option);
    512 		}
    513 		break;
    514 	}
    515 
    516 }
    517 #ifdef MULTIPROCESSOR
    518 int
    519 cpu_alloc_idlepcb(struct cpu_info *ci)
    520 {
    521 	vaddr_t uaddr;
    522 	struct pcb *pcb;
    523 	struct trapframe *tf;
    524 	int error;
    525 
    526 	/*
    527 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
    528 	 * new CPU.
    529 	 */
    530 	uaddr = uvm_uarea_alloc();
    531 	error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
    532 	    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
    533 	if (error)
    534 		return error;
    535 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
    536 
    537 	/*
    538 	 * This code is largely derived from cpu_fork(), with which it
    539 	 * should perhaps be shared.
    540 	 */
    541 
    542 	/* Copy the pcb */
    543 	*pcb = proc0.p_addr->u_pcb;
    544 
    545 	/* Set up the undefined stack for the process. */
    546 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
    547 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
    548 
    549 #ifdef STACKCHECKS
    550 	/* Fill the undefined stack with a known pattern */
    551 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
    552 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
    553 	/* Fill the kernel stack with a known pattern */
    554 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
    555 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
    556 #endif	/* STACKCHECKS */
    557 
    558 	pcb->pcb_tf = tf =
    559 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
    560 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
    561 	return 0;
    562 }
    563 #endif /* MULTIPROCESSOR */
    564 
    565 /* End of cpu.c */
    566