cpu.c revision 1.45.2.1 1 /* $NetBSD: cpu.c,v 1.45.2.1 2002/10/19 15:12:52 bjh21 Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45
46 #include <sys/param.h>
47
48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.45.2.1 2002/10/19 15:12:52 bjh21 Exp $");
49
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/conf.h>
55 #include <uvm/uvm_extern.h>
56 #include <machine/cpu.h>
57
58 #include <arm/cpuconf.h>
59 #include <arm/undefined.h>
60
61 #ifdef ARMFPE
62 #include <machine/bootconfig.h> /* For boot args */
63 #include <arm/fpe-arm/armfpe.h>
64 #endif
65
66 char cpu_model[256];
67
68 /* Prototypes */
69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70
71 /*
72 * Identify the master (boot) CPU
73 */
74
75 void
76 cpu_attach(struct device *dv)
77 {
78 int usearmfpe;
79
80 usearmfpe = 1; /* when compiled in, its enabled by default */
81
82 #ifdef MULTIPROCESSOR
83 if (curcpu()->ci_idlepcb == NULL)
84 cpu_alloc_idlepcb(curcpu());
85 #endif
86
87 curcpu()->ci_dev = dv;
88
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 NULL, dv->dv_xname, "arm700swibug");
91
92 /* Get the cpu ID from coprocessor 15 */
93
94 curcpu()->ci_arm_cpuid = cpu_id();
95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 curcpu()->ci_arm_cpurev =
97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98
99 identify_arm_cpu(dv, curcpu());
100
101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 curcpu()->ci_arm_cpurev < 3) {
103 printf("%s: SA-110 with bugged STM^ instruction\n",
104 dv->dv_xname);
105 }
106
107 #ifdef CPU_ARM8
108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 int clock = arm8_clock_config(0, 0);
110 char *fclk;
111 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
113 printf("%s", (clock & 2) ? " sync" : "");
114 switch ((clock >> 2) & 3) {
115 case 0:
116 fclk = "bus clock";
117 break;
118 case 1:
119 fclk = "ref clock";
120 break;
121 case 3:
122 fclk = "pll";
123 break;
124 default:
125 fclk = "illegal";
126 break;
127 }
128 printf(" fclk source=%s\n", fclk);
129 }
130 #endif
131
132 #ifdef ARMFPE
133 /*
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
145 */
146
147 /*
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
154 */
155
156
157 if (boot_args)
158 get_bootconf_option(boot_args, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 if (usearmfpe)
161 initialise_arm_fpe();
162 #endif
163 }
164
165 enum cpu_class {
166 CPU_CLASS_NONE,
167 CPU_CLASS_ARM2,
168 CPU_CLASS_ARM2AS,
169 CPU_CLASS_ARM3,
170 CPU_CLASS_ARM6,
171 CPU_CLASS_ARM7,
172 CPU_CLASS_ARM7TDMI,
173 CPU_CLASS_ARM8,
174 CPU_CLASS_ARM9TDMI,
175 CPU_CLASS_ARM9ES,
176 CPU_CLASS_SA1,
177 CPU_CLASS_XSCALE,
178 CPU_CLASS_ARM10E
179 };
180
181 static const char * const generic_steppings[16] = {
182 "rev 0", "rev 1", "rev 2", "rev 3",
183 "rev 4", "rev 5", "rev 6", "rev 7",
184 "rev 8", "rev 9", "rev 10", "rev 11",
185 "rev 12", "rev 13", "rev 14", "rev 15",
186 };
187
188 static const char * const sa110_steppings[16] = {
189 "rev 0", "step J", "step K", "step S",
190 "step T", "rev 5", "rev 6", "rev 7",
191 "rev 8", "rev 9", "rev 10", "rev 11",
192 "rev 12", "rev 13", "rev 14", "rev 15",
193 };
194
195 static const char * const sa1100_steppings[16] = {
196 "rev 0", "step B", "step C", "rev 3",
197 "rev 4", "rev 5", "rev 6", "rev 7",
198 "step D", "step E", "rev 10" "step G",
199 "rev 12", "rev 13", "rev 14", "rev 15",
200 };
201
202 static const char * const sa1110_steppings[16] = {
203 "step A-0", "rev 1", "rev 2", "rev 3",
204 "step B-0", "step B-1", "step B-2", "step B-3",
205 "step B-4", "step B-5", "rev 10", "rev 11",
206 "rev 12", "rev 13", "rev 14", "rev 15",
207 };
208
209 static const char * const ixp12x0_steppings[16] = {
210 "(IXP1200 step A)", "(IXP1200 step B)",
211 "rev 2", "(IXP1200 step C)",
212 "(IXP1200 step D)", "(IXP1240/1250 step A)",
213 "(IXP1240 step B)", "(IXP1250 step B)",
214 "rev 8", "rev 9", "rev 10", "rev 11",
215 "rev 12", "rev 13", "rev 14", "rev 15",
216 };
217
218 static const char * const xscale_steppings[16] = {
219 "step A-0", "step A-1", "step B-0", "step C-0",
220 "step D-0", "rev 5", "rev 6", "rev 7",
221 "rev 8", "rev 9", "rev 10", "rev 11",
222 "rev 12", "rev 13", "rev 14", "rev 15",
223 };
224
225 static const char * const i80321_steppings[16] = {
226 "step A-0", "step B-0", "rev 2", "rev 3",
227 "rev 4", "rev 5", "rev 6", "rev 7",
228 "rev 8", "rev 9", "rev 10", "rev 11",
229 "rev 12", "rev 13", "rev 14", "rev 15",
230 };
231
232 static const char * const pxa2x0_steppings[16] = {
233 "step A-0", "step A-1", "step B-0", "step B-1",
234 "rev 4", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 struct cpuidtab {
240 u_int32_t cpuid;
241 enum cpu_class cpu_class;
242 const char *cpu_name;
243 const char * const *cpu_steppings;
244 };
245
246 const struct cpuidtab cpuids[] = {
247 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
248 generic_steppings },
249 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
250 generic_steppings },
251
252 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
253 generic_steppings },
254
255 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
256 generic_steppings },
257 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
258 generic_steppings },
259 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
260 generic_steppings },
261
262 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
263 generic_steppings },
264 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
265 generic_steppings },
266 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
267 generic_steppings },
268 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
269 generic_steppings },
270 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
271 generic_steppings },
272 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
273 generic_steppings },
274 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
275 generic_steppings },
276 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
277 generic_steppings },
278 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
279 generic_steppings },
280
281 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
282 generic_steppings },
283
284 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
285 generic_steppings },
286 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
287 generic_steppings },
288 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
289 generic_steppings },
290 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
291 generic_steppings },
292 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
293 generic_steppings },
294 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
295 generic_steppings },
296
297 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
298 sa110_steppings },
299 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
300 sa1100_steppings },
301 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
302 sa1110_steppings },
303
304 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
305 ixp12x0_steppings },
306
307 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
308 xscale_steppings },
309
310 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
311 i80321_steppings },
312 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
313 i80321_steppings },
314 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
315 i80321_steppings },
316 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
317 i80321_steppings },
318
319 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250(1st ver core)",
320 pxa2x0_steppings },
321 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210(1st ver core)",
322 pxa2x0_steppings },
323 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250(3rd ver core)",
324 pxa2x0_steppings },
325 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210(3rd ver core)",
326 pxa2x0_steppings },
327
328 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
329 generic_steppings },
330
331 { 0, CPU_CLASS_NONE, NULL, NULL }
332 };
333
334 struct cpu_classtab {
335 const char *class_name;
336 const char *class_option;
337 };
338
339 const struct cpu_classtab cpu_classes[] = {
340 { "unknown", NULL }, /* CPU_CLASS_NONE */
341 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
342 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
343 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
344 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
345 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
346 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
347 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
348 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
349 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
350 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
351 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
352 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
353 };
354
355 /*
356 * Report the type of the specifed arm processor. This uses the generic and
357 * arm specific information in the cpu structure to identify the processor.
358 * The remaining fields in the cpu structure are filled in appropriately.
359 */
360
361 static const char * const wtnames[] = {
362 "write-through",
363 "write-back",
364 "write-back",
365 "**unknown 3**",
366 "**unknown 4**",
367 "write-back-locking", /* XXX XScale-specific? */
368 "write-back-locking-A",
369 "write-back-locking-B",
370 "**unknown 8**",
371 "**unknown 9**",
372 "**unknown 10**",
373 "**unknown 11**",
374 "**unknown 12**",
375 "**unknown 13**",
376 "**unknown 14**",
377 "**unknown 15**",
378 };
379
380 void
381 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
382 {
383 u_int cpuid;
384 enum cpu_class cpu_class;
385 int i;
386
387 cpuid = ci->ci_arm_cpuid;
388
389 if (cpuid == 0) {
390 printf("Processor failed probe - no CPU ID\n");
391 return;
392 }
393
394 for (i = 0; cpuids[i].cpuid != 0; i++)
395 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
396 cpu_class = cpuids[i].cpu_class;
397 sprintf(cpu_model, "%s %s (%s core)",
398 cpuids[i].cpu_name,
399 cpuids[i].cpu_steppings[cpuid &
400 CPU_ID_REVISION_MASK],
401 cpu_classes[cpu_class].class_name);
402 break;
403 }
404
405 if (cpuids[i].cpuid == 0)
406 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
407
408 printf(": %s\n", cpu_model);
409
410 printf("%s:", dv->dv_xname);
411
412 switch (cpu_class) {
413 case CPU_CLASS_ARM6:
414 case CPU_CLASS_ARM7:
415 case CPU_CLASS_ARM7TDMI:
416 case CPU_CLASS_ARM8:
417 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
418 printf(" IDC disabled");
419 else
420 printf(" IDC enabled");
421 break;
422 case CPU_CLASS_ARM9TDMI:
423 case CPU_CLASS_SA1:
424 case CPU_CLASS_XSCALE:
425 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
426 printf(" DC disabled");
427 else
428 printf(" DC enabled");
429 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
430 printf(" IC disabled");
431 else
432 printf(" IC enabled");
433 break;
434 default:
435 break;
436 }
437 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
438 printf(" WB disabled");
439 else
440 printf(" WB enabled");
441
442 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
443 printf(" LABT");
444 else
445 printf(" EABT");
446
447 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
448 printf(" branch prediction enabled");
449
450 printf("\n");
451
452 /* Print cache info. */
453 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
454 goto skip_pcache;
455
456 if (arm_pcache_unified) {
457 printf("%s: %dKB/%dB %d-way %s unified cache\n",
458 dv->dv_xname, arm_pdcache_size / 1024,
459 arm_pdcache_line_size, arm_pdcache_ways,
460 wtnames[arm_pcache_type]);
461 } else {
462 printf("%s: %dKB/%dB %d-way Instruction cache\n",
463 dv->dv_xname, arm_picache_size / 1024,
464 arm_picache_line_size, arm_picache_ways);
465 printf("%s: %dKB/%dB %d-way %s Data cache\n",
466 dv->dv_xname, arm_pdcache_size / 1024,
467 arm_pdcache_line_size, arm_pdcache_ways,
468 wtnames[arm_pcache_type]);
469 }
470
471 skip_pcache:
472
473 switch (cpu_class) {
474 #ifdef CPU_ARM2
475 case CPU_CLASS_ARM2:
476 #endif
477 #ifdef CPU_ARM250
478 case CPU_CLASS_ARM2AS:
479 #endif
480 #ifdef CPU_ARM3
481 case CPU_CLASS_ARM3:
482 #endif
483 #ifdef CPU_ARM6
484 case CPU_CLASS_ARM6:
485 #endif
486 #ifdef CPU_ARM7
487 case CPU_CLASS_ARM7:
488 #endif
489 #ifdef CPU_ARM7TDMI
490 case CPU_CLASS_ARM7TDMI:
491 #endif
492 #ifdef CPU_ARM8
493 case CPU_CLASS_ARM8:
494 #endif
495 #ifdef CPU_ARM9
496 case CPU_CLASS_ARM9TDMI:
497 #endif
498 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
499 defined(CPU_SA1110) || defined(CPU_IXP12X0)
500 case CPU_CLASS_SA1:
501 #endif
502 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
503 defined(CPU_XSCALE_PXA2X0)
504 case CPU_CLASS_XSCALE:
505 #endif
506 break;
507 default:
508 if (cpu_classes[cpu_class].class_option != NULL)
509 printf("%s: %s does not fully support this CPU."
510 "\n", dv->dv_xname, ostype);
511 else {
512 printf("%s: This kernel does not fully support "
513 "this CPU.\n", dv->dv_xname);
514 printf("%s: Recompile with \"options %s\" to "
515 "correct this.\n", dv->dv_xname,
516 cpu_classes[cpu_class].class_option);
517 }
518 break;
519 }
520
521 }
522 #ifdef MULTIPROCESSOR
523 int
524 cpu_alloc_idlepcb(struct cpu_info *ci)
525 {
526 vaddr_t uaddr;
527 struct pcb *pcb;
528 struct trapframe *tf;
529 int error;
530
531 /*
532 * Generate a kernel stack and PCB (in essence, a u-area) for the
533 * new CPU.
534 */
535 uaddr = uvm_uarea_alloc();
536 error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
537 VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
538 if (error)
539 return error;
540 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
541
542 /*
543 * This code is largely derived from cpu_fork(), with which it
544 * should perhaps be shared.
545 */
546
547 /* Copy the pcb */
548 *pcb = proc0.p_addr->u_pcb;
549
550 /* Set up the undefined stack for the process. */
551 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
552 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
553
554 #ifdef STACKCHECKS
555 /* Fill the undefined stack with a known pattern */
556 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
557 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
558 /* Fill the kernel stack with a known pattern */
559 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
560 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
561 #endif /* STACKCHECKS */
562
563 pcb->pcb_tf = tf =
564 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
565 *tf = *proc0.p_addr->u_pcb.pcb_tf;
566 return 0;
567 }
568 #endif /* MULTIPROCESSOR */
569
570 /* End of cpu.c */
571