Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.49
      1 /*	$NetBSD: cpu.c,v 1.49 2003/04/29 01:07:30 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 
     46 #include <sys/param.h>
     47 
     48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.49 2003/04/29 01:07:30 thorpej Exp $");
     49 
     50 #include <sys/systm.h>
     51 #include <sys/malloc.h>
     52 #include <sys/device.h>
     53 #include <sys/proc.h>
     54 #include <sys/conf.h>
     55 #include <uvm/uvm_extern.h>
     56 #include <machine/cpu.h>
     57 
     58 #include <arm/cpuconf.h>
     59 #include <arm/undefined.h>
     60 
     61 #ifdef ARMFPE
     62 #include <machine/bootconfig.h> /* For boot args */
     63 #include <arm/fpe-arm/armfpe.h>
     64 #endif
     65 
     66 char cpu_model[256];
     67 
     68 /* Prototypes */
     69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     70 
     71 /*
     72  * Identify the master (boot) CPU
     73  */
     74 
     75 void
     76 cpu_attach(struct device *dv)
     77 {
     78 	int usearmfpe;
     79 
     80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     81 
     82 	curcpu()->ci_dev = dv;
     83 
     84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     85 	    NULL, dv->dv_xname, "arm700swibug");
     86 
     87 	/* Get the cpu ID from coprocessor 15 */
     88 
     89 	curcpu()->ci_arm_cpuid = cpu_id();
     90 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     91 	curcpu()->ci_arm_cpurev =
     92 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     93 
     94 	identify_arm_cpu(dv, curcpu());
     95 
     96 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
     97 	    curcpu()->ci_arm_cpurev < 3) {
     98 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
     99 		       dv->dv_xname);
    100 	}
    101 
    102 #ifdef CPU_ARM8
    103 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    104 		int clock = arm8_clock_config(0, 0);
    105 		char *fclk;
    106 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    107 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    108 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    109 		switch ((clock >> 2) & 3) {
    110 		case 0:
    111 			fclk = "bus clock";
    112 			break;
    113 		case 1:
    114 			fclk = "ref clock";
    115 			break;
    116 		case 3:
    117 			fclk = "pll";
    118 			break;
    119 		default:
    120 			fclk = "illegal";
    121 			break;
    122 		}
    123 		aprint_normal(" fclk source=%s\n", fclk);
    124  	}
    125 #endif
    126 
    127 #ifdef ARMFPE
    128 	/*
    129 	 * Ok now we test for an FPA
    130 	 * At this point no floating point emulator has been installed.
    131 	 * This means any FP instruction will cause undefined exception.
    132 	 * We install a temporay coproc 1 handler which will modify
    133 	 * undefined_test if it is called.
    134 	 * We then try to read the FP status register. If undefined_test
    135 	 * has been decremented then the instruction was not handled by
    136 	 * an FPA so we know the FPA is missing. If undefined_test is
    137 	 * still 1 then we know the instruction was handled by an FPA.
    138 	 * We then remove our test handler and look at the
    139 	 * FP status register for identification.
    140 	 */
    141 
    142 	/*
    143 	 * Ok if ARMFPE is defined and the boot options request the
    144 	 * ARM FPE then it will be installed as the FPE.
    145 	 * This is just while I work on integrating the new FPE.
    146 	 * It means the new FPE gets installed if compiled int (ARMFPE
    147 	 * defined) and also gives me a on/off option when I boot in
    148 	 * case the new FPE is causing panics.
    149 	 */
    150 
    151 
    152 	if (boot_args)
    153 		get_bootconf_option(boot_args, "armfpe",
    154 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    155 	if (usearmfpe)
    156 		initialise_arm_fpe();
    157 #endif
    158 }
    159 
    160 enum cpu_class {
    161 	CPU_CLASS_NONE,
    162 	CPU_CLASS_ARM2,
    163 	CPU_CLASS_ARM2AS,
    164 	CPU_CLASS_ARM3,
    165 	CPU_CLASS_ARM6,
    166 	CPU_CLASS_ARM7,
    167 	CPU_CLASS_ARM7TDMI,
    168 	CPU_CLASS_ARM8,
    169 	CPU_CLASS_ARM9TDMI,
    170 	CPU_CLASS_ARM9ES,
    171 	CPU_CLASS_SA1,
    172 	CPU_CLASS_XSCALE,
    173 	CPU_CLASS_ARM10E
    174 };
    175 
    176 static const char * const generic_steppings[16] = {
    177 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    178 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    179 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    180 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    181 };
    182 
    183 static const char * const sa110_steppings[16] = {
    184 	"rev 0",	"step J",	"step K",	"step S",
    185 	"step T",	"rev 5",	"rev 6",	"rev 7",
    186 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    187 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    188 };
    189 
    190 static const char * const sa1100_steppings[16] = {
    191 	"rev 0",	"step B",	"step C",	"rev 3",
    192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    193 	"step D",	"step E",	"rev 10"	"step G",
    194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    195 };
    196 
    197 static const char * const sa1110_steppings[16] = {
    198 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    199 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    200 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    201 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    202 };
    203 
    204 static const char * const ixp12x0_steppings[16] = {
    205 	"(IXP1200 step A)",		"(IXP1200 step B)",
    206 	"rev 2",			"(IXP1200 step C)",
    207 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    208 	"(IXP1240 step B)",		"(IXP1250 step B)",
    209 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    210 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    211 };
    212 
    213 static const char * const xscale_steppings[16] = {
    214 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    215 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    216 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    217 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    218 };
    219 
    220 static const char * const i80321_steppings[16] = {
    221 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    222 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    223 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    224 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    225 };
    226 
    227 static const char * const pxa2x0_steppings[16] = {
    228 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    229 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    230 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    231 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    232 };
    233 
    234 struct cpuidtab {
    235 	u_int32_t	cpuid;
    236 	enum		cpu_class cpu_class;
    237 	const char	*cpu_name;
    238 	const char * const *cpu_steppings;
    239 };
    240 
    241 const struct cpuidtab cpuids[] = {
    242 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    243 	  generic_steppings },
    244 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    245 	  generic_steppings },
    246 
    247 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    248 	  generic_steppings },
    249 
    250 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    251 	  generic_steppings },
    252 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    253 	  generic_steppings },
    254 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    255 	  generic_steppings },
    256 
    257 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    258 	  generic_steppings },
    259 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    260 	  generic_steppings },
    261 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    262 	  generic_steppings },
    263 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    264 	  generic_steppings },
    265 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    266 	  generic_steppings },
    267 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    268 	  generic_steppings },
    269 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    270 	  generic_steppings },
    271 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    272 	  generic_steppings },
    273 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    274 	  generic_steppings },
    275 
    276 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    277 	  generic_steppings },
    278 
    279 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    280 	  generic_steppings },
    281 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    282 	  generic_steppings },
    283 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    284 	  generic_steppings },
    285 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    286 	  generic_steppings },
    287 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    288 	  generic_steppings },
    289 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    290 	  generic_steppings },
    291 
    292 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    293 	  sa110_steppings },
    294 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    295 	  sa1100_steppings },
    296 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    297 	  sa1110_steppings },
    298 
    299 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    300 	  ixp12x0_steppings },
    301 
    302 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    303 	  xscale_steppings },
    304 
    305 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    306 	  i80321_steppings },
    307 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    308 	  i80321_steppings },
    309 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    310 	  i80321_steppings },
    311 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    312 	  i80321_steppings },
    313 
    314 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    315 	  pxa2x0_steppings },
    316 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    317 	  pxa2x0_steppings },
    318 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    319 	  pxa2x0_steppings },
    320 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    321 	  pxa2x0_steppings },
    322 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA250",
    323 	  pxa2x0_steppings },
    324 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    325 	  pxa2x0_steppings },
    326 
    327 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
    328 	  generic_steppings },
    329 
    330 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    331 };
    332 
    333 struct cpu_classtab {
    334 	const char	*class_name;
    335 	const char	*class_option;
    336 };
    337 
    338 const struct cpu_classtab cpu_classes[] = {
    339 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    340 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    341 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    342 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    343 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    344 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    345 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    346 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    347 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    348 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    349 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    350 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    351 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
    352 };
    353 
    354 /*
    355  * Report the type of the specified arm processor. This uses the generic and
    356  * arm specific information in the cpu structure to identify the processor.
    357  * The remaining fields in the cpu structure are filled in appropriately.
    358  */
    359 
    360 static const char * const wtnames[] = {
    361 	"write-through",
    362 	"write-back",
    363 	"write-back",
    364 	"**unknown 3**",
    365 	"**unknown 4**",
    366 	"write-back-locking",		/* XXX XScale-specific? */
    367 	"write-back-locking-A",
    368 	"write-back-locking-B",
    369 	"**unknown 8**",
    370 	"**unknown 9**",
    371 	"**unknown 10**",
    372 	"**unknown 11**",
    373 	"**unknown 12**",
    374 	"**unknown 13**",
    375 	"**unknown 14**",
    376 	"**unknown 15**",
    377 };
    378 
    379 void
    380 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    381 {
    382 	u_int cpuid;
    383 	enum cpu_class cpu_class;
    384 	int i;
    385 
    386 	cpuid = ci->ci_arm_cpuid;
    387 
    388 	if (cpuid == 0) {
    389 		aprint_error("Processor failed probe - no CPU ID\n");
    390 		return;
    391 	}
    392 
    393 	for (i = 0; cpuids[i].cpuid != 0; i++)
    394 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    395 			cpu_class = cpuids[i].cpu_class;
    396 			sprintf(cpu_model, "%s %s (%s core)",
    397 			    cpuids[i].cpu_name,
    398 			    cpuids[i].cpu_steppings[cpuid &
    399 						    CPU_ID_REVISION_MASK],
    400 			    cpu_classes[cpu_class].class_name);
    401 			break;
    402 		}
    403 
    404 	if (cpuids[i].cpuid == 0)
    405 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    406 
    407 	aprint_naive(": %s\n", cpu_model);
    408 	aprint_normal(": %s\n", cpu_model);
    409 
    410 	aprint_normal("%s:", dv->dv_xname);
    411 
    412 	switch (cpu_class) {
    413 	case CPU_CLASS_ARM6:
    414 	case CPU_CLASS_ARM7:
    415 	case CPU_CLASS_ARM7TDMI:
    416 	case CPU_CLASS_ARM8:
    417 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    418 			aprint_normal(" IDC disabled");
    419 		else
    420 			aprint_normal(" IDC enabled");
    421 		break;
    422 	case CPU_CLASS_ARM9TDMI:
    423 	case CPU_CLASS_SA1:
    424 	case CPU_CLASS_XSCALE:
    425 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    426 			aprint_normal(" DC disabled");
    427 		else
    428 			aprint_normal(" DC enabled");
    429 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    430 			aprint_normal(" IC disabled");
    431 		else
    432 			aprint_normal(" IC enabled");
    433 		break;
    434 	default:
    435 		break;
    436 	}
    437 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    438 		aprint_normal(" WB disabled");
    439 	else
    440 		aprint_normal(" WB enabled");
    441 
    442 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    443 		aprint_normal(" LABT");
    444 	else
    445 		aprint_normal(" EABT");
    446 
    447 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    448 		aprint_normal(" branch prediction enabled");
    449 
    450 	aprint_normal("\n");
    451 
    452 	/* Print cache info. */
    453 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    454 		goto skip_pcache;
    455 
    456 	if (arm_pcache_unified) {
    457 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    458 		    dv->dv_xname, arm_pdcache_size / 1024,
    459 		    arm_pdcache_line_size, arm_pdcache_ways,
    460 		    wtnames[arm_pcache_type]);
    461 	} else {
    462 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    463 		    dv->dv_xname, arm_picache_size / 1024,
    464 		    arm_picache_line_size, arm_picache_ways);
    465 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    466 		    dv->dv_xname, arm_pdcache_size / 1024,
    467 		    arm_pdcache_line_size, arm_pdcache_ways,
    468 		    wtnames[arm_pcache_type]);
    469 	}
    470 
    471  skip_pcache:
    472 
    473 	switch (cpu_class) {
    474 #ifdef CPU_ARM2
    475 	case CPU_CLASS_ARM2:
    476 #endif
    477 #ifdef CPU_ARM250
    478 	case CPU_CLASS_ARM2AS:
    479 #endif
    480 #ifdef CPU_ARM3
    481 	case CPU_CLASS_ARM3:
    482 #endif
    483 #ifdef CPU_ARM6
    484 	case CPU_CLASS_ARM6:
    485 #endif
    486 #ifdef CPU_ARM7
    487 	case CPU_CLASS_ARM7:
    488 #endif
    489 #ifdef CPU_ARM7TDMI
    490 	case CPU_CLASS_ARM7TDMI:
    491 #endif
    492 #ifdef CPU_ARM8
    493 	case CPU_CLASS_ARM8:
    494 #endif
    495 #ifdef CPU_ARM9
    496 	case CPU_CLASS_ARM9TDMI:
    497 #endif
    498 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    499     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    500 	case CPU_CLASS_SA1:
    501 #endif
    502 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    503     defined(CPU_XSCALE_PXA2X0)
    504 	case CPU_CLASS_XSCALE:
    505 #endif
    506 		break;
    507 	default:
    508 		if (cpu_classes[cpu_class].class_option != NULL)
    509 			aprint_error("%s: %s does not fully support this CPU."
    510 			       "\n", dv->dv_xname, ostype);
    511 		else {
    512 			aprint_error("%s: This kernel does not fully support "
    513 			       "this CPU.\n", dv->dv_xname);
    514 			aprint_normal("%s: Recompile with \"options %s\" to "
    515 			       "correct this.\n", dv->dv_xname,
    516 			       cpu_classes[cpu_class].class_option);
    517 		}
    518 		break;
    519 	}
    520 
    521 }
    522 #ifdef MULTIPROCESSOR
    523 int
    524 cpu_alloc_idlepcb(struct cpu_info *ci)
    525 {
    526 	vaddr_t uaddr;
    527 	struct pcb *pcb;
    528 	struct trapframe *tf;
    529 	int error;
    530 
    531 	/*
    532 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
    533 	 * new CPU.
    534 	 */
    535 	if (uvm_uarea_alloc(&uaddr)) {
    536 		error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
    537 		    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
    538 		if (error)
    539 			return error;
    540 	}
    541 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
    542 
    543 	/*
    544 	 * This code is largely derived from cpu_fork(), with which it
    545 	 * should perhaps be shared.
    546 	 */
    547 
    548 	/* Copy the pcb */
    549 	*pcb = proc0.p_addr->u_pcb;
    550 
    551 	/* Set up the undefined stack for the process. */
    552 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
    553 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
    554 
    555 #ifdef STACKCHECKS
    556 	/* Fill the undefined stack with a known pattern */
    557 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
    558 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
    559 	/* Fill the kernel stack with a known pattern */
    560 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
    561 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
    562 #endif	/* STACKCHECKS */
    563 
    564 	pcb->pcb_tf = tf =
    565 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
    566 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
    567 	return 0;
    568 }
    569 #endif /* MULTIPROCESSOR */
    570 
    571 /* End of cpu.c */
    572