cpu.c revision 1.49 1 /* $NetBSD: cpu.c,v 1.49 2003/04/29 01:07:30 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45
46 #include <sys/param.h>
47
48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.49 2003/04/29 01:07:30 thorpej Exp $");
49
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/conf.h>
55 #include <uvm/uvm_extern.h>
56 #include <machine/cpu.h>
57
58 #include <arm/cpuconf.h>
59 #include <arm/undefined.h>
60
61 #ifdef ARMFPE
62 #include <machine/bootconfig.h> /* For boot args */
63 #include <arm/fpe-arm/armfpe.h>
64 #endif
65
66 char cpu_model[256];
67
68 /* Prototypes */
69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
70
71 /*
72 * Identify the master (boot) CPU
73 */
74
75 void
76 cpu_attach(struct device *dv)
77 {
78 int usearmfpe;
79
80 usearmfpe = 1; /* when compiled in, its enabled by default */
81
82 curcpu()->ci_dev = dv;
83
84 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
85 NULL, dv->dv_xname, "arm700swibug");
86
87 /* Get the cpu ID from coprocessor 15 */
88
89 curcpu()->ci_arm_cpuid = cpu_id();
90 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
91 curcpu()->ci_arm_cpurev =
92 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
93
94 identify_arm_cpu(dv, curcpu());
95
96 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
97 curcpu()->ci_arm_cpurev < 3) {
98 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
99 dv->dv_xname);
100 }
101
102 #ifdef CPU_ARM8
103 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
104 int clock = arm8_clock_config(0, 0);
105 char *fclk;
106 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
107 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
108 aprint_normal("%s", (clock & 2) ? " sync" : "");
109 switch ((clock >> 2) & 3) {
110 case 0:
111 fclk = "bus clock";
112 break;
113 case 1:
114 fclk = "ref clock";
115 break;
116 case 3:
117 fclk = "pll";
118 break;
119 default:
120 fclk = "illegal";
121 break;
122 }
123 aprint_normal(" fclk source=%s\n", fclk);
124 }
125 #endif
126
127 #ifdef ARMFPE
128 /*
129 * Ok now we test for an FPA
130 * At this point no floating point emulator has been installed.
131 * This means any FP instruction will cause undefined exception.
132 * We install a temporay coproc 1 handler which will modify
133 * undefined_test if it is called.
134 * We then try to read the FP status register. If undefined_test
135 * has been decremented then the instruction was not handled by
136 * an FPA so we know the FPA is missing. If undefined_test is
137 * still 1 then we know the instruction was handled by an FPA.
138 * We then remove our test handler and look at the
139 * FP status register for identification.
140 */
141
142 /*
143 * Ok if ARMFPE is defined and the boot options request the
144 * ARM FPE then it will be installed as the FPE.
145 * This is just while I work on integrating the new FPE.
146 * It means the new FPE gets installed if compiled int (ARMFPE
147 * defined) and also gives me a on/off option when I boot in
148 * case the new FPE is causing panics.
149 */
150
151
152 if (boot_args)
153 get_bootconf_option(boot_args, "armfpe",
154 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
155 if (usearmfpe)
156 initialise_arm_fpe();
157 #endif
158 }
159
160 enum cpu_class {
161 CPU_CLASS_NONE,
162 CPU_CLASS_ARM2,
163 CPU_CLASS_ARM2AS,
164 CPU_CLASS_ARM3,
165 CPU_CLASS_ARM6,
166 CPU_CLASS_ARM7,
167 CPU_CLASS_ARM7TDMI,
168 CPU_CLASS_ARM8,
169 CPU_CLASS_ARM9TDMI,
170 CPU_CLASS_ARM9ES,
171 CPU_CLASS_SA1,
172 CPU_CLASS_XSCALE,
173 CPU_CLASS_ARM10E
174 };
175
176 static const char * const generic_steppings[16] = {
177 "rev 0", "rev 1", "rev 2", "rev 3",
178 "rev 4", "rev 5", "rev 6", "rev 7",
179 "rev 8", "rev 9", "rev 10", "rev 11",
180 "rev 12", "rev 13", "rev 14", "rev 15",
181 };
182
183 static const char * const sa110_steppings[16] = {
184 "rev 0", "step J", "step K", "step S",
185 "step T", "rev 5", "rev 6", "rev 7",
186 "rev 8", "rev 9", "rev 10", "rev 11",
187 "rev 12", "rev 13", "rev 14", "rev 15",
188 };
189
190 static const char * const sa1100_steppings[16] = {
191 "rev 0", "step B", "step C", "rev 3",
192 "rev 4", "rev 5", "rev 6", "rev 7",
193 "step D", "step E", "rev 10" "step G",
194 "rev 12", "rev 13", "rev 14", "rev 15",
195 };
196
197 static const char * const sa1110_steppings[16] = {
198 "step A-0", "rev 1", "rev 2", "rev 3",
199 "step B-0", "step B-1", "step B-2", "step B-3",
200 "step B-4", "step B-5", "rev 10", "rev 11",
201 "rev 12", "rev 13", "rev 14", "rev 15",
202 };
203
204 static const char * const ixp12x0_steppings[16] = {
205 "(IXP1200 step A)", "(IXP1200 step B)",
206 "rev 2", "(IXP1200 step C)",
207 "(IXP1200 step D)", "(IXP1240/1250 step A)",
208 "(IXP1240 step B)", "(IXP1250 step B)",
209 "rev 8", "rev 9", "rev 10", "rev 11",
210 "rev 12", "rev 13", "rev 14", "rev 15",
211 };
212
213 static const char * const xscale_steppings[16] = {
214 "step A-0", "step A-1", "step B-0", "step C-0",
215 "step D-0", "rev 5", "rev 6", "rev 7",
216 "rev 8", "rev 9", "rev 10", "rev 11",
217 "rev 12", "rev 13", "rev 14", "rev 15",
218 };
219
220 static const char * const i80321_steppings[16] = {
221 "step A-0", "step B-0", "rev 2", "rev 3",
222 "rev 4", "rev 5", "rev 6", "rev 7",
223 "rev 8", "rev 9", "rev 10", "rev 11",
224 "rev 12", "rev 13", "rev 14", "rev 15",
225 };
226
227 static const char * const pxa2x0_steppings[16] = {
228 "step A-0", "step A-1", "step B-0", "step B-1",
229 "step B-2", "step C-0", "rev 6", "rev 7",
230 "rev 8", "rev 9", "rev 10", "rev 11",
231 "rev 12", "rev 13", "rev 14", "rev 15",
232 };
233
234 struct cpuidtab {
235 u_int32_t cpuid;
236 enum cpu_class cpu_class;
237 const char *cpu_name;
238 const char * const *cpu_steppings;
239 };
240
241 const struct cpuidtab cpuids[] = {
242 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
243 generic_steppings },
244 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
245 generic_steppings },
246
247 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
248 generic_steppings },
249
250 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
251 generic_steppings },
252 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
253 generic_steppings },
254 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
255 generic_steppings },
256
257 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
258 generic_steppings },
259 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
260 generic_steppings },
261 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
262 generic_steppings },
263 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
264 generic_steppings },
265 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
266 generic_steppings },
267 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
268 generic_steppings },
269 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
270 generic_steppings },
271 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
272 generic_steppings },
273 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
274 generic_steppings },
275
276 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
277 generic_steppings },
278
279 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
280 generic_steppings },
281 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
282 generic_steppings },
283 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
284 generic_steppings },
285 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
286 generic_steppings },
287 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
288 generic_steppings },
289 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
290 generic_steppings },
291
292 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
293 sa110_steppings },
294 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
295 sa1100_steppings },
296 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
297 sa1110_steppings },
298
299 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
300 ixp12x0_steppings },
301
302 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
303 xscale_steppings },
304
305 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
306 i80321_steppings },
307 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
308 i80321_steppings },
309 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
310 i80321_steppings },
311 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
312 i80321_steppings },
313
314 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
315 pxa2x0_steppings },
316 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
317 pxa2x0_steppings },
318 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
319 pxa2x0_steppings },
320 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
321 pxa2x0_steppings },
322 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA250",
323 pxa2x0_steppings },
324 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
325 pxa2x0_steppings },
326
327 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
328 generic_steppings },
329
330 { 0, CPU_CLASS_NONE, NULL, NULL }
331 };
332
333 struct cpu_classtab {
334 const char *class_name;
335 const char *class_option;
336 };
337
338 const struct cpu_classtab cpu_classes[] = {
339 { "unknown", NULL }, /* CPU_CLASS_NONE */
340 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
341 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
342 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
343 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
344 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
345 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
346 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
347 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
348 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
349 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
350 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
351 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
352 };
353
354 /*
355 * Report the type of the specified arm processor. This uses the generic and
356 * arm specific information in the cpu structure to identify the processor.
357 * The remaining fields in the cpu structure are filled in appropriately.
358 */
359
360 static const char * const wtnames[] = {
361 "write-through",
362 "write-back",
363 "write-back",
364 "**unknown 3**",
365 "**unknown 4**",
366 "write-back-locking", /* XXX XScale-specific? */
367 "write-back-locking-A",
368 "write-back-locking-B",
369 "**unknown 8**",
370 "**unknown 9**",
371 "**unknown 10**",
372 "**unknown 11**",
373 "**unknown 12**",
374 "**unknown 13**",
375 "**unknown 14**",
376 "**unknown 15**",
377 };
378
379 void
380 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
381 {
382 u_int cpuid;
383 enum cpu_class cpu_class;
384 int i;
385
386 cpuid = ci->ci_arm_cpuid;
387
388 if (cpuid == 0) {
389 aprint_error("Processor failed probe - no CPU ID\n");
390 return;
391 }
392
393 for (i = 0; cpuids[i].cpuid != 0; i++)
394 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
395 cpu_class = cpuids[i].cpu_class;
396 sprintf(cpu_model, "%s %s (%s core)",
397 cpuids[i].cpu_name,
398 cpuids[i].cpu_steppings[cpuid &
399 CPU_ID_REVISION_MASK],
400 cpu_classes[cpu_class].class_name);
401 break;
402 }
403
404 if (cpuids[i].cpuid == 0)
405 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
406
407 aprint_naive(": %s\n", cpu_model);
408 aprint_normal(": %s\n", cpu_model);
409
410 aprint_normal("%s:", dv->dv_xname);
411
412 switch (cpu_class) {
413 case CPU_CLASS_ARM6:
414 case CPU_CLASS_ARM7:
415 case CPU_CLASS_ARM7TDMI:
416 case CPU_CLASS_ARM8:
417 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
418 aprint_normal(" IDC disabled");
419 else
420 aprint_normal(" IDC enabled");
421 break;
422 case CPU_CLASS_ARM9TDMI:
423 case CPU_CLASS_SA1:
424 case CPU_CLASS_XSCALE:
425 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
426 aprint_normal(" DC disabled");
427 else
428 aprint_normal(" DC enabled");
429 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
430 aprint_normal(" IC disabled");
431 else
432 aprint_normal(" IC enabled");
433 break;
434 default:
435 break;
436 }
437 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
438 aprint_normal(" WB disabled");
439 else
440 aprint_normal(" WB enabled");
441
442 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
443 aprint_normal(" LABT");
444 else
445 aprint_normal(" EABT");
446
447 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
448 aprint_normal(" branch prediction enabled");
449
450 aprint_normal("\n");
451
452 /* Print cache info. */
453 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
454 goto skip_pcache;
455
456 if (arm_pcache_unified) {
457 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
458 dv->dv_xname, arm_pdcache_size / 1024,
459 arm_pdcache_line_size, arm_pdcache_ways,
460 wtnames[arm_pcache_type]);
461 } else {
462 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
463 dv->dv_xname, arm_picache_size / 1024,
464 arm_picache_line_size, arm_picache_ways);
465 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
466 dv->dv_xname, arm_pdcache_size / 1024,
467 arm_pdcache_line_size, arm_pdcache_ways,
468 wtnames[arm_pcache_type]);
469 }
470
471 skip_pcache:
472
473 switch (cpu_class) {
474 #ifdef CPU_ARM2
475 case CPU_CLASS_ARM2:
476 #endif
477 #ifdef CPU_ARM250
478 case CPU_CLASS_ARM2AS:
479 #endif
480 #ifdef CPU_ARM3
481 case CPU_CLASS_ARM3:
482 #endif
483 #ifdef CPU_ARM6
484 case CPU_CLASS_ARM6:
485 #endif
486 #ifdef CPU_ARM7
487 case CPU_CLASS_ARM7:
488 #endif
489 #ifdef CPU_ARM7TDMI
490 case CPU_CLASS_ARM7TDMI:
491 #endif
492 #ifdef CPU_ARM8
493 case CPU_CLASS_ARM8:
494 #endif
495 #ifdef CPU_ARM9
496 case CPU_CLASS_ARM9TDMI:
497 #endif
498 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
499 defined(CPU_SA1110) || defined(CPU_IXP12X0)
500 case CPU_CLASS_SA1:
501 #endif
502 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
503 defined(CPU_XSCALE_PXA2X0)
504 case CPU_CLASS_XSCALE:
505 #endif
506 break;
507 default:
508 if (cpu_classes[cpu_class].class_option != NULL)
509 aprint_error("%s: %s does not fully support this CPU."
510 "\n", dv->dv_xname, ostype);
511 else {
512 aprint_error("%s: This kernel does not fully support "
513 "this CPU.\n", dv->dv_xname);
514 aprint_normal("%s: Recompile with \"options %s\" to "
515 "correct this.\n", dv->dv_xname,
516 cpu_classes[cpu_class].class_option);
517 }
518 break;
519 }
520
521 }
522 #ifdef MULTIPROCESSOR
523 int
524 cpu_alloc_idlepcb(struct cpu_info *ci)
525 {
526 vaddr_t uaddr;
527 struct pcb *pcb;
528 struct trapframe *tf;
529 int error;
530
531 /*
532 * Generate a kernel stack and PCB (in essence, a u-area) for the
533 * new CPU.
534 */
535 if (uvm_uarea_alloc(&uaddr)) {
536 error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
537 VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
538 if (error)
539 return error;
540 }
541 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
542
543 /*
544 * This code is largely derived from cpu_fork(), with which it
545 * should perhaps be shared.
546 */
547
548 /* Copy the pcb */
549 *pcb = proc0.p_addr->u_pcb;
550
551 /* Set up the undefined stack for the process. */
552 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
553 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
554
555 #ifdef STACKCHECKS
556 /* Fill the undefined stack with a known pattern */
557 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
558 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
559 /* Fill the kernel stack with a known pattern */
560 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
561 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
562 #endif /* STACKCHECKS */
563
564 pcb->pcb_tf = tf =
565 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
566 *tf = *proc0.p_addr->u_pcb.pcb_tf;
567 return 0;
568 }
569 #endif /* MULTIPROCESSOR */
570
571 /* End of cpu.c */
572