Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.5
      1 /*	$NetBSD: cpu.c,v 1.5 2001/09/28 09:53:41 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_cputypes.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/malloc.h>
     50 #include <sys/device.h>
     51 #include <sys/proc.h>
     52 #include <uvm/uvm_extern.h>
     53 #include <machine/conf.h>
     54 #include <machine/cpu.h>
     55 #include <machine/cpus.h>
     56 #include <machine/undefined.h>
     57 
     58 #ifdef ARMFPE
     59 #include <machine/bootconfig.h> /* For boot args */
     60 #include <arm32/fpe-arm/armfpe.h>
     61 #endif	/* ARMFPE */
     62 
     63 cpu_t cpus[MAX_CPUS];
     64 
     65 char cpu_model[64];
     66 volatile int undefined_test;	/* Used for FPA test */
     67 extern int cpuctrl;		/* cpu control register value */
     68 
     69 /* Prototypes */
     70 void identify_master_cpu __P((struct device *dv, int cpu_number));
     71 void identify_arm_cpu	__P((struct device *dv, int cpu_number));
     72 void identify_arm_fpu	__P((struct device *dv, int cpu_number));
     73 int fpa_test __P((u_int, u_int, trapframe_t *, int));
     74 int fpa_handler __P((u_int, u_int, trapframe_t *, int));
     75 
     76 /*
     77  * void cpusattach(struct device *parent, struct device *dev, void *aux)
     78  *
     79  * Attach the main cpu
     80  */
     81 
     82 void
     83 cpu_attach(dv)
     84 	struct device *dv;
     85 {
     86 	identify_master_cpu(dv, CPU_MASTER);
     87 }
     88 
     89 /*
     90  * Used to test for an FPA. The following function is installed as a coproc1
     91  * handler on the undefined instruction vector and then we issue a FPA
     92  * instruction. If undefined_test is non zero then the FPA did not handle
     93  * the instruction so must be absent.
     94  */
     95 
     96 int
     97 fpa_test(address, instruction, frame, fault_code)
     98 	u_int address;
     99 	u_int instruction;
    100 	trapframe_t *frame;
    101 	int fault_code;
    102 {
    103 
    104 	frame->tf_pc += INSN_SIZE;
    105 	++undefined_test;
    106 	return(0);
    107 }
    108 
    109 /*
    110  * If an FPA was found then this function is installed as the coproc1 handler
    111  * on the undefined instruction vector. Currently we don't support FPA's
    112  * so this just triggers an exception.
    113  */
    114 
    115 int
    116 fpa_handler(address, instruction, frame, fault_code)
    117 	u_int address;
    118 	u_int instruction;
    119 	trapframe_t *frame;
    120 	int fault_code;
    121 {
    122 	u_int fpsr;
    123 
    124 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    125 
    126 	printf("FPA exception: fpsr = %08x\n", fpsr);
    127 
    128 	return(1);
    129 }
    130 
    131 
    132 /*
    133  * Identify the master (boot) CPU
    134  * This also probes for an FPU and will install an FPE if necessary
    135  */
    136 
    137 void
    138 identify_master_cpu(dv, cpu_number)
    139 	struct device *dv;
    140 	int cpu_number;
    141 {
    142 	u_int fpsr;
    143 	void *uh;
    144 
    145 	cpus[cpu_number].cpu_ctrl = cpuctrl;
    146 
    147 	/* Get the cpu ID from coprocessor 15 */
    148 
    149 	cpus[cpu_number].cpu_id = cpu_id();
    150 
    151 	identify_arm_cpu(dv, cpu_number);
    152 	strcpy(cpu_model, cpus[cpu_number].cpu_model);
    153 
    154 	if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
    155 	    && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
    156 		printf("%s: SA-110 with bugged STM^ instruction\n",
    157 		       dv->dv_xname);
    158 	}
    159 
    160 #ifdef CPU_ARM8
    161 	if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    162 		int clock = arm8_clock_config(0, 0);
    163 		char *fclk;
    164 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    165 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
    166 		printf("%s", (clock & 2) ? " sync" : "");
    167 		switch ((clock >> 2) & 3) {
    168 		case 0 :
    169 			fclk = "bus clock";
    170 			break;
    171 		case 1 :
    172 			fclk = "ref clock";
    173 			break;
    174 		case 3 :
    175 			fclk = "pll";
    176 			break;
    177 		default :
    178 			fclk = "illegal";
    179 			break;
    180 		}
    181 		printf(" fclk source=%s\n", fclk);
    182  	}
    183 #endif
    184 
    185 	/*
    186 	 * Ok now we test for an FPA
    187 	 * At this point no floating point emulator has been installed.
    188 	 * This means any FP instruction will cause undefined exception.
    189 	 * We install a temporay coproc 1 handler which will modify
    190 	 * undefined_test if it is called.
    191 	 * We then try to read the FP status register. If undefined_test
    192 	 * has been decremented then the instruction was not handled by
    193 	 * an FPA so we know the FPA is missing. If undefined_test is
    194 	 * still 1 then we know the instruction was handled by an FPA.
    195 	 * We then remove our test handler and look at the
    196 	 * FP status register for identification.
    197 	 */
    198 
    199 	uh = install_coproc_handler(FP_COPROC, fpa_test);
    200 
    201 	undefined_test = 0;
    202 
    203 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
    204 
    205 	remove_coproc_handler(uh);
    206 
    207 	if (undefined_test == 0) {
    208 		cpus[cpu_number].fpu_type = (fpsr >> 24);
    209 	        switch (fpsr >> 24) {
    210 		case 0x81 :
    211 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
    212 			break;
    213 
    214 		default :
    215 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
    216 			break;
    217 		}
    218 		cpus[cpu_number].fpu_flags = 0;
    219 		install_coproc_handler(FP_COPROC, fpa_handler);
    220 	} else {
    221 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
    222 		cpus[cpu_number].fpu_flags = 0;
    223 
    224 		/*
    225 		 * Ok if ARMFPE is defined and the boot options request the
    226 		 * ARM FPE then it will be installed as the FPE.
    227 		 * This is just while I work on integrating the new FPE.
    228 		 * It means the new FPE gets installed if compiled int (ARMFPE
    229 		 * defined) and also gives me a on/off option when I boot in
    230 		 * case the new FPE is causing panics.
    231 		 */
    232 
    233 #ifdef ARMFPE
    234 		if (boot_args) {
    235 			int usearmfpe = 1;
    236 
    237 			get_bootconf_option(boot_args, "armfpe",
    238 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    239 			if (usearmfpe) {
    240 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
    241 					identify_arm_fpu(dv, cpu_number);
    242 			}
    243 		}
    244 
    245 #endif
    246 	}
    247 
    248 	identify_arm_fpu(dv, cpu_number);
    249 }
    250 
    251 struct cpuidtab {
    252 	u_int32_t	cpuid;
    253 	enum		cpu_class cpu_class;
    254 	char *		cpu_name;
    255 };
    256 
    257 const struct cpuidtab cpuids[] = {
    258 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2" },
    259 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250" },
    260 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3" },
    261 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600" },
    262 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610" },
    263 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620" },
    264 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700" },
    265 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710" },
    266 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500" },
    267 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a" },
    268 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE" },
    269 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T" },
    270 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T" },
    271 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
    272 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
    273 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810" },
    274 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T" },
    275 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T" },
    276 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T" },
    277 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S" },
    278 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
    279 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S (Rev 1)" },
    280 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110" },
    281 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100" },
    282 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110" },
    283 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"80200" },
    284 	{ 0, CPU_CLASS_NONE, NULL }
    285 };
    286 
    287 struct cpu_classtab {
    288 	char	*class_name;
    289 	char	*class_option;
    290 };
    291 
    292 const struct cpu_classtab cpu_classes[] = {
    293 	{ "unknown",	NULL },		/* CPU_CLASS_NONE */
    294 	{ "ARM2",	"CPU_ARM2" },	/* CPU_CLASS_ARM2 */
    295 	{ "ARM2as",	"CPU_ARM250" },	/* CPU_CLASS_ARM2AS */
    296 	{ "ARM3",	"CPU_ARM3" },	/* CPU_CLASS_ARM3 */
    297 	{ "ARM6",	"CPU_ARM6" },	/* CPU_CLASS_ARM6 */
    298 	{ "ARM7",	"CPU_ARM7" },	/* CPU_CLASS_ARM7 */
    299 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },/* CPU_CLASS_ARM7TDMI */
    300 	{ "ARM8",	"CPU_ARM8" },	/* CPU_CLASS_ARM8 */
    301 	{ "ARM9TDMI",	NULL },		/* CPU_CLASS_ARM9TDMI */
    302 	{ "ARM9E-S",	NULL },		/* CPU_CLASS_ARM9ES */
    303 	{ "SA-1",	"CPU_SA110" },	/* CPU_CLASS_SA1 */
    304 	{ "Xscale",	"CPU_XSCALE" },	/* CPU_CLASS_XSCALE */
    305 };
    306 
    307 /*
    308  * Report the type of the specifed arm processor. This uses the generic and
    309  * arm specific information in the cpu structure to identify the processor.
    310  * The remaining fields in the cpu structure are filled in appropriately.
    311  */
    312 
    313 void
    314 identify_arm_cpu(dv, cpu_number)
    315 	struct device *dv;
    316 	int cpu_number;
    317 {
    318 	cpu_t *cpu;
    319 	u_int cpuid;
    320 	int i;
    321 
    322 	cpu = &cpus[cpu_number];
    323 	cpuid = cpu->cpu_id;
    324 
    325 	if (cpuid == 0) {
    326 		printf("Processor failed probe - no CPU ID\n");
    327 		return;
    328 	}
    329 
    330 	for (i = 0; cpuids[i].cpuid != 0; i++)
    331 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    332 			cpu->cpu_class = cpuids[i].cpu_class;
    333 			sprintf(cpu->cpu_model, "%s rev %d (%s core)",
    334 			    cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
    335 			    cpu_classes[cpu->cpu_class].class_name);
    336 			break;
    337 		}
    338 
    339 	if (cpuids[i].cpuid == 0)
    340 		sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    341 
    342 	switch (cpu->cpu_class) {
    343 	case CPU_CLASS_ARM6:
    344 	case CPU_CLASS_ARM7:
    345 	case CPU_CLASS_ARM7TDMI:
    346 	case CPU_CLASS_ARM8:
    347 		if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    348 			strcat(cpu->cpu_model, " IDC disabled");
    349 		else
    350 			strcat(cpu->cpu_model, " IDC enabled");
    351 		break;
    352 	case CPU_CLASS_SA1:
    353 	case CPU_CLASS_XSCALE:
    354 		if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    355 			strcat(cpu->cpu_model, " DC disabled");
    356 		else
    357 			strcat(cpu->cpu_model, " DC enabled");
    358 		if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    359 			strcat(cpu->cpu_model, " IC disabled");
    360 		else
    361 			strcat(cpu->cpu_model, " IC enabled");
    362 		break;
    363 	}
    364 	if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    365 		strcat(cpu->cpu_model, " WB disabled");
    366 	else
    367 		strcat(cpu->cpu_model, " WB enabled");
    368 
    369 	if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
    370 		strcat(cpu->cpu_model, " LABT");
    371 	else
    372 		strcat(cpu->cpu_model, " EABT");
    373 
    374 	if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
    375 		strcat(cpu->cpu_model, " branch prediction enabled");
    376 
    377 	/* Print the info */
    378 
    379 	printf(": %s\n", cpu->cpu_model);
    380 
    381 	switch (cpu->cpu_class) {
    382 #ifdef CPU_ARM2
    383 	case CPU_CLASS_ARM2:
    384 #endif
    385 #ifdef CPU_ARM250
    386 	case CPU_CLASS_ARM2AS:
    387 #endif
    388 #ifdef CPU_ARM3
    389 	case CPU_CLASS_ARM3:
    390 #endif
    391 #ifdef CPU_ARM6
    392 	case CPU_CLASS_ARM6:
    393 #endif
    394 #ifdef CPU_ARM7
    395 	case CPU_CLASS_ARM7:
    396 #endif
    397 #ifdef CPU_ARM7TDMI
    398 	case CPU_CLASS_ARM7TDMI:
    399 #endif
    400 #ifdef CPU_ARM8
    401 	case CPU_CLASS_ARM8:
    402 #endif
    403 #ifdef CPU_SA110
    404 	case CPU_CLASS_SA1:
    405 #endif
    406 #ifdef CPU_XSCALE
    407 	case CPU_CLASS_XSCALE:
    408 #endif
    409 		break;
    410 	default:
    411 		if (cpu_classes[cpu->cpu_class].class_option != NULL)
    412 			printf("%s: %s does not fully support this CPU."
    413 			       "\n", dv->dv_xname, ostype);
    414 		else {
    415 			printf("%s: This kernel does not fully support "
    416 			       "this CPU.\n", dv->dv_xname);
    417 			printf("%s: Recompile with \"options %s\" to "
    418 			       "correct this.\n", dv->dv_xname,
    419 			       cpu_classes[cpu->cpu_class].class_option);
    420 		}
    421 		break;
    422 	}
    423 
    424 }
    425 
    426 
    427 /*
    428  * Report the type of the specifed arm fpu. This uses the generic and arm
    429  * specific information in the cpu structure to identify the fpu. The
    430  * remaining fields in the cpu structure are filled in appropriately.
    431  */
    432 
    433 void
    434 identify_arm_fpu(dv, cpu_number)
    435 	struct device *dv;
    436 	int cpu_number;
    437 {
    438 	cpu_t *cpu;
    439 
    440 	cpu = &cpus[cpu_number];
    441 
    442 	/* Now for the FP info */
    443 
    444 	switch (cpu->fpu_class) {
    445 	case FPU_CLASS_NONE :
    446 		strcpy(cpu->fpu_model, "None");
    447 		break;
    448 	case FPU_CLASS_FPE :
    449 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    450 		printf("%s: no FP hardware found\n", dv->dv_xname);
    451 		break;
    452 	case FPU_CLASS_FPA :
    453 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
    454 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
    455 			strcpy(cpu->fpu_model, "FPA11");
    456 			printf("%s: FPA11 found\n", dv->dv_xname);
    457 		} else {
    458 			strcpy(cpu->fpu_model, "FPA");
    459 			printf("%s: FPA10 found\n", dv->dv_xname);
    460 		}
    461 		if ((cpu->fpu_flags & 4) == 0)
    462 			strcat(cpu->fpu_model, "");
    463 		else
    464 			strcat(cpu->fpu_model, " clk/2");
    465 		break;
    466 	case FPU_CLASS_FPU :
    467 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
    468 		    cpu->fpu_type);
    469 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
    470 		break;
    471 	}
    472 }
    473 
    474 /* End of cpu.c */
    475