cpu.c revision 1.5 1 /* $NetBSD: cpu.c,v 1.5 2001/09/28 09:53:41 chris Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/device.h>
51 #include <sys/proc.h>
52 #include <uvm/uvm_extern.h>
53 #include <machine/conf.h>
54 #include <machine/cpu.h>
55 #include <machine/cpus.h>
56 #include <machine/undefined.h>
57
58 #ifdef ARMFPE
59 #include <machine/bootconfig.h> /* For boot args */
60 #include <arm32/fpe-arm/armfpe.h>
61 #endif /* ARMFPE */
62
63 cpu_t cpus[MAX_CPUS];
64
65 char cpu_model[64];
66 volatile int undefined_test; /* Used for FPA test */
67 extern int cpuctrl; /* cpu control register value */
68
69 /* Prototypes */
70 void identify_master_cpu __P((struct device *dv, int cpu_number));
71 void identify_arm_cpu __P((struct device *dv, int cpu_number));
72 void identify_arm_fpu __P((struct device *dv, int cpu_number));
73 int fpa_test __P((u_int, u_int, trapframe_t *, int));
74 int fpa_handler __P((u_int, u_int, trapframe_t *, int));
75
76 /*
77 * void cpusattach(struct device *parent, struct device *dev, void *aux)
78 *
79 * Attach the main cpu
80 */
81
82 void
83 cpu_attach(dv)
84 struct device *dv;
85 {
86 identify_master_cpu(dv, CPU_MASTER);
87 }
88
89 /*
90 * Used to test for an FPA. The following function is installed as a coproc1
91 * handler on the undefined instruction vector and then we issue a FPA
92 * instruction. If undefined_test is non zero then the FPA did not handle
93 * the instruction so must be absent.
94 */
95
96 int
97 fpa_test(address, instruction, frame, fault_code)
98 u_int address;
99 u_int instruction;
100 trapframe_t *frame;
101 int fault_code;
102 {
103
104 frame->tf_pc += INSN_SIZE;
105 ++undefined_test;
106 return(0);
107 }
108
109 /*
110 * If an FPA was found then this function is installed as the coproc1 handler
111 * on the undefined instruction vector. Currently we don't support FPA's
112 * so this just triggers an exception.
113 */
114
115 int
116 fpa_handler(address, instruction, frame, fault_code)
117 u_int address;
118 u_int instruction;
119 trapframe_t *frame;
120 int fault_code;
121 {
122 u_int fpsr;
123
124 __asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
125
126 printf("FPA exception: fpsr = %08x\n", fpsr);
127
128 return(1);
129 }
130
131
132 /*
133 * Identify the master (boot) CPU
134 * This also probes for an FPU and will install an FPE if necessary
135 */
136
137 void
138 identify_master_cpu(dv, cpu_number)
139 struct device *dv;
140 int cpu_number;
141 {
142 u_int fpsr;
143 void *uh;
144
145 cpus[cpu_number].cpu_ctrl = cpuctrl;
146
147 /* Get the cpu ID from coprocessor 15 */
148
149 cpus[cpu_number].cpu_id = cpu_id();
150
151 identify_arm_cpu(dv, cpu_number);
152 strcpy(cpu_model, cpus[cpu_number].cpu_model);
153
154 if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
155 && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
156 printf("%s: SA-110 with bugged STM^ instruction\n",
157 dv->dv_xname);
158 }
159
160 #ifdef CPU_ARM8
161 if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
162 int clock = arm8_clock_config(0, 0);
163 char *fclk;
164 printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
165 printf(" clock:%s", (clock & 1) ? " dynamic" : "");
166 printf("%s", (clock & 2) ? " sync" : "");
167 switch ((clock >> 2) & 3) {
168 case 0 :
169 fclk = "bus clock";
170 break;
171 case 1 :
172 fclk = "ref clock";
173 break;
174 case 3 :
175 fclk = "pll";
176 break;
177 default :
178 fclk = "illegal";
179 break;
180 }
181 printf(" fclk source=%s\n", fclk);
182 }
183 #endif
184
185 /*
186 * Ok now we test for an FPA
187 * At this point no floating point emulator has been installed.
188 * This means any FP instruction will cause undefined exception.
189 * We install a temporay coproc 1 handler which will modify
190 * undefined_test if it is called.
191 * We then try to read the FP status register. If undefined_test
192 * has been decremented then the instruction was not handled by
193 * an FPA so we know the FPA is missing. If undefined_test is
194 * still 1 then we know the instruction was handled by an FPA.
195 * We then remove our test handler and look at the
196 * FP status register for identification.
197 */
198
199 uh = install_coproc_handler(FP_COPROC, fpa_test);
200
201 undefined_test = 0;
202
203 __asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
204
205 remove_coproc_handler(uh);
206
207 if (undefined_test == 0) {
208 cpus[cpu_number].fpu_type = (fpsr >> 24);
209 switch (fpsr >> 24) {
210 case 0x81 :
211 cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
212 break;
213
214 default :
215 cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
216 break;
217 }
218 cpus[cpu_number].fpu_flags = 0;
219 install_coproc_handler(FP_COPROC, fpa_handler);
220 } else {
221 cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
222 cpus[cpu_number].fpu_flags = 0;
223
224 /*
225 * Ok if ARMFPE is defined and the boot options request the
226 * ARM FPE then it will be installed as the FPE.
227 * This is just while I work on integrating the new FPE.
228 * It means the new FPE gets installed if compiled int (ARMFPE
229 * defined) and also gives me a on/off option when I boot in
230 * case the new FPE is causing panics.
231 */
232
233 #ifdef ARMFPE
234 if (boot_args) {
235 int usearmfpe = 1;
236
237 get_bootconf_option(boot_args, "armfpe",
238 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
239 if (usearmfpe) {
240 if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
241 identify_arm_fpu(dv, cpu_number);
242 }
243 }
244
245 #endif
246 }
247
248 identify_arm_fpu(dv, cpu_number);
249 }
250
251 struct cpuidtab {
252 u_int32_t cpuid;
253 enum cpu_class cpu_class;
254 char * cpu_name;
255 };
256
257 const struct cpuidtab cpuids[] = {
258 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2" },
259 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250" },
260 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3" },
261 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600" },
262 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610" },
263 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620" },
264 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700" },
265 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710" },
266 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500" },
267 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a" },
268 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE" },
269 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T" },
270 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T" },
271 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
272 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
273 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810" },
274 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T" },
275 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T" },
276 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T" },
277 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S" },
278 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S" },
279 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S (Rev 1)" },
280 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110" },
281 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100" },
282 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110" },
283 { CPU_ID_I80200, CPU_CLASS_XSCALE, "80200" },
284 { 0, CPU_CLASS_NONE, NULL }
285 };
286
287 struct cpu_classtab {
288 char *class_name;
289 char *class_option;
290 };
291
292 const struct cpu_classtab cpu_classes[] = {
293 { "unknown", NULL }, /* CPU_CLASS_NONE */
294 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
295 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
296 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
297 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
298 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
299 { "ARM7TDMI", "CPU_ARM7TDMI" },/* CPU_CLASS_ARM7TDMI */
300 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
301 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
302 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
303 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
304 { "Xscale", "CPU_XSCALE" }, /* CPU_CLASS_XSCALE */
305 };
306
307 /*
308 * Report the type of the specifed arm processor. This uses the generic and
309 * arm specific information in the cpu structure to identify the processor.
310 * The remaining fields in the cpu structure are filled in appropriately.
311 */
312
313 void
314 identify_arm_cpu(dv, cpu_number)
315 struct device *dv;
316 int cpu_number;
317 {
318 cpu_t *cpu;
319 u_int cpuid;
320 int i;
321
322 cpu = &cpus[cpu_number];
323 cpuid = cpu->cpu_id;
324
325 if (cpuid == 0) {
326 printf("Processor failed probe - no CPU ID\n");
327 return;
328 }
329
330 for (i = 0; cpuids[i].cpuid != 0; i++)
331 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
332 cpu->cpu_class = cpuids[i].cpu_class;
333 sprintf(cpu->cpu_model, "%s rev %d (%s core)",
334 cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
335 cpu_classes[cpu->cpu_class].class_name);
336 break;
337 }
338
339 if (cpuids[i].cpuid == 0)
340 sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
341
342 switch (cpu->cpu_class) {
343 case CPU_CLASS_ARM6:
344 case CPU_CLASS_ARM7:
345 case CPU_CLASS_ARM7TDMI:
346 case CPU_CLASS_ARM8:
347 if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
348 strcat(cpu->cpu_model, " IDC disabled");
349 else
350 strcat(cpu->cpu_model, " IDC enabled");
351 break;
352 case CPU_CLASS_SA1:
353 case CPU_CLASS_XSCALE:
354 if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
355 strcat(cpu->cpu_model, " DC disabled");
356 else
357 strcat(cpu->cpu_model, " DC enabled");
358 if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
359 strcat(cpu->cpu_model, " IC disabled");
360 else
361 strcat(cpu->cpu_model, " IC enabled");
362 break;
363 }
364 if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
365 strcat(cpu->cpu_model, " WB disabled");
366 else
367 strcat(cpu->cpu_model, " WB enabled");
368
369 if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
370 strcat(cpu->cpu_model, " LABT");
371 else
372 strcat(cpu->cpu_model, " EABT");
373
374 if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
375 strcat(cpu->cpu_model, " branch prediction enabled");
376
377 /* Print the info */
378
379 printf(": %s\n", cpu->cpu_model);
380
381 switch (cpu->cpu_class) {
382 #ifdef CPU_ARM2
383 case CPU_CLASS_ARM2:
384 #endif
385 #ifdef CPU_ARM250
386 case CPU_CLASS_ARM2AS:
387 #endif
388 #ifdef CPU_ARM3
389 case CPU_CLASS_ARM3:
390 #endif
391 #ifdef CPU_ARM6
392 case CPU_CLASS_ARM6:
393 #endif
394 #ifdef CPU_ARM7
395 case CPU_CLASS_ARM7:
396 #endif
397 #ifdef CPU_ARM7TDMI
398 case CPU_CLASS_ARM7TDMI:
399 #endif
400 #ifdef CPU_ARM8
401 case CPU_CLASS_ARM8:
402 #endif
403 #ifdef CPU_SA110
404 case CPU_CLASS_SA1:
405 #endif
406 #ifdef CPU_XSCALE
407 case CPU_CLASS_XSCALE:
408 #endif
409 break;
410 default:
411 if (cpu_classes[cpu->cpu_class].class_option != NULL)
412 printf("%s: %s does not fully support this CPU."
413 "\n", dv->dv_xname, ostype);
414 else {
415 printf("%s: This kernel does not fully support "
416 "this CPU.\n", dv->dv_xname);
417 printf("%s: Recompile with \"options %s\" to "
418 "correct this.\n", dv->dv_xname,
419 cpu_classes[cpu->cpu_class].class_option);
420 }
421 break;
422 }
423
424 }
425
426
427 /*
428 * Report the type of the specifed arm fpu. This uses the generic and arm
429 * specific information in the cpu structure to identify the fpu. The
430 * remaining fields in the cpu structure are filled in appropriately.
431 */
432
433 void
434 identify_arm_fpu(dv, cpu_number)
435 struct device *dv;
436 int cpu_number;
437 {
438 cpu_t *cpu;
439
440 cpu = &cpus[cpu_number];
441
442 /* Now for the FP info */
443
444 switch (cpu->fpu_class) {
445 case FPU_CLASS_NONE :
446 strcpy(cpu->fpu_model, "None");
447 break;
448 case FPU_CLASS_FPE :
449 printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
450 printf("%s: no FP hardware found\n", dv->dv_xname);
451 break;
452 case FPU_CLASS_FPA :
453 printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
454 if (cpu->fpu_type == FPU_TYPE_FPA11) {
455 strcpy(cpu->fpu_model, "FPA11");
456 printf("%s: FPA11 found\n", dv->dv_xname);
457 } else {
458 strcpy(cpu->fpu_model, "FPA");
459 printf("%s: FPA10 found\n", dv->dv_xname);
460 }
461 if ((cpu->fpu_flags & 4) == 0)
462 strcat(cpu->fpu_model, "");
463 else
464 strcat(cpu->fpu_model, " clk/2");
465 break;
466 case FPU_CLASS_FPU :
467 sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
468 cpu->fpu_type);
469 printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
470 break;
471 }
472 }
473
474 /* End of cpu.c */
475