Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.50
      1 /*	$NetBSD: cpu.c,v 1.50 2003/05/23 00:57:24 ichiro Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master cpu
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 
     46 #include <sys/param.h>
     47 
     48 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.50 2003/05/23 00:57:24 ichiro Exp $");
     49 
     50 #include <sys/systm.h>
     51 #include <sys/malloc.h>
     52 #include <sys/device.h>
     53 #include <sys/proc.h>
     54 #include <sys/conf.h>
     55 #include <uvm/uvm_extern.h>
     56 #include <machine/cpu.h>
     57 
     58 #include <arm/cpuconf.h>
     59 #include <arm/undefined.h>
     60 
     61 #ifdef ARMFPE
     62 #include <machine/bootconfig.h> /* For boot args */
     63 #include <arm/fpe-arm/armfpe.h>
     64 #endif
     65 
     66 char cpu_model[256];
     67 
     68 /* Prototypes */
     69 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     70 
     71 /*
     72  * Identify the master (boot) CPU
     73  */
     74 
     75 void
     76 cpu_attach(struct device *dv)
     77 {
     78 	int usearmfpe;
     79 
     80 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     81 
     82 	curcpu()->ci_dev = dv;
     83 
     84 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     85 	    NULL, dv->dv_xname, "arm700swibug");
     86 
     87 	/* Get the cpu ID from coprocessor 15 */
     88 
     89 	curcpu()->ci_arm_cpuid = cpu_id();
     90 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     91 	curcpu()->ci_arm_cpurev =
     92 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     93 
     94 	identify_arm_cpu(dv, curcpu());
     95 
     96 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
     97 	    curcpu()->ci_arm_cpurev < 3) {
     98 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
     99 		       dv->dv_xname);
    100 	}
    101 
    102 #ifdef CPU_ARM8
    103 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    104 		int clock = arm8_clock_config(0, 0);
    105 		char *fclk;
    106 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    107 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    108 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    109 		switch ((clock >> 2) & 3) {
    110 		case 0:
    111 			fclk = "bus clock";
    112 			break;
    113 		case 1:
    114 			fclk = "ref clock";
    115 			break;
    116 		case 3:
    117 			fclk = "pll";
    118 			break;
    119 		default:
    120 			fclk = "illegal";
    121 			break;
    122 		}
    123 		aprint_normal(" fclk source=%s\n", fclk);
    124  	}
    125 #endif
    126 
    127 #ifdef ARMFPE
    128 	/*
    129 	 * Ok now we test for an FPA
    130 	 * At this point no floating point emulator has been installed.
    131 	 * This means any FP instruction will cause undefined exception.
    132 	 * We install a temporay coproc 1 handler which will modify
    133 	 * undefined_test if it is called.
    134 	 * We then try to read the FP status register. If undefined_test
    135 	 * has been decremented then the instruction was not handled by
    136 	 * an FPA so we know the FPA is missing. If undefined_test is
    137 	 * still 1 then we know the instruction was handled by an FPA.
    138 	 * We then remove our test handler and look at the
    139 	 * FP status register for identification.
    140 	 */
    141 
    142 	/*
    143 	 * Ok if ARMFPE is defined and the boot options request the
    144 	 * ARM FPE then it will be installed as the FPE.
    145 	 * This is just while I work on integrating the new FPE.
    146 	 * It means the new FPE gets installed if compiled int (ARMFPE
    147 	 * defined) and also gives me a on/off option when I boot in
    148 	 * case the new FPE is causing panics.
    149 	 */
    150 
    151 
    152 	if (boot_args)
    153 		get_bootconf_option(boot_args, "armfpe",
    154 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    155 	if (usearmfpe)
    156 		initialise_arm_fpe();
    157 #endif
    158 }
    159 
    160 enum cpu_class {
    161 	CPU_CLASS_NONE,
    162 	CPU_CLASS_ARM2,
    163 	CPU_CLASS_ARM2AS,
    164 	CPU_CLASS_ARM3,
    165 	CPU_CLASS_ARM6,
    166 	CPU_CLASS_ARM7,
    167 	CPU_CLASS_ARM7TDMI,
    168 	CPU_CLASS_ARM8,
    169 	CPU_CLASS_ARM9TDMI,
    170 	CPU_CLASS_ARM9ES,
    171 	CPU_CLASS_SA1,
    172 	CPU_CLASS_XSCALE,
    173 	CPU_CLASS_ARM10E
    174 };
    175 
    176 static const char * const generic_steppings[16] = {
    177 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    178 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    179 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    180 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    181 };
    182 
    183 static const char * const sa110_steppings[16] = {
    184 	"rev 0",	"step J",	"step K",	"step S",
    185 	"step T",	"rev 5",	"rev 6",	"rev 7",
    186 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    187 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    188 };
    189 
    190 static const char * const sa1100_steppings[16] = {
    191 	"rev 0",	"step B",	"step C",	"rev 3",
    192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    193 	"step D",	"step E",	"rev 10"	"step G",
    194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    195 };
    196 
    197 static const char * const sa1110_steppings[16] = {
    198 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    199 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    200 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    201 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    202 };
    203 
    204 static const char * const ixp12x0_steppings[16] = {
    205 	"(IXP1200 step A)",		"(IXP1200 step B)",
    206 	"rev 2",			"(IXP1200 step C)",
    207 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    208 	"(IXP1240 step B)",		"(IXP1250 step B)",
    209 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    210 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    211 };
    212 
    213 static const char * const xscale_steppings[16] = {
    214 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    215 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    216 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    217 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    218 };
    219 
    220 static const char * const i80321_steppings[16] = {
    221 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    222 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    223 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    224 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    225 };
    226 
    227 static const char * const pxa2x0_steppings[16] = {
    228 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    229 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    230 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    231 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    232 };
    233 
    234 static const char * const ixp425_steppings[16] = {
    235 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    236 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    237 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    238 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    239 };
    240 
    241 struct cpuidtab {
    242 	u_int32_t	cpuid;
    243 	enum		cpu_class cpu_class;
    244 	const char	*cpu_name;
    245 	const char * const *cpu_steppings;
    246 };
    247 
    248 const struct cpuidtab cpuids[] = {
    249 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    250 	  generic_steppings },
    251 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    252 	  generic_steppings },
    253 
    254 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    255 	  generic_steppings },
    256 
    257 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    258 	  generic_steppings },
    259 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    260 	  generic_steppings },
    261 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    262 	  generic_steppings },
    263 
    264 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    265 	  generic_steppings },
    266 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    267 	  generic_steppings },
    268 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    269 	  generic_steppings },
    270 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    271 	  generic_steppings },
    272 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    273 	  generic_steppings },
    274 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    275 	  generic_steppings },
    276 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    277 	  generic_steppings },
    278 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    279 	  generic_steppings },
    280 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    281 	  generic_steppings },
    282 
    283 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    284 	  generic_steppings },
    285 
    286 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    287 	  generic_steppings },
    288 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    289 	  generic_steppings },
    290 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    291 	  generic_steppings },
    292 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    293 	  generic_steppings },
    294 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    295 	  generic_steppings },
    296 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    297 	  generic_steppings },
    298 
    299 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    300 	  sa110_steppings },
    301 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    302 	  sa1100_steppings },
    303 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    304 	  sa1110_steppings },
    305 
    306 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    307 	  ixp12x0_steppings },
    308 
    309 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    310 	  xscale_steppings },
    311 
    312 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    313 	  i80321_steppings },
    314 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    315 	  i80321_steppings },
    316 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    317 	  i80321_steppings },
    318 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    319 	  i80321_steppings },
    320 
    321 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    322 	  pxa2x0_steppings },
    323 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    324 	  pxa2x0_steppings },
    325 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    326 	  pxa2x0_steppings },
    327 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    328 	  pxa2x0_steppings },
    329 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA250",
    330 	  pxa2x0_steppings },
    331 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    332 	  pxa2x0_steppings },
    333 
    334 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    335 	  ixp425_steppings },
    336 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    337 	  ixp425_steppings },
    338 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    339 	  ixp425_steppings },
    340 
    341 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022ES",
    342 	  generic_steppings },
    343 
    344 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    345 };
    346 
    347 struct cpu_classtab {
    348 	const char	*class_name;
    349 	const char	*class_option;
    350 };
    351 
    352 const struct cpu_classtab cpu_classes[] = {
    353 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    354 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    355 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    356 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    357 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    358 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    359 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    360 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    361 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    362 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    363 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    364 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    365 	{ "ARM10E",	NULL },			/* CPU_CLASS_ARM10E */
    366 };
    367 
    368 /*
    369  * Report the type of the specified arm processor. This uses the generic and
    370  * arm specific information in the cpu structure to identify the processor.
    371  * The remaining fields in the cpu structure are filled in appropriately.
    372  */
    373 
    374 static const char * const wtnames[] = {
    375 	"write-through",
    376 	"write-back",
    377 	"write-back",
    378 	"**unknown 3**",
    379 	"**unknown 4**",
    380 	"write-back-locking",		/* XXX XScale-specific? */
    381 	"write-back-locking-A",
    382 	"write-back-locking-B",
    383 	"**unknown 8**",
    384 	"**unknown 9**",
    385 	"**unknown 10**",
    386 	"**unknown 11**",
    387 	"**unknown 12**",
    388 	"**unknown 13**",
    389 	"**unknown 14**",
    390 	"**unknown 15**",
    391 };
    392 
    393 void
    394 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    395 {
    396 	u_int cpuid;
    397 	enum cpu_class cpu_class;
    398 	int i;
    399 
    400 	cpuid = ci->ci_arm_cpuid;
    401 
    402 	if (cpuid == 0) {
    403 		aprint_error("Processor failed probe - no CPU ID\n");
    404 		return;
    405 	}
    406 
    407 	for (i = 0; cpuids[i].cpuid != 0; i++)
    408 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    409 			cpu_class = cpuids[i].cpu_class;
    410 			sprintf(cpu_model, "%s %s (%s core)",
    411 			    cpuids[i].cpu_name,
    412 			    cpuids[i].cpu_steppings[cpuid &
    413 						    CPU_ID_REVISION_MASK],
    414 			    cpu_classes[cpu_class].class_name);
    415 			break;
    416 		}
    417 
    418 	if (cpuids[i].cpuid == 0)
    419 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    420 
    421 	aprint_naive(": %s\n", cpu_model);
    422 	aprint_normal(": %s\n", cpu_model);
    423 
    424 	aprint_normal("%s:", dv->dv_xname);
    425 
    426 	switch (cpu_class) {
    427 	case CPU_CLASS_ARM6:
    428 	case CPU_CLASS_ARM7:
    429 	case CPU_CLASS_ARM7TDMI:
    430 	case CPU_CLASS_ARM8:
    431 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    432 			aprint_normal(" IDC disabled");
    433 		else
    434 			aprint_normal(" IDC enabled");
    435 		break;
    436 	case CPU_CLASS_ARM9TDMI:
    437 	case CPU_CLASS_SA1:
    438 	case CPU_CLASS_XSCALE:
    439 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    440 			aprint_normal(" DC disabled");
    441 		else
    442 			aprint_normal(" DC enabled");
    443 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    444 			aprint_normal(" IC disabled");
    445 		else
    446 			aprint_normal(" IC enabled");
    447 		break;
    448 	default:
    449 		break;
    450 	}
    451 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    452 		aprint_normal(" WB disabled");
    453 	else
    454 		aprint_normal(" WB enabled");
    455 
    456 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    457 		aprint_normal(" LABT");
    458 	else
    459 		aprint_normal(" EABT");
    460 
    461 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    462 		aprint_normal(" branch prediction enabled");
    463 
    464 	aprint_normal("\n");
    465 
    466 	/* Print cache info. */
    467 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    468 		goto skip_pcache;
    469 
    470 	if (arm_pcache_unified) {
    471 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    472 		    dv->dv_xname, arm_pdcache_size / 1024,
    473 		    arm_pdcache_line_size, arm_pdcache_ways,
    474 		    wtnames[arm_pcache_type]);
    475 	} else {
    476 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    477 		    dv->dv_xname, arm_picache_size / 1024,
    478 		    arm_picache_line_size, arm_picache_ways);
    479 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    480 		    dv->dv_xname, arm_pdcache_size / 1024,
    481 		    arm_pdcache_line_size, arm_pdcache_ways,
    482 		    wtnames[arm_pcache_type]);
    483 	}
    484 
    485  skip_pcache:
    486 
    487 	switch (cpu_class) {
    488 #ifdef CPU_ARM2
    489 	case CPU_CLASS_ARM2:
    490 #endif
    491 #ifdef CPU_ARM250
    492 	case CPU_CLASS_ARM2AS:
    493 #endif
    494 #ifdef CPU_ARM3
    495 	case CPU_CLASS_ARM3:
    496 #endif
    497 #ifdef CPU_ARM6
    498 	case CPU_CLASS_ARM6:
    499 #endif
    500 #ifdef CPU_ARM7
    501 	case CPU_CLASS_ARM7:
    502 #endif
    503 #ifdef CPU_ARM7TDMI
    504 	case CPU_CLASS_ARM7TDMI:
    505 #endif
    506 #ifdef CPU_ARM8
    507 	case CPU_CLASS_ARM8:
    508 #endif
    509 #ifdef CPU_ARM9
    510 	case CPU_CLASS_ARM9TDMI:
    511 #endif
    512 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    513     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    514 	case CPU_CLASS_SA1:
    515 #endif
    516 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    517     defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425)
    518 	case CPU_CLASS_XSCALE:
    519 #endif
    520 		break;
    521 	default:
    522 		if (cpu_classes[cpu_class].class_option != NULL)
    523 			aprint_error("%s: %s does not fully support this CPU."
    524 			       "\n", dv->dv_xname, ostype);
    525 		else {
    526 			aprint_error("%s: This kernel does not fully support "
    527 			       "this CPU.\n", dv->dv_xname);
    528 			aprint_normal("%s: Recompile with \"options %s\" to "
    529 			       "correct this.\n", dv->dv_xname,
    530 			       cpu_classes[cpu_class].class_option);
    531 		}
    532 		break;
    533 	}
    534 
    535 }
    536 #ifdef MULTIPROCESSOR
    537 int
    538 cpu_alloc_idlepcb(struct cpu_info *ci)
    539 {
    540 	vaddr_t uaddr;
    541 	struct pcb *pcb;
    542 	struct trapframe *tf;
    543 	int error;
    544 
    545 	/*
    546 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
    547 	 * new CPU.
    548 	 */
    549 	if (uvm_uarea_alloc(&uaddr)) {
    550 		error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
    551 		    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
    552 		if (error)
    553 			return error;
    554 	}
    555 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
    556 
    557 	/*
    558 	 * This code is largely derived from cpu_fork(), with which it
    559 	 * should perhaps be shared.
    560 	 */
    561 
    562 	/* Copy the pcb */
    563 	*pcb = proc0.p_addr->u_pcb;
    564 
    565 	/* Set up the undefined stack for the process. */
    566 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
    567 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
    568 
    569 #ifdef STACKCHECKS
    570 	/* Fill the undefined stack with a known pattern */
    571 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
    572 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
    573 	/* Fill the kernel stack with a known pattern */
    574 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
    575 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
    576 #endif	/* STACKCHECKS */
    577 
    578 	pcb->pcb_tf = tf =
    579 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
    580 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
    581 	return 0;
    582 }
    583 #endif /* MULTIPROCESSOR */
    584 
    585 /* End of cpu.c */
    586