cpu.c revision 1.51 1 /* $NetBSD: cpu.c,v 1.51 2003/06/23 11:01:06 martin Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master cpu
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.51 2003/06/23 11:01:06 martin Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 char cpu_model[256];
68
69 /* Prototypes */
70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
71
72 /*
73 * Identify the master (boot) CPU
74 */
75
76 void
77 cpu_attach(struct device *dv)
78 {
79 int usearmfpe;
80
81 usearmfpe = 1; /* when compiled in, its enabled by default */
82
83 curcpu()->ci_dev = dv;
84
85 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
86 NULL, dv->dv_xname, "arm700swibug");
87
88 /* Get the cpu ID from coprocessor 15 */
89
90 curcpu()->ci_arm_cpuid = cpu_id();
91 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
92 curcpu()->ci_arm_cpurev =
93 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
94
95 identify_arm_cpu(dv, curcpu());
96
97 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
98 curcpu()->ci_arm_cpurev < 3) {
99 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
100 dv->dv_xname);
101 }
102
103 #ifdef CPU_ARM8
104 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
105 int clock = arm8_clock_config(0, 0);
106 char *fclk;
107 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
108 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
109 aprint_normal("%s", (clock & 2) ? " sync" : "");
110 switch ((clock >> 2) & 3) {
111 case 0:
112 fclk = "bus clock";
113 break;
114 case 1:
115 fclk = "ref clock";
116 break;
117 case 3:
118 fclk = "pll";
119 break;
120 default:
121 fclk = "illegal";
122 break;
123 }
124 aprint_normal(" fclk source=%s\n", fclk);
125 }
126 #endif
127
128 #ifdef ARMFPE
129 /*
130 * Ok now we test for an FPA
131 * At this point no floating point emulator has been installed.
132 * This means any FP instruction will cause undefined exception.
133 * We install a temporay coproc 1 handler which will modify
134 * undefined_test if it is called.
135 * We then try to read the FP status register. If undefined_test
136 * has been decremented then the instruction was not handled by
137 * an FPA so we know the FPA is missing. If undefined_test is
138 * still 1 then we know the instruction was handled by an FPA.
139 * We then remove our test handler and look at the
140 * FP status register for identification.
141 */
142
143 /*
144 * Ok if ARMFPE is defined and the boot options request the
145 * ARM FPE then it will be installed as the FPE.
146 * This is just while I work on integrating the new FPE.
147 * It means the new FPE gets installed if compiled int (ARMFPE
148 * defined) and also gives me a on/off option when I boot in
149 * case the new FPE is causing panics.
150 */
151
152
153 if (boot_args)
154 get_bootconf_option(boot_args, "armfpe",
155 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
156 if (usearmfpe)
157 initialise_arm_fpe();
158 #endif
159 }
160
161 enum cpu_class {
162 CPU_CLASS_NONE,
163 CPU_CLASS_ARM2,
164 CPU_CLASS_ARM2AS,
165 CPU_CLASS_ARM3,
166 CPU_CLASS_ARM6,
167 CPU_CLASS_ARM7,
168 CPU_CLASS_ARM7TDMI,
169 CPU_CLASS_ARM8,
170 CPU_CLASS_ARM9TDMI,
171 CPU_CLASS_ARM9ES,
172 CPU_CLASS_SA1,
173 CPU_CLASS_XSCALE,
174 CPU_CLASS_ARM10E
175 };
176
177 static const char * const generic_steppings[16] = {
178 "rev 0", "rev 1", "rev 2", "rev 3",
179 "rev 4", "rev 5", "rev 6", "rev 7",
180 "rev 8", "rev 9", "rev 10", "rev 11",
181 "rev 12", "rev 13", "rev 14", "rev 15",
182 };
183
184 static const char * const sa110_steppings[16] = {
185 "rev 0", "step J", "step K", "step S",
186 "step T", "rev 5", "rev 6", "rev 7",
187 "rev 8", "rev 9", "rev 10", "rev 11",
188 "rev 12", "rev 13", "rev 14", "rev 15",
189 };
190
191 static const char * const sa1100_steppings[16] = {
192 "rev 0", "step B", "step C", "rev 3",
193 "rev 4", "rev 5", "rev 6", "rev 7",
194 "step D", "step E", "rev 10" "step G",
195 "rev 12", "rev 13", "rev 14", "rev 15",
196 };
197
198 static const char * const sa1110_steppings[16] = {
199 "step A-0", "rev 1", "rev 2", "rev 3",
200 "step B-0", "step B-1", "step B-2", "step B-3",
201 "step B-4", "step B-5", "rev 10", "rev 11",
202 "rev 12", "rev 13", "rev 14", "rev 15",
203 };
204
205 static const char * const ixp12x0_steppings[16] = {
206 "(IXP1200 step A)", "(IXP1200 step B)",
207 "rev 2", "(IXP1200 step C)",
208 "(IXP1200 step D)", "(IXP1240/1250 step A)",
209 "(IXP1240 step B)", "(IXP1250 step B)",
210 "rev 8", "rev 9", "rev 10", "rev 11",
211 "rev 12", "rev 13", "rev 14", "rev 15",
212 };
213
214 static const char * const xscale_steppings[16] = {
215 "step A-0", "step A-1", "step B-0", "step C-0",
216 "step D-0", "rev 5", "rev 6", "rev 7",
217 "rev 8", "rev 9", "rev 10", "rev 11",
218 "rev 12", "rev 13", "rev 14", "rev 15",
219 };
220
221 static const char * const i80321_steppings[16] = {
222 "step A-0", "step B-0", "rev 2", "rev 3",
223 "rev 4", "rev 5", "rev 6", "rev 7",
224 "rev 8", "rev 9", "rev 10", "rev 11",
225 "rev 12", "rev 13", "rev 14", "rev 15",
226 };
227
228 static const char * const pxa2x0_steppings[16] = {
229 "step A-0", "step A-1", "step B-0", "step B-1",
230 "step B-2", "step C-0", "rev 6", "rev 7",
231 "rev 8", "rev 9", "rev 10", "rev 11",
232 "rev 12", "rev 13", "rev 14", "rev 15",
233 };
234
235 static const char * const ixp425_steppings[16] = {
236 "step 0", "rev 1", "rev 2", "rev 3",
237 "rev 4", "rev 5", "rev 6", "rev 7",
238 "rev 8", "rev 9", "rev 10", "rev 11",
239 "rev 12", "rev 13", "rev 14", "rev 15",
240 };
241
242 struct cpuidtab {
243 u_int32_t cpuid;
244 enum cpu_class cpu_class;
245 const char *cpu_name;
246 const char * const *cpu_steppings;
247 };
248
249 const struct cpuidtab cpuids[] = {
250 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
251 generic_steppings },
252 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
253 generic_steppings },
254
255 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
256 generic_steppings },
257
258 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
259 generic_steppings },
260 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
261 generic_steppings },
262 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
263 generic_steppings },
264
265 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
266 generic_steppings },
267 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
268 generic_steppings },
269 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
270 generic_steppings },
271 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
272 generic_steppings },
273 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
274 generic_steppings },
275 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
276 generic_steppings },
277 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
278 generic_steppings },
279 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
280 generic_steppings },
281 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
282 generic_steppings },
283
284 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
285 generic_steppings },
286
287 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
288 generic_steppings },
289 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
290 generic_steppings },
291 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
292 generic_steppings },
293 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
294 generic_steppings },
295 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
296 generic_steppings },
297 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
298 generic_steppings },
299
300 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
301 sa110_steppings },
302 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
303 sa1100_steppings },
304 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
305 sa1110_steppings },
306
307 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
308 ixp12x0_steppings },
309
310 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
311 xscale_steppings },
312
313 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
314 i80321_steppings },
315 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
316 i80321_steppings },
317 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
318 i80321_steppings },
319 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
320 i80321_steppings },
321
322 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
323 pxa2x0_steppings },
324 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
325 pxa2x0_steppings },
326 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
327 pxa2x0_steppings },
328 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
329 pxa2x0_steppings },
330 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA250",
331 pxa2x0_steppings },
332 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
333 pxa2x0_steppings },
334
335 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
336 ixp425_steppings },
337 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
338 ixp425_steppings },
339 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
340 ixp425_steppings },
341
342 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES",
343 generic_steppings },
344
345 { 0, CPU_CLASS_NONE, NULL, NULL }
346 };
347
348 struct cpu_classtab {
349 const char *class_name;
350 const char *class_option;
351 };
352
353 const struct cpu_classtab cpu_classes[] = {
354 { "unknown", NULL }, /* CPU_CLASS_NONE */
355 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
356 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
357 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
358 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
359 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
360 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
361 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
362 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
363 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
364 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
365 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
366 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */
367 };
368
369 /*
370 * Report the type of the specified arm processor. This uses the generic and
371 * arm specific information in the cpu structure to identify the processor.
372 * The remaining fields in the cpu structure are filled in appropriately.
373 */
374
375 static const char * const wtnames[] = {
376 "write-through",
377 "write-back",
378 "write-back",
379 "**unknown 3**",
380 "**unknown 4**",
381 "write-back-locking", /* XXX XScale-specific? */
382 "write-back-locking-A",
383 "write-back-locking-B",
384 "**unknown 8**",
385 "**unknown 9**",
386 "**unknown 10**",
387 "**unknown 11**",
388 "**unknown 12**",
389 "**unknown 13**",
390 "**unknown 14**",
391 "**unknown 15**",
392 };
393
394 void
395 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
396 {
397 u_int cpuid;
398 enum cpu_class cpu_class;
399 int i;
400
401 cpuid = ci->ci_arm_cpuid;
402
403 if (cpuid == 0) {
404 aprint_error("Processor failed probe - no CPU ID\n");
405 return;
406 }
407
408 for (i = 0; cpuids[i].cpuid != 0; i++)
409 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
410 cpu_class = cpuids[i].cpu_class;
411 sprintf(cpu_model, "%s %s (%s core)",
412 cpuids[i].cpu_name,
413 cpuids[i].cpu_steppings[cpuid &
414 CPU_ID_REVISION_MASK],
415 cpu_classes[cpu_class].class_name);
416 break;
417 }
418
419 if (cpuids[i].cpuid == 0)
420 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
421
422 aprint_naive(": %s\n", cpu_model);
423 aprint_normal(": %s\n", cpu_model);
424
425 aprint_normal("%s:", dv->dv_xname);
426
427 switch (cpu_class) {
428 case CPU_CLASS_ARM6:
429 case CPU_CLASS_ARM7:
430 case CPU_CLASS_ARM7TDMI:
431 case CPU_CLASS_ARM8:
432 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
433 aprint_normal(" IDC disabled");
434 else
435 aprint_normal(" IDC enabled");
436 break;
437 case CPU_CLASS_ARM9TDMI:
438 case CPU_CLASS_SA1:
439 case CPU_CLASS_XSCALE:
440 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
441 aprint_normal(" DC disabled");
442 else
443 aprint_normal(" DC enabled");
444 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
445 aprint_normal(" IC disabled");
446 else
447 aprint_normal(" IC enabled");
448 break;
449 default:
450 break;
451 }
452 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
453 aprint_normal(" WB disabled");
454 else
455 aprint_normal(" WB enabled");
456
457 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
458 aprint_normal(" LABT");
459 else
460 aprint_normal(" EABT");
461
462 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
463 aprint_normal(" branch prediction enabled");
464
465 aprint_normal("\n");
466
467 /* Print cache info. */
468 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
469 goto skip_pcache;
470
471 if (arm_pcache_unified) {
472 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
473 dv->dv_xname, arm_pdcache_size / 1024,
474 arm_pdcache_line_size, arm_pdcache_ways,
475 wtnames[arm_pcache_type]);
476 } else {
477 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
478 dv->dv_xname, arm_picache_size / 1024,
479 arm_picache_line_size, arm_picache_ways);
480 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
481 dv->dv_xname, arm_pdcache_size / 1024,
482 arm_pdcache_line_size, arm_pdcache_ways,
483 wtnames[arm_pcache_type]);
484 }
485
486 skip_pcache:
487
488 switch (cpu_class) {
489 #ifdef CPU_ARM2
490 case CPU_CLASS_ARM2:
491 #endif
492 #ifdef CPU_ARM250
493 case CPU_CLASS_ARM2AS:
494 #endif
495 #ifdef CPU_ARM3
496 case CPU_CLASS_ARM3:
497 #endif
498 #ifdef CPU_ARM6
499 case CPU_CLASS_ARM6:
500 #endif
501 #ifdef CPU_ARM7
502 case CPU_CLASS_ARM7:
503 #endif
504 #ifdef CPU_ARM7TDMI
505 case CPU_CLASS_ARM7TDMI:
506 #endif
507 #ifdef CPU_ARM8
508 case CPU_CLASS_ARM8:
509 #endif
510 #ifdef CPU_ARM9
511 case CPU_CLASS_ARM9TDMI:
512 #endif
513 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
514 defined(CPU_SA1110) || defined(CPU_IXP12X0)
515 case CPU_CLASS_SA1:
516 #endif
517 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
518 defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425)
519 case CPU_CLASS_XSCALE:
520 #endif
521 break;
522 default:
523 if (cpu_classes[cpu_class].class_option != NULL)
524 aprint_error("%s: %s does not fully support this CPU."
525 "\n", dv->dv_xname, ostype);
526 else {
527 aprint_error("%s: This kernel does not fully support "
528 "this CPU.\n", dv->dv_xname);
529 aprint_normal("%s: Recompile with \"options %s\" to "
530 "correct this.\n", dv->dv_xname,
531 cpu_classes[cpu_class].class_option);
532 }
533 break;
534 }
535
536 }
537 #ifdef MULTIPROCESSOR
538 int
539 cpu_alloc_idlepcb(struct cpu_info *ci)
540 {
541 vaddr_t uaddr;
542 struct pcb *pcb;
543 struct trapframe *tf;
544 int error;
545
546 /*
547 * Generate a kernel stack and PCB (in essence, a u-area) for the
548 * new CPU.
549 */
550 if (uvm_uarea_alloc(&uaddr)) {
551 error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
552 VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
553 if (error)
554 return error;
555 }
556 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
557
558 /*
559 * This code is largely derived from cpu_fork(), with which it
560 * should perhaps be shared.
561 */
562
563 /* Copy the pcb */
564 *pcb = proc0.p_addr->u_pcb;
565
566 /* Set up the undefined stack for the process. */
567 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
568 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
569
570 #ifdef STACKCHECKS
571 /* Fill the undefined stack with a known pattern */
572 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
573 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
574 /* Fill the kernel stack with a known pattern */
575 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
576 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
577 #endif /* STACKCHECKS */
578
579 pcb->pcb_tf = tf =
580 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
581 *tf = *proc0.p_addr->u_pcb.pcb_tf;
582 return 0;
583 }
584 #endif /* MULTIPROCESSOR */
585
586 /* End of cpu.c */
587