cpu.c revision 1.55 1 /* $NetBSD: cpu.c,v 1.55 2004/02/13 11:36:10 wiz Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.55 2004/02/13 11:36:10 wiz Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 char cpu_model[256];
68
69 /* Prototypes */
70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
71
72 /*
73 * Identify the master (boot) CPU
74 */
75
76 void
77 cpu_attach(struct device *dv)
78 {
79 int usearmfpe;
80
81 usearmfpe = 1; /* when compiled in, its enabled by default */
82
83 curcpu()->ci_dev = dv;
84
85 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
86 NULL, dv->dv_xname, "arm700swibug");
87
88 /* Get the CPU ID from coprocessor 15 */
89
90 curcpu()->ci_arm_cpuid = cpu_id();
91 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
92 curcpu()->ci_arm_cpurev =
93 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
94
95 identify_arm_cpu(dv, curcpu());
96
97 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
98 curcpu()->ci_arm_cpurev < 3) {
99 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
100 dv->dv_xname);
101 }
102
103 #ifdef CPU_ARM8
104 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
105 int clock = arm8_clock_config(0, 0);
106 char *fclk;
107 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
108 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
109 aprint_normal("%s", (clock & 2) ? " sync" : "");
110 switch ((clock >> 2) & 3) {
111 case 0:
112 fclk = "bus clock";
113 break;
114 case 1:
115 fclk = "ref clock";
116 break;
117 case 3:
118 fclk = "pll";
119 break;
120 default:
121 fclk = "illegal";
122 break;
123 }
124 aprint_normal(" fclk source=%s\n", fclk);
125 }
126 #endif
127
128 #ifdef ARMFPE
129 /*
130 * Ok now we test for an FPA
131 * At this point no floating point emulator has been installed.
132 * This means any FP instruction will cause undefined exception.
133 * We install a temporay coproc 1 handler which will modify
134 * undefined_test if it is called.
135 * We then try to read the FP status register. If undefined_test
136 * has been decremented then the instruction was not handled by
137 * an FPA so we know the FPA is missing. If undefined_test is
138 * still 1 then we know the instruction was handled by an FPA.
139 * We then remove our test handler and look at the
140 * FP status register for identification.
141 */
142
143 /*
144 * Ok if ARMFPE is defined and the boot options request the
145 * ARM FPE then it will be installed as the FPE.
146 * This is just while I work on integrating the new FPE.
147 * It means the new FPE gets installed if compiled int (ARMFPE
148 * defined) and also gives me a on/off option when I boot in
149 * case the new FPE is causing panics.
150 */
151
152
153 if (boot_args)
154 get_bootconf_option(boot_args, "armfpe",
155 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
156 if (usearmfpe)
157 initialise_arm_fpe();
158 #endif
159 }
160
161 enum cpu_class {
162 CPU_CLASS_NONE,
163 CPU_CLASS_ARM2,
164 CPU_CLASS_ARM2AS,
165 CPU_CLASS_ARM3,
166 CPU_CLASS_ARM6,
167 CPU_CLASS_ARM7,
168 CPU_CLASS_ARM7TDMI,
169 CPU_CLASS_ARM8,
170 CPU_CLASS_ARM9TDMI,
171 CPU_CLASS_ARM9ES,
172 CPU_CLASS_ARM10E,
173 CPU_CLASS_SA1,
174 CPU_CLASS_XSCALE
175 };
176
177 static const char * const generic_steppings[16] = {
178 "rev 0", "rev 1", "rev 2", "rev 3",
179 "rev 4", "rev 5", "rev 6", "rev 7",
180 "rev 8", "rev 9", "rev 10", "rev 11",
181 "rev 12", "rev 13", "rev 14", "rev 15",
182 };
183
184 static const char * const sa110_steppings[16] = {
185 "rev 0", "step J", "step K", "step S",
186 "step T", "rev 5", "rev 6", "rev 7",
187 "rev 8", "rev 9", "rev 10", "rev 11",
188 "rev 12", "rev 13", "rev 14", "rev 15",
189 };
190
191 static const char * const sa1100_steppings[16] = {
192 "rev 0", "step B", "step C", "rev 3",
193 "rev 4", "rev 5", "rev 6", "rev 7",
194 "step D", "step E", "rev 10" "step G",
195 "rev 12", "rev 13", "rev 14", "rev 15",
196 };
197
198 static const char * const sa1110_steppings[16] = {
199 "step A-0", "rev 1", "rev 2", "rev 3",
200 "step B-0", "step B-1", "step B-2", "step B-3",
201 "step B-4", "step B-5", "rev 10", "rev 11",
202 "rev 12", "rev 13", "rev 14", "rev 15",
203 };
204
205 static const char * const ixp12x0_steppings[16] = {
206 "(IXP1200 step A)", "(IXP1200 step B)",
207 "rev 2", "(IXP1200 step C)",
208 "(IXP1200 step D)", "(IXP1240/1250 step A)",
209 "(IXP1240 step B)", "(IXP1250 step B)",
210 "rev 8", "rev 9", "rev 10", "rev 11",
211 "rev 12", "rev 13", "rev 14", "rev 15",
212 };
213
214 static const char * const xscale_steppings[16] = {
215 "step A-0", "step A-1", "step B-0", "step C-0",
216 "step D-0", "rev 5", "rev 6", "rev 7",
217 "rev 8", "rev 9", "rev 10", "rev 11",
218 "rev 12", "rev 13", "rev 14", "rev 15",
219 };
220
221 static const char * const i80321_steppings[16] = {
222 "step A-0", "step B-0", "rev 2", "rev 3",
223 "rev 4", "rev 5", "rev 6", "rev 7",
224 "rev 8", "rev 9", "rev 10", "rev 11",
225 "rev 12", "rev 13", "rev 14", "rev 15",
226 };
227
228 static const char * const pxa2x0_steppings[16] = {
229 "step A-0", "step A-1", "step B-0", "step B-1",
230 "step B-2", "step C-0", "rev 6", "rev 7",
231 "rev 8", "rev 9", "rev 10", "rev 11",
232 "rev 12", "rev 13", "rev 14", "rev 15",
233 };
234
235 static const char * const ixp425_steppings[16] = {
236 "step 0", "rev 1", "rev 2", "rev 3",
237 "rev 4", "rev 5", "rev 6", "rev 7",
238 "rev 8", "rev 9", "rev 10", "rev 11",
239 "rev 12", "rev 13", "rev 14", "rev 15",
240 };
241
242 struct cpuidtab {
243 u_int32_t cpuid;
244 enum cpu_class cpu_class;
245 const char *cpu_name;
246 const char * const *cpu_steppings;
247 };
248
249 const struct cpuidtab cpuids[] = {
250 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
251 generic_steppings },
252 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
253 generic_steppings },
254
255 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
256 generic_steppings },
257
258 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
259 generic_steppings },
260 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
261 generic_steppings },
262 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
263 generic_steppings },
264
265 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
266 generic_steppings },
267 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
268 generic_steppings },
269 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
270 generic_steppings },
271 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
272 generic_steppings },
273 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
274 generic_steppings },
275 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
276 generic_steppings },
277 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
278 generic_steppings },
279 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
280 generic_steppings },
281 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
282 generic_steppings },
283
284 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
285 generic_steppings },
286
287 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
288 generic_steppings },
289 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
290 generic_steppings },
291 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
292 generic_steppings },
293 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
294 generic_steppings },
295 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
296 generic_steppings },
297 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
298 generic_steppings },
299 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
300 generic_steppings },
301
302 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
303 generic_steppings },
304 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
305 generic_steppings },
306
307 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
308 sa110_steppings },
309 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
310 sa1100_steppings },
311 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
312 sa1110_steppings },
313
314 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
315 ixp12x0_steppings },
316
317 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
318 xscale_steppings },
319
320 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
321 i80321_steppings },
322 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
323 i80321_steppings },
324 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
325 i80321_steppings },
326 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
327 i80321_steppings },
328
329 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
330 pxa2x0_steppings },
331 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
332 pxa2x0_steppings },
333 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
334 pxa2x0_steppings },
335 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
336 pxa2x0_steppings },
337 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA250",
338 pxa2x0_steppings },
339 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
340 pxa2x0_steppings },
341
342 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
343 ixp425_steppings },
344 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
345 ixp425_steppings },
346 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
347 ixp425_steppings },
348
349 { 0, CPU_CLASS_NONE, NULL, NULL }
350 };
351
352 struct cpu_classtab {
353 const char *class_name;
354 const char *class_option;
355 };
356
357 const struct cpu_classtab cpu_classes[] = {
358 { "unknown", NULL }, /* CPU_CLASS_NONE */
359 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
360 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
361 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
362 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
363 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
364 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
365 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
366 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
367 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
368 { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */
369 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
370 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
371 };
372
373 /*
374 * Report the type of the specified arm processor. This uses the generic and
375 * arm specific information in the CPU structure to identify the processor.
376 * The remaining fields in the CPU structure are filled in appropriately.
377 */
378
379 static const char * const wtnames[] = {
380 "write-through",
381 "write-back",
382 "write-back",
383 "**unknown 3**",
384 "**unknown 4**",
385 "write-back-locking", /* XXX XScale-specific? */
386 "write-back-locking-A",
387 "write-back-locking-B",
388 "**unknown 8**",
389 "**unknown 9**",
390 "**unknown 10**",
391 "**unknown 11**",
392 "**unknown 12**",
393 "**unknown 13**",
394 "**unknown 14**",
395 "**unknown 15**",
396 };
397
398 void
399 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
400 {
401 u_int cpuid;
402 enum cpu_class cpu_class = CPU_CLASS_NONE;
403 int i;
404
405 cpuid = ci->ci_arm_cpuid;
406
407 if (cpuid == 0) {
408 aprint_error("Processor failed probe - no CPU ID\n");
409 return;
410 }
411
412 for (i = 0; cpuids[i].cpuid != 0; i++)
413 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
414 cpu_class = cpuids[i].cpu_class;
415 sprintf(cpu_model, "%s %s (%s core)",
416 cpuids[i].cpu_name,
417 cpuids[i].cpu_steppings[cpuid &
418 CPU_ID_REVISION_MASK],
419 cpu_classes[cpu_class].class_name);
420 break;
421 }
422
423 if (cpuids[i].cpuid == 0)
424 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
425
426 aprint_naive(": %s\n", cpu_model);
427 aprint_normal(": %s\n", cpu_model);
428
429 aprint_normal("%s:", dv->dv_xname);
430
431 switch (cpu_class) {
432 case CPU_CLASS_ARM6:
433 case CPU_CLASS_ARM7:
434 case CPU_CLASS_ARM7TDMI:
435 case CPU_CLASS_ARM8:
436 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
437 aprint_normal(" IDC disabled");
438 else
439 aprint_normal(" IDC enabled");
440 break;
441 case CPU_CLASS_ARM9TDMI:
442 case CPU_CLASS_ARM10E:
443 case CPU_CLASS_SA1:
444 case CPU_CLASS_XSCALE:
445 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
446 aprint_normal(" DC disabled");
447 else
448 aprint_normal(" DC enabled");
449 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
450 aprint_normal(" IC disabled");
451 else
452 aprint_normal(" IC enabled");
453 break;
454 default:
455 break;
456 }
457 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
458 aprint_normal(" WB disabled");
459 else
460 aprint_normal(" WB enabled");
461
462 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
463 aprint_normal(" LABT");
464 else
465 aprint_normal(" EABT");
466
467 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
468 aprint_normal(" branch prediction enabled");
469
470 aprint_normal("\n");
471
472 /* Print cache info. */
473 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
474 goto skip_pcache;
475
476 if (arm_pcache_unified) {
477 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
478 dv->dv_xname, arm_pdcache_size / 1024,
479 arm_pdcache_line_size, arm_pdcache_ways,
480 wtnames[arm_pcache_type]);
481 } else {
482 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
483 dv->dv_xname, arm_picache_size / 1024,
484 arm_picache_line_size, arm_picache_ways);
485 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
486 dv->dv_xname, arm_pdcache_size / 1024,
487 arm_pdcache_line_size, arm_pdcache_ways,
488 wtnames[arm_pcache_type]);
489 }
490
491 skip_pcache:
492
493 switch (cpu_class) {
494 #ifdef CPU_ARM2
495 case CPU_CLASS_ARM2:
496 #endif
497 #ifdef CPU_ARM250
498 case CPU_CLASS_ARM2AS:
499 #endif
500 #ifdef CPU_ARM3
501 case CPU_CLASS_ARM3:
502 #endif
503 #ifdef CPU_ARM6
504 case CPU_CLASS_ARM6:
505 #endif
506 #ifdef CPU_ARM7
507 case CPU_CLASS_ARM7:
508 #endif
509 #ifdef CPU_ARM7TDMI
510 case CPU_CLASS_ARM7TDMI:
511 #endif
512 #ifdef CPU_ARM8
513 case CPU_CLASS_ARM8:
514 #endif
515 #ifdef CPU_ARM9
516 case CPU_CLASS_ARM9TDMI:
517 #endif
518 #ifdef CPU_ARM10
519 case CPU_CLASS_ARM10E:
520 #endif
521 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
522 defined(CPU_SA1110) || defined(CPU_IXP12X0)
523 case CPU_CLASS_SA1:
524 #endif
525 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
526 defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425)
527 case CPU_CLASS_XSCALE:
528 #endif
529 break;
530 default:
531 if (cpu_classes[cpu_class].class_option != NULL)
532 aprint_error("%s: %s does not fully support this CPU."
533 "\n", dv->dv_xname, ostype);
534 else {
535 aprint_error("%s: This kernel does not fully support "
536 "this CPU.\n", dv->dv_xname);
537 aprint_normal("%s: Recompile with \"options %s\" to "
538 "correct this.\n", dv->dv_xname,
539 cpu_classes[cpu_class].class_option);
540 }
541 break;
542 }
543
544 }
545 #ifdef MULTIPROCESSOR
546 int
547 cpu_alloc_idlepcb(struct cpu_info *ci)
548 {
549 vaddr_t uaddr;
550 struct pcb *pcb;
551 struct trapframe *tf;
552 int error;
553
554 /*
555 * Generate a kernel stack and PCB (in essence, a u-area) for the
556 * new CPU.
557 */
558 if (uvm_uarea_alloc(&uaddr)) {
559 error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
560 VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
561 if (error)
562 return error;
563 }
564 ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
565
566 /*
567 * This code is largely derived from cpu_fork(), with which it
568 * should perhaps be shared.
569 */
570
571 /* Copy the pcb */
572 *pcb = proc0.p_addr->u_pcb;
573
574 /* Set up the undefined stack for the process. */
575 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
576 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
577
578 #ifdef STACKCHECKS
579 /* Fill the undefined stack with a known pattern */
580 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
581 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
582 /* Fill the kernel stack with a known pattern */
583 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
584 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
585 #endif /* STACKCHECKS */
586
587 pcb->pcb_tf = tf =
588 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
589 *tf = *proc0.p_addr->u_pcb.pcb_tf;
590 return 0;
591 }
592 #endif /* MULTIPROCESSOR */
593
594 /* End of cpu.c */
595