Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.57
      1 /*	$NetBSD: cpu.c,v 1.57 2005/05/10 13:02:55 rearnsha Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master CPU
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_multiprocessor.h"
     46 
     47 #include <sys/param.h>
     48 
     49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.57 2005/05/10 13:02:55 rearnsha Exp $");
     50 
     51 #include <sys/systm.h>
     52 #include <sys/malloc.h>
     53 #include <sys/device.h>
     54 #include <sys/proc.h>
     55 #include <sys/conf.h>
     56 #include <uvm/uvm_extern.h>
     57 #include <machine/cpu.h>
     58 
     59 #include <arm/cpuconf.h>
     60 #include <arm/undefined.h>
     61 
     62 #ifdef ARMFPE
     63 #include <machine/bootconfig.h> /* For boot args */
     64 #include <arm/fpe-arm/armfpe.h>
     65 #endif
     66 
     67 char cpu_model[256];
     68 
     69 /* Prototypes */
     70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     71 
     72 /*
     73  * Identify the master (boot) CPU
     74  */
     75 
     76 void
     77 cpu_attach(struct device *dv)
     78 {
     79 	int usearmfpe;
     80 
     81 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     82 
     83 	curcpu()->ci_dev = dv;
     84 
     85 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     86 	    NULL, dv->dv_xname, "arm700swibug");
     87 
     88 	/* Get the CPU ID from coprocessor 15 */
     89 
     90 	curcpu()->ci_arm_cpuid = cpu_id();
     91 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     92 	curcpu()->ci_arm_cpurev =
     93 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     94 
     95 	identify_arm_cpu(dv, curcpu());
     96 
     97 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
     98 	    curcpu()->ci_arm_cpurev < 3) {
     99 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
    100 		       dv->dv_xname);
    101 	}
    102 
    103 #ifdef CPU_ARM8
    104 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    105 		int clock = arm8_clock_config(0, 0);
    106 		char *fclk;
    107 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    108 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    109 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    110 		switch ((clock >> 2) & 3) {
    111 		case 0:
    112 			fclk = "bus clock";
    113 			break;
    114 		case 1:
    115 			fclk = "ref clock";
    116 			break;
    117 		case 3:
    118 			fclk = "pll";
    119 			break;
    120 		default:
    121 			fclk = "illegal";
    122 			break;
    123 		}
    124 		aprint_normal(" fclk source=%s\n", fclk);
    125  	}
    126 #endif
    127 
    128 #ifdef ARMFPE
    129 	/*
    130 	 * Ok now we test for an FPA
    131 	 * At this point no floating point emulator has been installed.
    132 	 * This means any FP instruction will cause undefined exception.
    133 	 * We install a temporay coproc 1 handler which will modify
    134 	 * undefined_test if it is called.
    135 	 * We then try to read the FP status register. If undefined_test
    136 	 * has been decremented then the instruction was not handled by
    137 	 * an FPA so we know the FPA is missing. If undefined_test is
    138 	 * still 1 then we know the instruction was handled by an FPA.
    139 	 * We then remove our test handler and look at the
    140 	 * FP status register for identification.
    141 	 */
    142 
    143 	/*
    144 	 * Ok if ARMFPE is defined and the boot options request the
    145 	 * ARM FPE then it will be installed as the FPE.
    146 	 * This is just while I work on integrating the new FPE.
    147 	 * It means the new FPE gets installed if compiled int (ARMFPE
    148 	 * defined) and also gives me a on/off option when I boot in
    149 	 * case the new FPE is causing panics.
    150 	 */
    151 
    152 
    153 	if (boot_args)
    154 		get_bootconf_option(boot_args, "armfpe",
    155 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    156 	if (usearmfpe)
    157 		initialise_arm_fpe();
    158 #endif
    159 }
    160 
    161 enum cpu_class {
    162 	CPU_CLASS_NONE,
    163 	CPU_CLASS_ARM2,
    164 	CPU_CLASS_ARM2AS,
    165 	CPU_CLASS_ARM3,
    166 	CPU_CLASS_ARM6,
    167 	CPU_CLASS_ARM7,
    168 	CPU_CLASS_ARM7TDMI,
    169 	CPU_CLASS_ARM8,
    170 	CPU_CLASS_ARM9TDMI,
    171 	CPU_CLASS_ARM9ES,
    172 	CPU_CLASS_ARM10E,
    173 	CPU_CLASS_ARM10EJ,
    174 	CPU_CLASS_SA1,
    175 	CPU_CLASS_XSCALE
    176 };
    177 
    178 static const char * const generic_steppings[16] = {
    179 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    180 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    181 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    182 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    183 };
    184 
    185 static const char * const sa110_steppings[16] = {
    186 	"rev 0",	"step J",	"step K",	"step S",
    187 	"step T",	"rev 5",	"rev 6",	"rev 7",
    188 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    189 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    190 };
    191 
    192 static const char * const sa1100_steppings[16] = {
    193 	"rev 0",	"step B",	"step C",	"rev 3",
    194 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    195 	"step D",	"step E",	"rev 10"	"step G",
    196 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    197 };
    198 
    199 static const char * const sa1110_steppings[16] = {
    200 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    201 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    202 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    203 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    204 };
    205 
    206 static const char * const ixp12x0_steppings[16] = {
    207 	"(IXP1200 step A)",		"(IXP1200 step B)",
    208 	"rev 2",			"(IXP1200 step C)",
    209 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    210 	"(IXP1240 step B)",		"(IXP1250 step B)",
    211 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    212 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    213 };
    214 
    215 static const char * const xscale_steppings[16] = {
    216 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    217 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    218 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    219 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    220 };
    221 
    222 static const char * const i80321_steppings[16] = {
    223 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    224 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    225 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    226 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    227 };
    228 
    229 /* Steppings for PXA2[15]0 */
    230 static const char * const pxa2x0_steppings[16] = {
    231 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    232 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    233 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    234 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    235 };
    236 
    237 /* Steppings for PXA255/26x.
    238  * rev 5: PXA26x B0, rev 6: PXA255 A0
    239  */
    240 static const char * const pxa255_steppings[16] = {
    241 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
    242 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
    243 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    244 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    245 };
    246 
    247 static const char * const ixp425_steppings[16] = {
    248 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    249 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    250 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    251 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    252 };
    253 
    254 struct cpuidtab {
    255 	u_int32_t	cpuid;
    256 	enum		cpu_class cpu_class;
    257 	const char	*cpu_name;
    258 	const char * const *cpu_steppings;
    259 };
    260 
    261 const struct cpuidtab cpuids[] = {
    262 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    263 	  generic_steppings },
    264 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    265 	  generic_steppings },
    266 
    267 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    268 	  generic_steppings },
    269 
    270 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    271 	  generic_steppings },
    272 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    273 	  generic_steppings },
    274 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    275 	  generic_steppings },
    276 
    277 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    278 	  generic_steppings },
    279 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    280 	  generic_steppings },
    281 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    282 	  generic_steppings },
    283 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    284 	  generic_steppings },
    285 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    286 	  generic_steppings },
    287 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    288 	  generic_steppings },
    289 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    290 	  generic_steppings },
    291 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    292 	  generic_steppings },
    293 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    294 	  generic_steppings },
    295 
    296 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    297 	  generic_steppings },
    298 
    299 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    300 	  generic_steppings },
    301 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    302 	  generic_steppings },
    303 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    304 	  generic_steppings },
    305 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    306 	  generic_steppings },
    307 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    308 	  generic_steppings },
    309 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    310 	  generic_steppings },
    311 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
    312 	  generic_steppings },
    313 
    314 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
    315 	  generic_steppings },
    316 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
    317 	  generic_steppings },
    318 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
    319 	  generic_steppings },
    320 
    321 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    322 	  sa110_steppings },
    323 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    324 	  sa1100_steppings },
    325 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    326 	  sa1110_steppings },
    327 
    328 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    329 	  ixp12x0_steppings },
    330 
    331 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    332 	  xscale_steppings },
    333 
    334 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    335 	  i80321_steppings },
    336 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    337 	  i80321_steppings },
    338 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    339 	  i80321_steppings },
    340 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    341 	  i80321_steppings },
    342 
    343 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    344 	  pxa2x0_steppings },
    345 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    346 	  pxa2x0_steppings },
    347 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    348 	  pxa2x0_steppings },
    349 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    350 	  pxa2x0_steppings },
    351 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
    352 	  pxa255_steppings },
    353 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    354 	  pxa2x0_steppings },
    355 
    356 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    357 	  ixp425_steppings },
    358 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    359 	  ixp425_steppings },
    360 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    361 	  ixp425_steppings },
    362 
    363 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    364 };
    365 
    366 struct cpu_classtab {
    367 	const char	*class_name;
    368 	const char	*class_option;
    369 };
    370 
    371 const struct cpu_classtab cpu_classes[] = {
    372 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    373 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    374 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    375 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    376 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    377 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    378 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    379 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    380 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    381 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    382 	{ "ARM10E",	"CPU_ARM10" },		/* CPU_CLASS_ARM10E */
    383 	{ "ARM10EJ",	"CPU_ARM10" },		/* CPU_CLASS_ARM10EJ */
    384 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    385 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    386 };
    387 
    388 /*
    389  * Report the type of the specified arm processor. This uses the generic and
    390  * arm specific information in the CPU structure to identify the processor.
    391  * The remaining fields in the CPU structure are filled in appropriately.
    392  */
    393 
    394 static const char * const wtnames[] = {
    395 	"write-through",
    396 	"write-back",
    397 	"write-back",
    398 	"**unknown 3**",
    399 	"**unknown 4**",
    400 	"write-back-locking",		/* XXX XScale-specific? */
    401 	"write-back-locking-A",
    402 	"write-back-locking-B",
    403 	"**unknown 8**",
    404 	"**unknown 9**",
    405 	"**unknown 10**",
    406 	"**unknown 11**",
    407 	"**unknown 12**",
    408 	"**unknown 13**",
    409 	"write-back-locking-C",
    410 	"**unknown 15**",
    411 };
    412 
    413 void
    414 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    415 {
    416 	u_int cpuid;
    417 	enum cpu_class cpu_class = CPU_CLASS_NONE;
    418 	int i;
    419 
    420 	cpuid = ci->ci_arm_cpuid;
    421 
    422 	if (cpuid == 0) {
    423 		aprint_error("Processor failed probe - no CPU ID\n");
    424 		return;
    425 	}
    426 
    427 	for (i = 0; cpuids[i].cpuid != 0; i++)
    428 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    429 			cpu_class = cpuids[i].cpu_class;
    430 			sprintf(cpu_model, "%s %s (%s core)",
    431 			    cpuids[i].cpu_name,
    432 			    cpuids[i].cpu_steppings[cpuid &
    433 						    CPU_ID_REVISION_MASK],
    434 			    cpu_classes[cpu_class].class_name);
    435 			break;
    436 		}
    437 
    438 	if (cpuids[i].cpuid == 0)
    439 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    440 
    441 	aprint_naive(": %s\n", cpu_model);
    442 	aprint_normal(": %s\n", cpu_model);
    443 
    444 	aprint_normal("%s:", dv->dv_xname);
    445 
    446 	switch (cpu_class) {
    447 	case CPU_CLASS_ARM6:
    448 	case CPU_CLASS_ARM7:
    449 	case CPU_CLASS_ARM7TDMI:
    450 	case CPU_CLASS_ARM8:
    451 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    452 			aprint_normal(" IDC disabled");
    453 		else
    454 			aprint_normal(" IDC enabled");
    455 		break;
    456 	case CPU_CLASS_ARM9TDMI:
    457 	case CPU_CLASS_ARM10E:
    458 	case CPU_CLASS_ARM10EJ:
    459 	case CPU_CLASS_SA1:
    460 	case CPU_CLASS_XSCALE:
    461 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    462 			aprint_normal(" DC disabled");
    463 		else
    464 			aprint_normal(" DC enabled");
    465 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    466 			aprint_normal(" IC disabled");
    467 		else
    468 			aprint_normal(" IC enabled");
    469 		break;
    470 	default:
    471 		break;
    472 	}
    473 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    474 		aprint_normal(" WB disabled");
    475 	else
    476 		aprint_normal(" WB enabled");
    477 
    478 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    479 		aprint_normal(" LABT");
    480 	else
    481 		aprint_normal(" EABT");
    482 
    483 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    484 		aprint_normal(" branch prediction enabled");
    485 
    486 	aprint_normal("\n");
    487 
    488 	/* Print cache info. */
    489 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    490 		goto skip_pcache;
    491 
    492 	if (arm_pcache_unified) {
    493 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    494 		    dv->dv_xname, arm_pdcache_size / 1024,
    495 		    arm_pdcache_line_size, arm_pdcache_ways,
    496 		    wtnames[arm_pcache_type]);
    497 	} else {
    498 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    499 		    dv->dv_xname, arm_picache_size / 1024,
    500 		    arm_picache_line_size, arm_picache_ways);
    501 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    502 		    dv->dv_xname, arm_pdcache_size / 1024,
    503 		    arm_pdcache_line_size, arm_pdcache_ways,
    504 		    wtnames[arm_pcache_type]);
    505 	}
    506 
    507  skip_pcache:
    508 
    509 	switch (cpu_class) {
    510 #ifdef CPU_ARM2
    511 	case CPU_CLASS_ARM2:
    512 #endif
    513 #ifdef CPU_ARM250
    514 	case CPU_CLASS_ARM2AS:
    515 #endif
    516 #ifdef CPU_ARM3
    517 	case CPU_CLASS_ARM3:
    518 #endif
    519 #ifdef CPU_ARM6
    520 	case CPU_CLASS_ARM6:
    521 #endif
    522 #ifdef CPU_ARM7
    523 	case CPU_CLASS_ARM7:
    524 #endif
    525 #ifdef CPU_ARM7TDMI
    526 	case CPU_CLASS_ARM7TDMI:
    527 #endif
    528 #ifdef CPU_ARM8
    529 	case CPU_CLASS_ARM8:
    530 #endif
    531 #ifdef CPU_ARM9
    532 	case CPU_CLASS_ARM9TDMI:
    533 #endif
    534 #ifdef CPU_ARM10
    535 	case CPU_CLASS_ARM10E:
    536 	case CPU_CLASS_ARM10EJ:
    537 #endif
    538 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    539     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    540 	case CPU_CLASS_SA1:
    541 #endif
    542 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    543     defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425)
    544 	case CPU_CLASS_XSCALE:
    545 #endif
    546 		break;
    547 	default:
    548 		if (cpu_classes[cpu_class].class_option != NULL)
    549 			aprint_error("%s: %s does not fully support this CPU."
    550 			       "\n", dv->dv_xname, ostype);
    551 		else {
    552 			aprint_error("%s: This kernel does not fully support "
    553 			       "this CPU.\n", dv->dv_xname);
    554 			aprint_normal("%s: Recompile with \"options %s\" to "
    555 			       "correct this.\n", dv->dv_xname,
    556 			       cpu_classes[cpu_class].class_option);
    557 		}
    558 		break;
    559 	}
    560 
    561 }
    562 #ifdef MULTIPROCESSOR
    563 int
    564 cpu_alloc_idlepcb(struct cpu_info *ci)
    565 {
    566 	vaddr_t uaddr;
    567 	struct pcb *pcb;
    568 	struct trapframe *tf;
    569 	int error;
    570 
    571 	/*
    572 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
    573 	 * new CPU.
    574 	 */
    575 	if (uvm_uarea_alloc(&uaddr)) {
    576 		error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
    577 		    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
    578 		if (error)
    579 			return error;
    580 	}
    581 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
    582 
    583 	/*
    584 	 * This code is largely derived from cpu_fork(), with which it
    585 	 * should perhaps be shared.
    586 	 */
    587 
    588 	/* Copy the pcb */
    589 	*pcb = proc0.p_addr->u_pcb;
    590 
    591 	/* Set up the undefined stack for the process. */
    592 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
    593 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
    594 
    595 #ifdef STACKCHECKS
    596 	/* Fill the undefined stack with a known pattern */
    597 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
    598 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
    599 	/* Fill the kernel stack with a known pattern */
    600 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
    601 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
    602 #endif	/* STACKCHECKS */
    603 
    604 	pcb->pcb_tf = tf =
    605 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
    606 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
    607 	return 0;
    608 }
    609 #endif /* MULTIPROCESSOR */
    610 
    611 /* End of cpu.c */
    612