Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.59
      1 /*	$NetBSD: cpu.c,v 1.59 2005/07/04 00:42:37 bsh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master CPU
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_multiprocessor.h"
     46 
     47 #include <sys/param.h>
     48 
     49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.59 2005/07/04 00:42:37 bsh Exp $");
     50 
     51 #include <sys/systm.h>
     52 #include <sys/malloc.h>
     53 #include <sys/device.h>
     54 #include <sys/proc.h>
     55 #include <sys/conf.h>
     56 #include <uvm/uvm_extern.h>
     57 #include <machine/cpu.h>
     58 
     59 #include <arm/cpuconf.h>
     60 #include <arm/undefined.h>
     61 
     62 #ifdef ARMFPE
     63 #include <machine/bootconfig.h> /* For boot args */
     64 #include <arm/fpe-arm/armfpe.h>
     65 #endif
     66 
     67 char cpu_model[256];
     68 
     69 /* Prototypes */
     70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     71 
     72 /*
     73  * Identify the master (boot) CPU
     74  */
     75 
     76 void
     77 cpu_attach(struct device *dv)
     78 {
     79 	int usearmfpe;
     80 
     81 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     82 
     83 	curcpu()->ci_dev = dv;
     84 
     85 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     86 	    NULL, dv->dv_xname, "arm700swibug");
     87 
     88 	/* Get the CPU ID from coprocessor 15 */
     89 
     90 	curcpu()->ci_arm_cpuid = cpu_id();
     91 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     92 	curcpu()->ci_arm_cpurev =
     93 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     94 
     95 	identify_arm_cpu(dv, curcpu());
     96 
     97 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
     98 	    curcpu()->ci_arm_cpurev < 3) {
     99 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
    100 		       dv->dv_xname);
    101 	}
    102 
    103 #ifdef CPU_ARM8
    104 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    105 		int clock = arm8_clock_config(0, 0);
    106 		char *fclk;
    107 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    108 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    109 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    110 		switch ((clock >> 2) & 3) {
    111 		case 0:
    112 			fclk = "bus clock";
    113 			break;
    114 		case 1:
    115 			fclk = "ref clock";
    116 			break;
    117 		case 3:
    118 			fclk = "pll";
    119 			break;
    120 		default:
    121 			fclk = "illegal";
    122 			break;
    123 		}
    124 		aprint_normal(" fclk source=%s\n", fclk);
    125  	}
    126 #endif
    127 
    128 #ifdef ARMFPE
    129 	/*
    130 	 * Ok now we test for an FPA
    131 	 * At this point no floating point emulator has been installed.
    132 	 * This means any FP instruction will cause undefined exception.
    133 	 * We install a temporay coproc 1 handler which will modify
    134 	 * undefined_test if it is called.
    135 	 * We then try to read the FP status register. If undefined_test
    136 	 * has been decremented then the instruction was not handled by
    137 	 * an FPA so we know the FPA is missing. If undefined_test is
    138 	 * still 1 then we know the instruction was handled by an FPA.
    139 	 * We then remove our test handler and look at the
    140 	 * FP status register for identification.
    141 	 */
    142 
    143 	/*
    144 	 * Ok if ARMFPE is defined and the boot options request the
    145 	 * ARM FPE then it will be installed as the FPE.
    146 	 * This is just while I work on integrating the new FPE.
    147 	 * It means the new FPE gets installed if compiled int (ARMFPE
    148 	 * defined) and also gives me a on/off option when I boot in
    149 	 * case the new FPE is causing panics.
    150 	 */
    151 
    152 
    153 	if (boot_args)
    154 		get_bootconf_option(boot_args, "armfpe",
    155 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    156 	if (usearmfpe)
    157 		initialise_arm_fpe();
    158 #endif
    159 }
    160 
    161 enum cpu_class {
    162 	CPU_CLASS_NONE,
    163 	CPU_CLASS_ARM2,
    164 	CPU_CLASS_ARM2AS,
    165 	CPU_CLASS_ARM3,
    166 	CPU_CLASS_ARM6,
    167 	CPU_CLASS_ARM7,
    168 	CPU_CLASS_ARM7TDMI,
    169 	CPU_CLASS_ARM8,
    170 	CPU_CLASS_ARM9TDMI,
    171 	CPU_CLASS_ARM9ES,
    172 	CPU_CLASS_ARM10E,
    173 	CPU_CLASS_ARM10EJ,
    174 	CPU_CLASS_SA1,
    175 	CPU_CLASS_XSCALE,
    176 	CPU_CLASS_ARM11J
    177 };
    178 
    179 static const char * const generic_steppings[16] = {
    180 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    181 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    182 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    183 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    184 };
    185 
    186 static const char * const sa110_steppings[16] = {
    187 	"rev 0",	"step J",	"step K",	"step S",
    188 	"step T",	"rev 5",	"rev 6",	"rev 7",
    189 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    190 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    191 };
    192 
    193 static const char * const sa1100_steppings[16] = {
    194 	"rev 0",	"step B",	"step C",	"rev 3",
    195 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    196 	"step D",	"step E",	"rev 10"	"step G",
    197 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    198 };
    199 
    200 static const char * const sa1110_steppings[16] = {
    201 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    202 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    203 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    204 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    205 };
    206 
    207 static const char * const ixp12x0_steppings[16] = {
    208 	"(IXP1200 step A)",		"(IXP1200 step B)",
    209 	"rev 2",			"(IXP1200 step C)",
    210 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    211 	"(IXP1240 step B)",		"(IXP1250 step B)",
    212 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    214 };
    215 
    216 static const char * const xscale_steppings[16] = {
    217 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    218 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    219 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    221 };
    222 
    223 static const char * const i80321_steppings[16] = {
    224 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    225 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    226 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    227 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    228 };
    229 
    230 /* Steppings for PXA2[15]0 */
    231 static const char * const pxa2x0_steppings[16] = {
    232 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    233 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    234 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    235 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    236 };
    237 
    238 /* Steppings for PXA255/26x.
    239  * rev 5: PXA26x B0, rev 6: PXA255 A0
    240  */
    241 static const char * const pxa255_steppings[16] = {
    242 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
    243 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
    244 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    245 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    246 };
    247 
    248 /* Stepping for PXA27x */
    249 static const char * const pxa27x_steppings[16] = {
    250 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    251 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
    252 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    253 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    254 };
    255 
    256 static const char * const ixp425_steppings[16] = {
    257 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    258 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    259 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    260 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    261 };
    262 
    263 struct cpuidtab {
    264 	u_int32_t	cpuid;
    265 	enum		cpu_class cpu_class;
    266 	const char	*cpu_name;
    267 	const char * const *cpu_steppings;
    268 };
    269 
    270 const struct cpuidtab cpuids[] = {
    271 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    272 	  generic_steppings },
    273 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    274 	  generic_steppings },
    275 
    276 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    277 	  generic_steppings },
    278 
    279 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    280 	  generic_steppings },
    281 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    282 	  generic_steppings },
    283 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    284 	  generic_steppings },
    285 
    286 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    287 	  generic_steppings },
    288 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    289 	  generic_steppings },
    290 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    291 	  generic_steppings },
    292 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    293 	  generic_steppings },
    294 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    295 	  generic_steppings },
    296 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    297 	  generic_steppings },
    298 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    299 	  generic_steppings },
    300 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    301 	  generic_steppings },
    302 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    303 	  generic_steppings },
    304 
    305 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    306 	  generic_steppings },
    307 
    308 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    309 	  generic_steppings },
    310 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    311 	  generic_steppings },
    312 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    313 	  generic_steppings },
    314 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    315 	  generic_steppings },
    316 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    317 	  generic_steppings },
    318 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    319 	  generic_steppings },
    320 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
    321 	  generic_steppings },
    322 
    323 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
    324 	  generic_steppings },
    325 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
    326 	  generic_steppings },
    327 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
    328 	  generic_steppings },
    329 
    330 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    331 	  sa110_steppings },
    332 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    333 	  sa1100_steppings },
    334 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    335 	  sa1110_steppings },
    336 
    337 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    338 	  ixp12x0_steppings },
    339 
    340 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    341 	  xscale_steppings },
    342 
    343 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    344 	  i80321_steppings },
    345 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    346 	  i80321_steppings },
    347 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    348 	  i80321_steppings },
    349 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    350 	  i80321_steppings },
    351 
    352 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
    353 	  pxa27x_steppings },
    354 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    355 	  pxa2x0_steppings },
    356 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    357 	  pxa2x0_steppings },
    358 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    359 	  pxa2x0_steppings },
    360 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    361 	  pxa2x0_steppings },
    362 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
    363 	  pxa255_steppings },
    364 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    365 	  pxa2x0_steppings },
    366 
    367 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    368 	  ixp425_steppings },
    369 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    370 	  ixp425_steppings },
    371 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    372 	  ixp425_steppings },
    373 
    374 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S",
    375 	  generic_steppings },
    376 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S R1",
    377 	  generic_steppings },
    378 
    379 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    380 };
    381 
    382 struct cpu_classtab {
    383 	const char	*class_name;
    384 	const char	*class_option;
    385 };
    386 
    387 const struct cpu_classtab cpu_classes[] = {
    388 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    389 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    390 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    391 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    392 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    393 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    394 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    395 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    396 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    397 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    398 	{ "ARM10E",	"CPU_ARM10" },		/* CPU_CLASS_ARM10E */
    399 	{ "ARM10EJ",	"CPU_ARM10" },		/* CPU_CLASS_ARM10EJ */
    400 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    401 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    402 	{ "ARM11J",	"CPU_ARM11" },		/* CPU_CLASS_ARM11J */
    403 };
    404 
    405 /*
    406  * Report the type of the specified arm processor. This uses the generic and
    407  * arm specific information in the CPU structure to identify the processor.
    408  * The remaining fields in the CPU structure are filled in appropriately.
    409  */
    410 
    411 static const char * const wtnames[] = {
    412 	"write-through",
    413 	"write-back",
    414 	"write-back",
    415 	"**unknown 3**",
    416 	"**unknown 4**",
    417 	"write-back-locking",		/* XXX XScale-specific? */
    418 	"write-back-locking-A",
    419 	"write-back-locking-B",
    420 	"**unknown 8**",
    421 	"**unknown 9**",
    422 	"**unknown 10**",
    423 	"**unknown 11**",
    424 	"**unknown 12**",
    425 	"**unknown 13**",
    426 	"write-back-locking-C",
    427 	"**unknown 15**",
    428 };
    429 
    430 void
    431 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    432 {
    433 	u_int cpuid;
    434 	enum cpu_class cpu_class = CPU_CLASS_NONE;
    435 	int i;
    436 
    437 	cpuid = ci->ci_arm_cpuid;
    438 
    439 	if (cpuid == 0) {
    440 		aprint_error("Processor failed probe - no CPU ID\n");
    441 		return;
    442 	}
    443 
    444 	for (i = 0; cpuids[i].cpuid != 0; i++)
    445 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    446 			cpu_class = cpuids[i].cpu_class;
    447 			sprintf(cpu_model, "%s %s (%s core)",
    448 			    cpuids[i].cpu_name,
    449 			    cpuids[i].cpu_steppings[cpuid &
    450 						    CPU_ID_REVISION_MASK],
    451 			    cpu_classes[cpu_class].class_name);
    452 			break;
    453 		}
    454 
    455 	if (cpuids[i].cpuid == 0)
    456 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    457 
    458 	aprint_naive(": %s\n", cpu_model);
    459 	aprint_normal(": %s\n", cpu_model);
    460 
    461 	aprint_normal("%s:", dv->dv_xname);
    462 
    463 	switch (cpu_class) {
    464 	case CPU_CLASS_ARM6:
    465 	case CPU_CLASS_ARM7:
    466 	case CPU_CLASS_ARM7TDMI:
    467 	case CPU_CLASS_ARM8:
    468 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    469 			aprint_normal(" IDC disabled");
    470 		else
    471 			aprint_normal(" IDC enabled");
    472 		break;
    473 	case CPU_CLASS_ARM9TDMI:
    474 	case CPU_CLASS_ARM10E:
    475 	case CPU_CLASS_ARM10EJ:
    476 	case CPU_CLASS_SA1:
    477 	case CPU_CLASS_XSCALE:
    478 	case CPU_CLASS_ARM11J:
    479 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    480 			aprint_normal(" DC disabled");
    481 		else
    482 			aprint_normal(" DC enabled");
    483 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    484 			aprint_normal(" IC disabled");
    485 		else
    486 			aprint_normal(" IC enabled");
    487 		break;
    488 	default:
    489 		break;
    490 	}
    491 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    492 		aprint_normal(" WB disabled");
    493 	else
    494 		aprint_normal(" WB enabled");
    495 
    496 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    497 		aprint_normal(" LABT");
    498 	else
    499 		aprint_normal(" EABT");
    500 
    501 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    502 		aprint_normal(" branch prediction enabled");
    503 
    504 	aprint_normal("\n");
    505 
    506 	/* Print cache info. */
    507 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    508 		goto skip_pcache;
    509 
    510 	if (arm_pcache_unified) {
    511 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    512 		    dv->dv_xname, arm_pdcache_size / 1024,
    513 		    arm_pdcache_line_size, arm_pdcache_ways,
    514 		    wtnames[arm_pcache_type]);
    515 	} else {
    516 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    517 		    dv->dv_xname, arm_picache_size / 1024,
    518 		    arm_picache_line_size, arm_picache_ways);
    519 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    520 		    dv->dv_xname, arm_pdcache_size / 1024,
    521 		    arm_pdcache_line_size, arm_pdcache_ways,
    522 		    wtnames[arm_pcache_type]);
    523 	}
    524 
    525  skip_pcache:
    526 
    527 	switch (cpu_class) {
    528 #ifdef CPU_ARM2
    529 	case CPU_CLASS_ARM2:
    530 #endif
    531 #ifdef CPU_ARM250
    532 	case CPU_CLASS_ARM2AS:
    533 #endif
    534 #ifdef CPU_ARM3
    535 	case CPU_CLASS_ARM3:
    536 #endif
    537 #ifdef CPU_ARM6
    538 	case CPU_CLASS_ARM6:
    539 #endif
    540 #ifdef CPU_ARM7
    541 	case CPU_CLASS_ARM7:
    542 #endif
    543 #ifdef CPU_ARM7TDMI
    544 	case CPU_CLASS_ARM7TDMI:
    545 #endif
    546 #ifdef CPU_ARM8
    547 	case CPU_CLASS_ARM8:
    548 #endif
    549 #ifdef CPU_ARM9
    550 	case CPU_CLASS_ARM9TDMI:
    551 #endif
    552 #ifdef CPU_ARM10
    553 	case CPU_CLASS_ARM10E:
    554 	case CPU_CLASS_ARM10EJ:
    555 #endif
    556 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    557     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    558 	case CPU_CLASS_SA1:
    559 #endif
    560 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    561     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
    562 	case CPU_CLASS_XSCALE:
    563 #endif
    564 #ifdef CPU_ARM11
    565 	case CPU_CLASS_ARM11J:
    566 #endif
    567 		break;
    568 	default:
    569 		if (cpu_classes[cpu_class].class_option != NULL)
    570 			aprint_error("%s: %s does not fully support this CPU."
    571 			       "\n", dv->dv_xname, ostype);
    572 		else {
    573 			aprint_error("%s: This kernel does not fully support "
    574 			       "this CPU.\n", dv->dv_xname);
    575 			aprint_normal("%s: Recompile with \"options %s\" to "
    576 			       "correct this.\n", dv->dv_xname,
    577 			       cpu_classes[cpu_class].class_option);
    578 		}
    579 		break;
    580 	}
    581 
    582 }
    583 #ifdef MULTIPROCESSOR
    584 int
    585 cpu_alloc_idlepcb(struct cpu_info *ci)
    586 {
    587 	vaddr_t uaddr;
    588 	struct pcb *pcb;
    589 	struct trapframe *tf;
    590 	int error;
    591 
    592 	/*
    593 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
    594 	 * new CPU.
    595 	 */
    596 	if (uvm_uarea_alloc(&uaddr)) {
    597 		error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
    598 		    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
    599 		if (error)
    600 			return error;
    601 	}
    602 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
    603 
    604 	/*
    605 	 * This code is largely derived from cpu_fork(), with which it
    606 	 * should perhaps be shared.
    607 	 */
    608 
    609 	/* Copy the pcb */
    610 	*pcb = proc0.p_addr->u_pcb;
    611 
    612 	/* Set up the undefined stack for the process. */
    613 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
    614 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
    615 
    616 #ifdef STACKCHECKS
    617 	/* Fill the undefined stack with a known pattern */
    618 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
    619 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
    620 	/* Fill the kernel stack with a known pattern */
    621 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
    622 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
    623 #endif	/* STACKCHECKS */
    624 
    625 	pcb->pcb_tf = tf =
    626 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
    627 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
    628 	return 0;
    629 }
    630 #endif /* MULTIPROCESSOR */
    631 
    632 /* End of cpu.c */
    633