Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.62
      1 /*	$NetBSD: cpu.c,v 1.62 2006/03/15 18:31:11 drochner Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master CPU
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_multiprocessor.h"
     46 
     47 #include <sys/param.h>
     48 
     49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.62 2006/03/15 18:31:11 drochner Exp $");
     50 
     51 #include <sys/systm.h>
     52 #include <sys/malloc.h>
     53 #include <sys/device.h>
     54 #include <sys/proc.h>
     55 #include <sys/conf.h>
     56 #include <uvm/uvm_extern.h>
     57 #include <machine/cpu.h>
     58 
     59 #include <arm/cpuconf.h>
     60 #include <arm/undefined.h>
     61 
     62 #ifdef ARMFPE
     63 #include <machine/bootconfig.h> /* For boot args */
     64 #include <arm/fpe-arm/armfpe.h>
     65 #endif
     66 
     67 char cpu_model[256];
     68 
     69 /* Prototypes */
     70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     71 
     72 /*
     73  * Identify the master (boot) CPU
     74  */
     75 
     76 void
     77 cpu_attach(struct device *dv)
     78 {
     79 	int usearmfpe;
     80 
     81 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     82 
     83 	curcpu()->ci_dev = dv;
     84 
     85 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     86 	    NULL, dv->dv_xname, "arm700swibug");
     87 
     88 	/* Get the CPU ID from coprocessor 15 */
     89 
     90 	curcpu()->ci_arm_cpuid = cpu_id();
     91 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     92 	curcpu()->ci_arm_cpurev =
     93 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     94 
     95 	identify_arm_cpu(dv, curcpu());
     96 
     97 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
     98 	    curcpu()->ci_arm_cpurev < 3) {
     99 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
    100 		       dv->dv_xname);
    101 	}
    102 
    103 #ifdef CPU_ARM8
    104 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    105 		int clock = arm8_clock_config(0, 0);
    106 		char *fclk;
    107 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    108 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    109 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    110 		switch ((clock >> 2) & 3) {
    111 		case 0:
    112 			fclk = "bus clock";
    113 			break;
    114 		case 1:
    115 			fclk = "ref clock";
    116 			break;
    117 		case 3:
    118 			fclk = "pll";
    119 			break;
    120 		default:
    121 			fclk = "illegal";
    122 			break;
    123 		}
    124 		aprint_normal(" fclk source=%s\n", fclk);
    125  	}
    126 #endif
    127 
    128 #ifdef ARMFPE
    129 	/*
    130 	 * Ok now we test for an FPA
    131 	 * At this point no floating point emulator has been installed.
    132 	 * This means any FP instruction will cause undefined exception.
    133 	 * We install a temporay coproc 1 handler which will modify
    134 	 * undefined_test if it is called.
    135 	 * We then try to read the FP status register. If undefined_test
    136 	 * has been decremented then the instruction was not handled by
    137 	 * an FPA so we know the FPA is missing. If undefined_test is
    138 	 * still 1 then we know the instruction was handled by an FPA.
    139 	 * We then remove our test handler and look at the
    140 	 * FP status register for identification.
    141 	 */
    142 
    143 	/*
    144 	 * Ok if ARMFPE is defined and the boot options request the
    145 	 * ARM FPE then it will be installed as the FPE.
    146 	 * This is just while I work on integrating the new FPE.
    147 	 * It means the new FPE gets installed if compiled int (ARMFPE
    148 	 * defined) and also gives me a on/off option when I boot in
    149 	 * case the new FPE is causing panics.
    150 	 */
    151 
    152 
    153 	if (boot_args)
    154 		get_bootconf_option(boot_args, "armfpe",
    155 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    156 	if (usearmfpe)
    157 		initialise_arm_fpe();
    158 #endif
    159 }
    160 
    161 enum cpu_class {
    162 	CPU_CLASS_NONE,
    163 	CPU_CLASS_ARM2,
    164 	CPU_CLASS_ARM2AS,
    165 	CPU_CLASS_ARM3,
    166 	CPU_CLASS_ARM6,
    167 	CPU_CLASS_ARM7,
    168 	CPU_CLASS_ARM7TDMI,
    169 	CPU_CLASS_ARM8,
    170 	CPU_CLASS_ARM9TDMI,
    171 	CPU_CLASS_ARM9ES,
    172 	CPU_CLASS_ARM10E,
    173 	CPU_CLASS_ARM10EJ,
    174 	CPU_CLASS_SA1,
    175 	CPU_CLASS_XSCALE,
    176 	CPU_CLASS_ARM11J
    177 };
    178 
    179 static const char * const generic_steppings[16] = {
    180 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    181 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    182 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    183 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    184 };
    185 
    186 static const char * const sa110_steppings[16] = {
    187 	"rev 0",	"step J",	"step K",	"step S",
    188 	"step T",	"rev 5",	"rev 6",	"rev 7",
    189 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    190 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    191 };
    192 
    193 static const char * const sa1100_steppings[16] = {
    194 	"rev 0",	"step B",	"step C",	"rev 3",
    195 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    196 	"step D",	"step E",	"rev 10"	"step G",
    197 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    198 };
    199 
    200 static const char * const sa1110_steppings[16] = {
    201 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    202 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    203 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    204 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    205 };
    206 
    207 static const char * const ixp12x0_steppings[16] = {
    208 	"(IXP1200 step A)",		"(IXP1200 step B)",
    209 	"rev 2",			"(IXP1200 step C)",
    210 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    211 	"(IXP1240 step B)",		"(IXP1250 step B)",
    212 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    214 };
    215 
    216 static const char * const xscale_steppings[16] = {
    217 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    218 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    219 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    221 };
    222 
    223 static const char * const i80321_steppings[16] = {
    224 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    225 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    226 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    227 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    228 };
    229 
    230 static const char * const i80219_steppings[16] = {
    231 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    232 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    233 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    234 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    235 };
    236 
    237 /* Steppings for PXA2[15]0 */
    238 static const char * const pxa2x0_steppings[16] = {
    239 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    240 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    241 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    242 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    243 };
    244 
    245 /* Steppings for PXA255/26x.
    246  * rev 5: PXA26x B0, rev 6: PXA255 A0
    247  */
    248 static const char * const pxa255_steppings[16] = {
    249 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
    250 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
    251 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    252 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    253 };
    254 
    255 /* Stepping for PXA27x */
    256 static const char * const pxa27x_steppings[16] = {
    257 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    258 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
    259 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    260 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    261 };
    262 
    263 static const char * const ixp425_steppings[16] = {
    264 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    265 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    266 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    267 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    268 };
    269 
    270 struct cpuidtab {
    271 	u_int32_t	cpuid;
    272 	enum		cpu_class cpu_class;
    273 	const char	*cpu_name;
    274 	const char * const *cpu_steppings;
    275 };
    276 
    277 const struct cpuidtab cpuids[] = {
    278 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    279 	  generic_steppings },
    280 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    281 	  generic_steppings },
    282 
    283 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    284 	  generic_steppings },
    285 
    286 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    287 	  generic_steppings },
    288 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    289 	  generic_steppings },
    290 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    291 	  generic_steppings },
    292 
    293 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    294 	  generic_steppings },
    295 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    296 	  generic_steppings },
    297 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    298 	  generic_steppings },
    299 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    300 	  generic_steppings },
    301 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    302 	  generic_steppings },
    303 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    304 	  generic_steppings },
    305 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    306 	  generic_steppings },
    307 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    308 	  generic_steppings },
    309 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    310 	  generic_steppings },
    311 
    312 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    313 	  generic_steppings },
    314 
    315 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    316 	  generic_steppings },
    317 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    318 	  generic_steppings },
    319 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    320 	  generic_steppings },
    321 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    322 	  generic_steppings },
    323 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    324 	  generic_steppings },
    325 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    326 	  generic_steppings },
    327 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
    328 	  generic_steppings },
    329 
    330 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
    331 	  generic_steppings },
    332 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
    333 	  generic_steppings },
    334 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
    335 	  generic_steppings },
    336 
    337 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    338 	  sa110_steppings },
    339 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    340 	  sa1100_steppings },
    341 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    342 	  sa1110_steppings },
    343 
    344 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    345 	  ixp12x0_steppings },
    346 
    347 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    348 	  xscale_steppings },
    349 
    350 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    351 	  i80321_steppings },
    352 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    353 	  i80321_steppings },
    354 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    355 	  i80321_steppings },
    356 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    357 	  i80321_steppings },
    358 
    359 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
    360 	  i80219_steppings },
    361 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
    362 	  i80219_steppings },
    363 
    364 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
    365 	  pxa27x_steppings },
    366 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    367 	  pxa2x0_steppings },
    368 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    369 	  pxa2x0_steppings },
    370 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    371 	  pxa2x0_steppings },
    372 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    373 	  pxa2x0_steppings },
    374 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
    375 	  pxa255_steppings },
    376 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    377 	  pxa2x0_steppings },
    378 
    379 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    380 	  ixp425_steppings },
    381 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    382 	  ixp425_steppings },
    383 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    384 	  ixp425_steppings },
    385 
    386 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S",
    387 	  generic_steppings },
    388 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S R1",
    389 	  generic_steppings },
    390 
    391 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    392 };
    393 
    394 struct cpu_classtab {
    395 	const char	*class_name;
    396 	const char	*class_option;
    397 };
    398 
    399 const struct cpu_classtab cpu_classes[] = {
    400 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    401 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    402 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    403 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    404 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    405 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    406 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    407 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    408 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    409 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
    410 	{ "ARM10E",	"CPU_ARM10" },		/* CPU_CLASS_ARM10E */
    411 	{ "ARM10EJ",	"CPU_ARM10" },		/* CPU_CLASS_ARM10EJ */
    412 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    413 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    414 	{ "ARM11J",	"CPU_ARM11" },		/* CPU_CLASS_ARM11J */
    415 };
    416 
    417 /*
    418  * Report the type of the specified arm processor. This uses the generic and
    419  * arm specific information in the CPU structure to identify the processor.
    420  * The remaining fields in the CPU structure are filled in appropriately.
    421  */
    422 
    423 static const char * const wtnames[] = {
    424 	"write-through",
    425 	"write-back",
    426 	"write-back",
    427 	"**unknown 3**",
    428 	"**unknown 4**",
    429 	"write-back-locking",		/* XXX XScale-specific? */
    430 	"write-back-locking-A",
    431 	"write-back-locking-B",
    432 	"**unknown 8**",
    433 	"**unknown 9**",
    434 	"**unknown 10**",
    435 	"**unknown 11**",
    436 	"**unknown 12**",
    437 	"**unknown 13**",
    438 	"write-back-locking-C",
    439 	"**unknown 15**",
    440 };
    441 
    442 void
    443 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    444 {
    445 	u_int cpuid;
    446 	enum cpu_class cpu_class = CPU_CLASS_NONE;
    447 	int i;
    448 
    449 	cpuid = ci->ci_arm_cpuid;
    450 
    451 	if (cpuid == 0) {
    452 		aprint_error("Processor failed probe - no CPU ID\n");
    453 		return;
    454 	}
    455 
    456 	for (i = 0; cpuids[i].cpuid != 0; i++)
    457 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    458 			cpu_class = cpuids[i].cpu_class;
    459 			sprintf(cpu_model, "%s %s (%s core)",
    460 			    cpuids[i].cpu_name,
    461 			    cpuids[i].cpu_steppings[cpuid &
    462 						    CPU_ID_REVISION_MASK],
    463 			    cpu_classes[cpu_class].class_name);
    464 			break;
    465 		}
    466 
    467 	if (cpuids[i].cpuid == 0)
    468 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    469 
    470 	aprint_naive(": %s\n", cpu_model);
    471 	aprint_normal(": %s\n", cpu_model);
    472 
    473 	aprint_normal("%s:", dv->dv_xname);
    474 
    475 	switch (cpu_class) {
    476 	case CPU_CLASS_ARM6:
    477 	case CPU_CLASS_ARM7:
    478 	case CPU_CLASS_ARM7TDMI:
    479 	case CPU_CLASS_ARM8:
    480 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    481 			aprint_normal(" IDC disabled");
    482 		else
    483 			aprint_normal(" IDC enabled");
    484 		break;
    485 	case CPU_CLASS_ARM9TDMI:
    486 	case CPU_CLASS_ARM10E:
    487 	case CPU_CLASS_ARM10EJ:
    488 	case CPU_CLASS_SA1:
    489 	case CPU_CLASS_XSCALE:
    490 	case CPU_CLASS_ARM11J:
    491 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    492 			aprint_normal(" DC disabled");
    493 		else
    494 			aprint_normal(" DC enabled");
    495 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    496 			aprint_normal(" IC disabled");
    497 		else
    498 			aprint_normal(" IC enabled");
    499 		break;
    500 	default:
    501 		break;
    502 	}
    503 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    504 		aprint_normal(" WB disabled");
    505 	else
    506 		aprint_normal(" WB enabled");
    507 
    508 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    509 		aprint_normal(" LABT");
    510 	else
    511 		aprint_normal(" EABT");
    512 
    513 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    514 		aprint_normal(" branch prediction enabled");
    515 
    516 	aprint_normal("\n");
    517 
    518 	/* Print cache info. */
    519 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    520 		goto skip_pcache;
    521 
    522 	if (arm_pcache_unified) {
    523 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    524 		    dv->dv_xname, arm_pdcache_size / 1024,
    525 		    arm_pdcache_line_size, arm_pdcache_ways,
    526 		    wtnames[arm_pcache_type]);
    527 	} else {
    528 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    529 		    dv->dv_xname, arm_picache_size / 1024,
    530 		    arm_picache_line_size, arm_picache_ways);
    531 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    532 		    dv->dv_xname, arm_pdcache_size / 1024,
    533 		    arm_pdcache_line_size, arm_pdcache_ways,
    534 		    wtnames[arm_pcache_type]);
    535 	}
    536 
    537  skip_pcache:
    538 
    539 	switch (cpu_class) {
    540 #ifdef CPU_ARM2
    541 	case CPU_CLASS_ARM2:
    542 #endif
    543 #ifdef CPU_ARM250
    544 	case CPU_CLASS_ARM2AS:
    545 #endif
    546 #ifdef CPU_ARM3
    547 	case CPU_CLASS_ARM3:
    548 #endif
    549 #ifdef CPU_ARM6
    550 	case CPU_CLASS_ARM6:
    551 #endif
    552 #ifdef CPU_ARM7
    553 	case CPU_CLASS_ARM7:
    554 #endif
    555 #ifdef CPU_ARM7TDMI
    556 	case CPU_CLASS_ARM7TDMI:
    557 #endif
    558 #ifdef CPU_ARM8
    559 	case CPU_CLASS_ARM8:
    560 #endif
    561 #ifdef CPU_ARM9
    562 	case CPU_CLASS_ARM9TDMI:
    563 #endif
    564 #ifdef CPU_ARM10
    565 	case CPU_CLASS_ARM10E:
    566 	case CPU_CLASS_ARM10EJ:
    567 #endif
    568 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    569     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    570 	case CPU_CLASS_SA1:
    571 #endif
    572 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    573     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
    574 	case CPU_CLASS_XSCALE:
    575 #endif
    576 #ifdef CPU_ARM11
    577 	case CPU_CLASS_ARM11J:
    578 #endif
    579 		break;
    580 	default:
    581 		if (cpu_classes[cpu_class].class_option != NULL)
    582 			aprint_error("%s: %s does not fully support this CPU."
    583 			       "\n", dv->dv_xname, ostype);
    584 		else {
    585 			aprint_error("%s: This kernel does not fully support "
    586 			       "this CPU.\n", dv->dv_xname);
    587 			aprint_normal("%s: Recompile with \"options %s\" to "
    588 			       "correct this.\n", dv->dv_xname,
    589 			       cpu_classes[cpu_class].class_option);
    590 		}
    591 		break;
    592 	}
    593 
    594 }
    595 #ifdef MULTIPROCESSOR
    596 int
    597 cpu_alloc_idlepcb(struct cpu_info *ci)
    598 {
    599 	vaddr_t uaddr;
    600 	struct pcb *pcb;
    601 	struct trapframe *tf;
    602 
    603 	/*
    604 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
    605 	 * new CPU.
    606 	 */
    607 	uaddr = uvm_km_alloc(kernel_map, USPACE, 0, UVM_KMF_WIRED);
    608 	if (!uaddr)
    609 		return ENOMEM;
    610 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
    611 
    612 	/*
    613 	 * This code is largely derived from cpu_fork(), with which it
    614 	 * should perhaps be shared.
    615 	 */
    616 
    617 	/* Copy the pcb */
    618 	*pcb = proc0.p_addr->u_pcb;
    619 
    620 	/* Set up the undefined stack for the process. */
    621 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
    622 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
    623 
    624 #ifdef STACKCHECKS
    625 	/* Fill the undefined stack with a known pattern */
    626 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
    627 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
    628 	/* Fill the kernel stack with a known pattern */
    629 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
    630 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
    631 #endif	/* STACKCHECKS */
    632 
    633 	pcb->pcb_tf = tf =
    634 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
    635 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
    636 	return 0;
    637 }
    638 #endif /* MULTIPROCESSOR */
    639 
    640 /* End of cpu.c */
    641