Home | History | Annotate | Line # | Download | only in arm32
cpu.c revision 1.62.14.2.4.1
      1 /*	$NetBSD: cpu.c,v 1.62.14.2.4.1 2007/11/10 02:56:25 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Mark Brinicombe.
      5  * Copyright (c) 1995 Brini.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Brini.
     19  * 4. The name of the company nor the name of the author may be used to
     20  *    endorse or promote products derived from this software without specific
     21  *    prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * RiscBSD kernel project
     36  *
     37  * cpu.c
     38  *
     39  * Probing and configuration for the master CPU
     40  *
     41  * Created      : 10/10/95
     42  */
     43 
     44 #include "opt_armfpe.h"
     45 #include "opt_multiprocessor.h"
     46 
     47 #include <sys/param.h>
     48 
     49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.62.14.2.4.1 2007/11/10 02:56:25 matt Exp $");
     50 
     51 #include <sys/systm.h>
     52 #include <sys/malloc.h>
     53 #include <sys/device.h>
     54 #include <sys/proc.h>
     55 #include <sys/conf.h>
     56 #include <uvm/uvm_extern.h>
     57 #include <machine/cpu.h>
     58 
     59 #include <arm/cpuconf.h>
     60 #include <arm/undefined.h>
     61 
     62 #ifdef ARMFPE
     63 #include <machine/bootconfig.h> /* For boot args */
     64 #include <arm/fpe-arm/armfpe.h>
     65 #endif
     66 
     67 char cpu_model[256];
     68 
     69 /* Prototypes */
     70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
     71 
     72 /*
     73  * Identify the master (boot) CPU
     74  */
     75 
     76 void
     77 cpu_attach(struct device *dv)
     78 {
     79 	int usearmfpe;
     80 
     81 	usearmfpe = 1;	/* when compiled in, its enabled by default */
     82 
     83 	curcpu()->ci_dev = dv;
     84 
     85 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
     86 	    NULL, dv->dv_xname, "arm700swibug");
     87 
     88 	/* Get the CPU ID from coprocessor 15 */
     89 
     90 	curcpu()->ci_arm_cpuid = cpu_id();
     91 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
     92 	curcpu()->ci_arm_cpurev =
     93 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
     94 
     95 	identify_arm_cpu(dv, curcpu());
     96 
     97 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
     98 	    curcpu()->ci_arm_cpurev < 3) {
     99 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
    100 		       dv->dv_xname);
    101 	}
    102 
    103 #ifdef CPU_ARM8
    104 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
    105 		int clock = arm8_clock_config(0, 0);
    106 		char *fclk;
    107 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
    108 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
    109 		aprint_normal("%s", (clock & 2) ? " sync" : "");
    110 		switch ((clock >> 2) & 3) {
    111 		case 0:
    112 			fclk = "bus clock";
    113 			break;
    114 		case 1:
    115 			fclk = "ref clock";
    116 			break;
    117 		case 3:
    118 			fclk = "pll";
    119 			break;
    120 		default:
    121 			fclk = "illegal";
    122 			break;
    123 		}
    124 		aprint_normal(" fclk source=%s\n", fclk);
    125  	}
    126 #endif
    127 
    128 #ifdef ARMFPE
    129 	/*
    130 	 * Ok now we test for an FPA
    131 	 * At this point no floating point emulator has been installed.
    132 	 * This means any FP instruction will cause undefined exception.
    133 	 * We install a temporay coproc 1 handler which will modify
    134 	 * undefined_test if it is called.
    135 	 * We then try to read the FP status register. If undefined_test
    136 	 * has been decremented then the instruction was not handled by
    137 	 * an FPA so we know the FPA is missing. If undefined_test is
    138 	 * still 1 then we know the instruction was handled by an FPA.
    139 	 * We then remove our test handler and look at the
    140 	 * FP status register for identification.
    141 	 */
    142 
    143 	/*
    144 	 * Ok if ARMFPE is defined and the boot options request the
    145 	 * ARM FPE then it will be installed as the FPE.
    146 	 * This is just while I work on integrating the new FPE.
    147 	 * It means the new FPE gets installed if compiled int (ARMFPE
    148 	 * defined) and also gives me a on/off option when I boot in
    149 	 * case the new FPE is causing panics.
    150 	 */
    151 
    152 
    153 	if (boot_args)
    154 		get_bootconf_option(boot_args, "armfpe",
    155 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
    156 	if (usearmfpe)
    157 		initialise_arm_fpe();
    158 #endif
    159 }
    160 
    161 enum cpu_class {
    162 	CPU_CLASS_NONE,
    163 	CPU_CLASS_ARM2,
    164 	CPU_CLASS_ARM2AS,
    165 	CPU_CLASS_ARM3,
    166 	CPU_CLASS_ARM6,
    167 	CPU_CLASS_ARM7,
    168 	CPU_CLASS_ARM7TDMI,
    169 	CPU_CLASS_ARM8,
    170 	CPU_CLASS_ARM9TDMI,
    171 	CPU_CLASS_ARM9ES,
    172 	CPU_CLASS_ARM9EJS,
    173 	CPU_CLASS_ARM10E,
    174 	CPU_CLASS_ARM10EJ,
    175 	CPU_CLASS_SA1,
    176 	CPU_CLASS_XSCALE,
    177 	CPU_CLASS_ARM11J
    178 };
    179 
    180 static const char * const generic_steppings[16] = {
    181 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
    182 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    183 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    184 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    185 };
    186 
    187 static const char * const pN_steppings[16] = {
    188 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
    189 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
    190 };
    191 
    192 static const char * const sa110_steppings[16] = {
    193 	"rev 0",	"step J",	"step K",	"step S",
    194 	"step T",	"rev 5",	"rev 6",	"rev 7",
    195 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    196 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    197 };
    198 
    199 static const char * const sa1100_steppings[16] = {
    200 	"rev 0",	"step B",	"step C",	"rev 3",
    201 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    202 	"step D",	"step E",	"rev 10"	"step G",
    203 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    204 };
    205 
    206 static const char * const sa1110_steppings[16] = {
    207 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    208 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
    209 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
    210 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    211 };
    212 
    213 static const char * const ixp12x0_steppings[16] = {
    214 	"(IXP1200 step A)",		"(IXP1200 step B)",
    215 	"rev 2",			"(IXP1200 step C)",
    216 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
    217 	"(IXP1240 step B)",		"(IXP1250 step B)",
    218 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    219 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    220 };
    221 
    222 static const char * const xscale_steppings[16] = {
    223 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
    224 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
    225 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    226 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    227 };
    228 
    229 static const char * const i80321_steppings[16] = {
    230 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
    231 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    232 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    233 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    234 };
    235 
    236 static const char * const i80219_steppings[16] = {
    237 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
    238 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    239 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    240 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    241 };
    242 
    243 /* Steppings for PXA2[15]0 */
    244 static const char * const pxa2x0_steppings[16] = {
    245 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    246 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
    247 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    248 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    249 };
    250 
    251 /* Steppings for PXA255/26x.
    252  * rev 5: PXA26x B0, rev 6: PXA255 A0
    253  */
    254 static const char * const pxa255_steppings[16] = {
    255 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
    256 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
    257 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    258 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    259 };
    260 
    261 /* Stepping for PXA27x */
    262 static const char * const pxa27x_steppings[16] = {
    263 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
    264 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
    265 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    266 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    267 };
    268 
    269 static const char * const ixp425_steppings[16] = {
    270 	"step 0",	"rev 1",	"rev 2",	"rev 3",
    271 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
    272 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
    273 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
    274 };
    275 
    276 struct cpuidtab {
    277 	u_int32_t	cpuid;
    278 	enum		cpu_class cpu_class;
    279 	const char	*cpu_name;
    280 	const char * const *cpu_steppings;
    281 };
    282 
    283 const struct cpuidtab cpuids[] = {
    284 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
    285 	  generic_steppings },
    286 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
    287 	  generic_steppings },
    288 
    289 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
    290 	  generic_steppings },
    291 
    292 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
    293 	  generic_steppings },
    294 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
    295 	  generic_steppings },
    296 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
    297 	  generic_steppings },
    298 
    299 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
    300 	  generic_steppings },
    301 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
    302 	  generic_steppings },
    303 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
    304 	  generic_steppings },
    305 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
    306 	  generic_steppings },
    307 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
    308 	  generic_steppings },
    309 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
    310 	  generic_steppings },
    311 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
    312 	  generic_steppings },
    313 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
    314 	  generic_steppings },
    315 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
    316 	  generic_steppings },
    317 
    318 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
    319 	  generic_steppings },
    320 
    321 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
    322 	  generic_steppings },
    323 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
    324 	  generic_steppings },
    325 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
    326 	  generic_steppings },
    327 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
    328 	  generic_steppings },
    329 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
    330 	  generic_steppings },
    331 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    332 	  generic_steppings },
    333 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
    334 	  generic_steppings },
    335 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
    336 	  generic_steppings },
    337 
    338 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
    339 	  generic_steppings },
    340 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
    341 	  generic_steppings },
    342 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
    343 	  generic_steppings },
    344 
    345 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
    346 	  sa110_steppings },
    347 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
    348 	  sa1100_steppings },
    349 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
    350 	  sa1110_steppings },
    351 
    352 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
    353 	  ixp12x0_steppings },
    354 
    355 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
    356 	  xscale_steppings },
    357 
    358 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    359 	  i80321_steppings },
    360 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    361 	  i80321_steppings },
    362 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
    363 	  i80321_steppings },
    364 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
    365 	  i80321_steppings },
    366 
    367 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
    368 	  i80219_steppings },
    369 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
    370 	  i80219_steppings },
    371 
    372 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
    373 	  pxa27x_steppings },
    374 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
    375 	  pxa2x0_steppings },
    376 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
    377 	  pxa2x0_steppings },
    378 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
    379 	  pxa2x0_steppings },
    380 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
    381 	  pxa2x0_steppings },
    382 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
    383 	  pxa255_steppings },
    384 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
    385 	  pxa2x0_steppings },
    386 
    387 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
    388 	  ixp425_steppings },
    389 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
    390 	  ixp425_steppings },
    391 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
    392 	  ixp425_steppings },
    393 
    394 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
    395 	  pN_steppings },
    396 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
    397 	  pN_steppings },
    398 
    399 	{ 0, CPU_CLASS_NONE, NULL, NULL }
    400 };
    401 
    402 struct cpu_classtab {
    403 	const char	*class_name;
    404 	const char	*class_option;
    405 };
    406 
    407 const struct cpu_classtab cpu_classes[] = {
    408 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
    409 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
    410 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
    411 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
    412 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
    413 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
    414 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
    415 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
    416 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
    417 	{ "ARM9E-S",	"CPU_ARM9E" },		/* CPU_CLASS_ARM9ES */
    418 	{ "ARM9EJ-S",	"CPU_ARM9E" },		/* CPU_CLASS_ARM9EJS */
    419 	{ "ARM10E",	"CPU_ARM10" },		/* CPU_CLASS_ARM10E */
    420 	{ "ARM10EJ",	"CPU_ARM10" },		/* CPU_CLASS_ARM10EJ */
    421 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
    422 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
    423 	{ "ARM11J",	"CPU_ARM11" },		/* CPU_CLASS_ARM11J */
    424 };
    425 
    426 /*
    427  * Report the type of the specified arm processor. This uses the generic and
    428  * arm specific information in the CPU structure to identify the processor.
    429  * The remaining fields in the CPU structure are filled in appropriately.
    430  */
    431 
    432 static const char * const wtnames[] = {
    433 	"write-through",
    434 	"write-back",
    435 	"write-back",
    436 	"**unknown 3**",
    437 	"**unknown 4**",
    438 	"write-back-locking",		/* XXX XScale-specific? */
    439 	"write-back-locking-A",
    440 	"write-back-locking-B",
    441 	"**unknown 8**",
    442 	"**unknown 9**",
    443 	"**unknown 10**",
    444 	"**unknown 11**",
    445 	"**unknown 12**",
    446 	"**unknown 13**",
    447 	"write-back-locking-C",
    448 	"**unknown 15**",
    449 };
    450 
    451 void
    452 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
    453 {
    454 	u_int cpuid;
    455 	enum cpu_class cpu_class = CPU_CLASS_NONE;
    456 	int i;
    457 	const char *steppingstr;
    458 
    459 	cpuid = ci->ci_arm_cpuid;
    460 
    461 	if (cpuid == 0) {
    462 		aprint_error("Processor failed probe - no CPU ID\n");
    463 		return;
    464 	}
    465 
    466 	for (i = 0; cpuids[i].cpuid != 0; i++)
    467 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
    468 			cpu_class = cpuids[i].cpu_class;
    469 			steppingstr = cpuids[i].cpu_steppings[cpuid &
    470 			    CPU_ID_REVISION_MASK],
    471 			sprintf(cpu_model, "%s%s%s (%s core)",
    472 			    cpuids[i].cpu_name,
    473 			    steppingstr[0] == '*' ? "" : " ",
    474 			    &steppingstr[steppingstr[0] == '*'],
    475 			    cpu_classes[cpu_class].class_name);
    476 			break;
    477 		}
    478 
    479 	if (cpuids[i].cpuid == 0)
    480 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
    481 
    482 	aprint_naive(": %s\n", cpu_model);
    483 	aprint_normal(": %s\n", cpu_model);
    484 
    485 	aprint_normal("%s:", dv->dv_xname);
    486 
    487 	switch (cpu_class) {
    488 	case CPU_CLASS_ARM6:
    489 	case CPU_CLASS_ARM7:
    490 	case CPU_CLASS_ARM7TDMI:
    491 	case CPU_CLASS_ARM8:
    492 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
    493 			aprint_normal(" IDC disabled");
    494 		else
    495 			aprint_normal(" IDC enabled");
    496 		break;
    497 	case CPU_CLASS_ARM9TDMI:
    498 	case CPU_CLASS_ARM9ES:
    499 	case CPU_CLASS_ARM9EJS:
    500 	case CPU_CLASS_ARM10E:
    501 	case CPU_CLASS_ARM10EJ:
    502 	case CPU_CLASS_SA1:
    503 	case CPU_CLASS_XSCALE:
    504 	case CPU_CLASS_ARM11J:
    505 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
    506 			aprint_normal(" DC disabled");
    507 		else
    508 			aprint_normal(" DC enabled");
    509 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
    510 			aprint_normal(" IC disabled");
    511 		else
    512 			aprint_normal(" IC enabled");
    513 		break;
    514 	default:
    515 		break;
    516 	}
    517 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
    518 		aprint_normal(" WB disabled");
    519 	else
    520 		aprint_normal(" WB enabled");
    521 
    522 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
    523 		aprint_normal(" LABT");
    524 	else
    525 		aprint_normal(" EABT");
    526 
    527 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
    528 		aprint_normal(" branch prediction enabled");
    529 
    530 	aprint_normal("\n");
    531 
    532 	/* Print cache info. */
    533 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
    534 		goto skip_pcache;
    535 
    536 	if (arm_pcache_unified) {
    537 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
    538 		    dv->dv_xname, arm_pdcache_size / 1024,
    539 		    arm_pdcache_line_size, arm_pdcache_ways,
    540 		    wtnames[arm_pcache_type]);
    541 	} else {
    542 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
    543 		    dv->dv_xname, arm_picache_size / 1024,
    544 		    arm_picache_line_size, arm_picache_ways);
    545 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
    546 		    dv->dv_xname, arm_pdcache_size / 1024,
    547 		    arm_pdcache_line_size, arm_pdcache_ways,
    548 		    wtnames[arm_pcache_type]);
    549 	}
    550 
    551  skip_pcache:
    552 
    553 	switch (cpu_class) {
    554 #ifdef CPU_ARM2
    555 	case CPU_CLASS_ARM2:
    556 #endif
    557 #ifdef CPU_ARM250
    558 	case CPU_CLASS_ARM2AS:
    559 #endif
    560 #ifdef CPU_ARM3
    561 	case CPU_CLASS_ARM3:
    562 #endif
    563 #ifdef CPU_ARM6
    564 	case CPU_CLASS_ARM6:
    565 #endif
    566 #ifdef CPU_ARM7
    567 	case CPU_CLASS_ARM7:
    568 #endif
    569 #ifdef CPU_ARM7TDMI
    570 	case CPU_CLASS_ARM7TDMI:
    571 #endif
    572 #ifdef CPU_ARM8
    573 	case CPU_CLASS_ARM8:
    574 #endif
    575 #ifdef CPU_ARM9
    576 	case CPU_CLASS_ARM9TDMI:
    577 #endif
    578 #ifdef CPU_ARM9E
    579 	case CPU_CLASS_ARM9ES:
    580 	case CPU_CLASS_ARM9EJS:
    581 #endif
    582 #ifdef CPU_ARM10
    583 	case CPU_CLASS_ARM10E:
    584 	case CPU_CLASS_ARM10EJ:
    585 #endif
    586 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
    587     defined(CPU_SA1110) || defined(CPU_IXP12X0)
    588 	case CPU_CLASS_SA1:
    589 #endif
    590 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
    591     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
    592 	case CPU_CLASS_XSCALE:
    593 #endif
    594 #ifdef CPU_ARM11
    595 	case CPU_CLASS_ARM11J:
    596 #endif
    597 #ifdef CPU_ARM1136
    598 	case CPU_CLASS_ARM11J:
    599 #endif
    600 		break;
    601 	default:
    602 		if (cpu_classes[cpu_class].class_option == NULL)
    603 			aprint_error("%s: %s does not fully support this CPU."
    604 			       "\n", dv->dv_xname, ostype);
    605 		else {
    606 			aprint_error("%s: This kernel does not fully support "
    607 			       "this CPU.\n", dv->dv_xname);
    608 			aprint_normal("%s: Recompile with \"options %s\" to "
    609 			       "correct this.\n", dv->dv_xname,
    610 			       cpu_classes[cpu_class].class_option);
    611 		}
    612 		break;
    613 	}
    614 
    615 }
    616 #ifdef MULTIPROCESSOR
    617 int
    618 cpu_alloc_idlepcb(struct cpu_info *ci)
    619 {
    620 	vaddr_t uaddr;
    621 	struct pcb *pcb;
    622 	struct trapframe *tf;
    623 
    624 	/*
    625 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
    626 	 * new CPU.
    627 	 */
    628 	uaddr = uvm_km_alloc(kernel_map, USPACE, 0, UVM_KMF_WIRED);
    629 	if (!uaddr)
    630 		return ENOMEM;
    631 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
    632 
    633 	/*
    634 	 * This code is largely derived from cpu_fork(), with which it
    635 	 * should perhaps be shared.
    636 	 */
    637 
    638 	/* Copy the pcb */
    639 	*pcb = proc0.p_addr->u_pcb;
    640 
    641 	/* Set up the undefined stack for the process. */
    642 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
    643 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
    644 
    645 #ifdef STACKCHECKS
    646 	/* Fill the undefined stack with a known pattern */
    647 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
    648 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
    649 	/* Fill the kernel stack with a known pattern */
    650 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
    651 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
    652 #endif	/* STACKCHECKS */
    653 
    654 	pcb->pcb_tf = tf =
    655 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
    656 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
    657 	return 0;
    658 }
    659 #endif /* MULTIPROCESSOR */
    660 
    661 /* End of cpu.c */
    662