cpu.c revision 1.67 1 /* $NetBSD: cpu.c,v 1.67 2008/03/15 10:19:40 rearnsha Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.67 2008/03/15 10:19:40 rearnsha Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70
71 char cpu_model[256];
72
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75
76 /*
77 * Identify the master (boot) CPU
78 */
79
80 void
81 cpu_attach(struct device *dv)
82 {
83 int usearmfpe;
84
85 usearmfpe = 1; /* when compiled in, its enabled by default */
86
87 curcpu()->ci_dev = dv;
88
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 NULL, dv->dv_xname, "arm700swibug");
91
92 /* Get the CPU ID from coprocessor 15 */
93
94 curcpu()->ci_arm_cpuid = cpu_id();
95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 curcpu()->ci_arm_cpurev =
97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98
99 identify_arm_cpu(dv, curcpu());
100
101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 curcpu()->ci_arm_cpurev < 3) {
103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 dv->dv_xname);
105 }
106
107 #ifdef CPU_ARM8
108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 int clock = arm8_clock_config(0, 0);
110 char *fclk;
111 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 aprint_normal("%s", (clock & 2) ? " sync" : "");
114 switch ((clock >> 2) & 3) {
115 case 0:
116 fclk = "bus clock";
117 break;
118 case 1:
119 fclk = "ref clock";
120 break;
121 case 3:
122 fclk = "pll";
123 break;
124 default:
125 fclk = "illegal";
126 break;
127 }
128 aprint_normal(" fclk source=%s\n", fclk);
129 }
130 #endif
131
132 #ifdef ARMFPE
133 /*
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
145 */
146
147 /*
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
154 */
155
156
157 if (boot_args)
158 get_bootconf_option(boot_args, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 if (usearmfpe)
161 initialise_arm_fpe();
162 #endif
163
164 #ifdef FPU_VFP
165 vfp_attach();
166 #endif
167 }
168
169 enum cpu_class {
170 CPU_CLASS_NONE,
171 CPU_CLASS_ARM2,
172 CPU_CLASS_ARM2AS,
173 CPU_CLASS_ARM3,
174 CPU_CLASS_ARM6,
175 CPU_CLASS_ARM7,
176 CPU_CLASS_ARM7TDMI,
177 CPU_CLASS_ARM8,
178 CPU_CLASS_ARM9TDMI,
179 CPU_CLASS_ARM9ES,
180 CPU_CLASS_ARM9EJS,
181 CPU_CLASS_ARM10E,
182 CPU_CLASS_ARM10EJ,
183 CPU_CLASS_SA1,
184 CPU_CLASS_XSCALE,
185 CPU_CLASS_ARM11J
186 };
187
188 static const char * const generic_steppings[16] = {
189 "rev 0", "rev 1", "rev 2", "rev 3",
190 "rev 4", "rev 5", "rev 6", "rev 7",
191 "rev 8", "rev 9", "rev 10", "rev 11",
192 "rev 12", "rev 13", "rev 14", "rev 15",
193 };
194
195 static const char * const sa110_steppings[16] = {
196 "rev 0", "step J", "step K", "step S",
197 "step T", "rev 5", "rev 6", "rev 7",
198 "rev 8", "rev 9", "rev 10", "rev 11",
199 "rev 12", "rev 13", "rev 14", "rev 15",
200 };
201
202 static const char * const sa1100_steppings[16] = {
203 "rev 0", "step B", "step C", "rev 3",
204 "rev 4", "rev 5", "rev 6", "rev 7",
205 "step D", "step E", "rev 10" "step G",
206 "rev 12", "rev 13", "rev 14", "rev 15",
207 };
208
209 static const char * const sa1110_steppings[16] = {
210 "step A-0", "rev 1", "rev 2", "rev 3",
211 "step B-0", "step B-1", "step B-2", "step B-3",
212 "step B-4", "step B-5", "rev 10", "rev 11",
213 "rev 12", "rev 13", "rev 14", "rev 15",
214 };
215
216 static const char * const ixp12x0_steppings[16] = {
217 "(IXP1200 step A)", "(IXP1200 step B)",
218 "rev 2", "(IXP1200 step C)",
219 "(IXP1200 step D)", "(IXP1240/1250 step A)",
220 "(IXP1240 step B)", "(IXP1250 step B)",
221 "rev 8", "rev 9", "rev 10", "rev 11",
222 "rev 12", "rev 13", "rev 14", "rev 15",
223 };
224
225 static const char * const xscale_steppings[16] = {
226 "step A-0", "step A-1", "step B-0", "step C-0",
227 "step D-0", "rev 5", "rev 6", "rev 7",
228 "rev 8", "rev 9", "rev 10", "rev 11",
229 "rev 12", "rev 13", "rev 14", "rev 15",
230 };
231
232 static const char * const i80321_steppings[16] = {
233 "step A-0", "step B-0", "rev 2", "rev 3",
234 "rev 4", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 static const char * const i80219_steppings[16] = {
240 "step A-0", "rev 1", "rev 2", "rev 3",
241 "rev 4", "rev 5", "rev 6", "rev 7",
242 "rev 8", "rev 9", "rev 10", "rev 11",
243 "rev 12", "rev 13", "rev 14", "rev 15",
244 };
245
246 /* Steppings for PXA2[15]0 */
247 static const char * const pxa2x0_steppings[16] = {
248 "step A-0", "step A-1", "step B-0", "step B-1",
249 "step B-2", "step C-0", "rev 6", "rev 7",
250 "rev 8", "rev 9", "rev 10", "rev 11",
251 "rev 12", "rev 13", "rev 14", "rev 15",
252 };
253
254 /* Steppings for PXA255/26x.
255 * rev 5: PXA26x B0, rev 6: PXA255 A0
256 */
257 static const char * const pxa255_steppings[16] = {
258 "rev 0", "rev 1", "rev 2", "step A-0",
259 "rev 4", "step B-0", "step A-0", "rev 7",
260 "rev 8", "rev 9", "rev 10", "rev 11",
261 "rev 12", "rev 13", "rev 14", "rev 15",
262 };
263
264 /* Stepping for PXA27x */
265 static const char * const pxa27x_steppings[16] = {
266 "step A-0", "step A-1", "step B-0", "step B-1",
267 "step C-0", "rev 5", "rev 6", "rev 7",
268 "rev 8", "rev 9", "rev 10", "rev 11",
269 "rev 12", "rev 13", "rev 14", "rev 15",
270 };
271
272 static const char * const ixp425_steppings[16] = {
273 "step 0", "rev 1", "rev 2", "rev 3",
274 "rev 4", "rev 5", "rev 6", "rev 7",
275 "rev 8", "rev 9", "rev 10", "rev 11",
276 "rev 12", "rev 13", "rev 14", "rev 15",
277 };
278
279 struct cpuidtab {
280 u_int32_t cpuid;
281 enum cpu_class cpu_class;
282 const char *cpu_name;
283 const char * const *cpu_steppings;
284 };
285
286 const struct cpuidtab cpuids[] = {
287 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
288 generic_steppings },
289 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
290 generic_steppings },
291
292 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
293 generic_steppings },
294
295 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
296 generic_steppings },
297 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
298 generic_steppings },
299 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
300 generic_steppings },
301
302 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
303 generic_steppings },
304 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
305 generic_steppings },
306 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
307 generic_steppings },
308 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
309 generic_steppings },
310 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
311 generic_steppings },
312 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
313 generic_steppings },
314 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
315 generic_steppings },
316 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
317 generic_steppings },
318 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
319 generic_steppings },
320
321 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
322 generic_steppings },
323
324 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
325 generic_steppings },
326 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
327 generic_steppings },
328 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
329 generic_steppings },
330 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
331 generic_steppings },
332 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
333 generic_steppings },
334 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
335 generic_steppings },
336 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
337 generic_steppings },
338 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
339 generic_steppings },
340
341 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
342 generic_steppings },
343 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
344 generic_steppings },
345 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
346 generic_steppings },
347
348 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
349 sa110_steppings },
350 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
351 sa1100_steppings },
352 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
353 sa1110_steppings },
354
355 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
356 ixp12x0_steppings },
357
358 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
359 xscale_steppings },
360
361 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
362 i80321_steppings },
363 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
364 i80321_steppings },
365 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
366 i80321_steppings },
367 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
368 i80321_steppings },
369
370 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
371 i80219_steppings },
372 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
373 i80219_steppings },
374
375 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
376 pxa27x_steppings },
377 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
378 pxa2x0_steppings },
379 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
380 pxa2x0_steppings },
381 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
382 pxa2x0_steppings },
383 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
384 pxa2x0_steppings },
385 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
386 pxa255_steppings },
387 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
388 pxa2x0_steppings },
389
390 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
391 ixp425_steppings },
392 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
393 ixp425_steppings },
394 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
395 ixp425_steppings },
396
397 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S",
398 generic_steppings },
399 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S R1",
400 generic_steppings },
401
402 { 0, CPU_CLASS_NONE, NULL, NULL }
403 };
404
405 struct cpu_classtab {
406 const char *class_name;
407 const char *class_option;
408 };
409
410 const struct cpu_classtab cpu_classes[] = {
411 { "unknown", NULL }, /* CPU_CLASS_NONE */
412 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
413 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
414 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
415 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
416 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
417 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
418 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
419 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
420 { "ARM9E-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9ES */
421 { "ARM9EJ-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9EJS */
422 { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */
423 { "ARM10EJ", "CPU_ARM10" }, /* CPU_CLASS_ARM10EJ */
424 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
425 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
426 { "ARM11J", "CPU_ARM11" }, /* CPU_CLASS_ARM11J */
427 };
428
429 /*
430 * Report the type of the specified arm processor. This uses the generic and
431 * arm specific information in the CPU structure to identify the processor.
432 * The remaining fields in the CPU structure are filled in appropriately.
433 */
434
435 static const char * const wtnames[] = {
436 "write-through",
437 "write-back",
438 "write-back",
439 "**unknown 3**",
440 "**unknown 4**",
441 "write-back-locking", /* XXX XScale-specific? */
442 "write-back-locking-A",
443 "write-back-locking-B",
444 "**unknown 8**",
445 "**unknown 9**",
446 "**unknown 10**",
447 "**unknown 11**",
448 "**unknown 12**",
449 "**unknown 13**",
450 "write-back-locking-C",
451 "**unknown 15**",
452 };
453
454 void
455 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
456 {
457 u_int cpuid;
458 enum cpu_class cpu_class = CPU_CLASS_NONE;
459 int i;
460
461 cpuid = ci->ci_arm_cpuid;
462
463 if (cpuid == 0) {
464 aprint_error("Processor failed probe - no CPU ID\n");
465 return;
466 }
467
468 for (i = 0; cpuids[i].cpuid != 0; i++)
469 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
470 cpu_class = cpuids[i].cpu_class;
471 sprintf(cpu_model, "%s %s (%s core)",
472 cpuids[i].cpu_name,
473 cpuids[i].cpu_steppings[cpuid &
474 CPU_ID_REVISION_MASK],
475 cpu_classes[cpu_class].class_name);
476 break;
477 }
478
479 if (cpuids[i].cpuid == 0)
480 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
481
482 aprint_naive(": %s\n", cpu_model);
483 aprint_normal(": %s\n", cpu_model);
484
485 aprint_normal("%s:", dv->dv_xname);
486
487 switch (cpu_class) {
488 case CPU_CLASS_ARM6:
489 case CPU_CLASS_ARM7:
490 case CPU_CLASS_ARM7TDMI:
491 case CPU_CLASS_ARM8:
492 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
493 aprint_normal(" IDC disabled");
494 else
495 aprint_normal(" IDC enabled");
496 break;
497 case CPU_CLASS_ARM9TDMI:
498 case CPU_CLASS_ARM9ES:
499 case CPU_CLASS_ARM9EJS:
500 case CPU_CLASS_ARM10E:
501 case CPU_CLASS_ARM10EJ:
502 case CPU_CLASS_SA1:
503 case CPU_CLASS_XSCALE:
504 case CPU_CLASS_ARM11J:
505 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
506 aprint_normal(" DC disabled");
507 else
508 aprint_normal(" DC enabled");
509 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
510 aprint_normal(" IC disabled");
511 else
512 aprint_normal(" IC enabled");
513 break;
514 default:
515 break;
516 }
517 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
518 aprint_normal(" WB disabled");
519 else
520 aprint_normal(" WB enabled");
521
522 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
523 aprint_normal(" LABT");
524 else
525 aprint_normal(" EABT");
526
527 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
528 aprint_normal(" branch prediction enabled");
529
530 aprint_normal("\n");
531
532 /* Print cache info. */
533 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
534 goto skip_pcache;
535
536 if (arm_pcache_unified) {
537 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
538 dv->dv_xname, arm_pdcache_size / 1024,
539 arm_pdcache_line_size, arm_pdcache_ways,
540 wtnames[arm_pcache_type]);
541 } else {
542 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
543 dv->dv_xname, arm_picache_size / 1024,
544 arm_picache_line_size, arm_picache_ways);
545 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
546 dv->dv_xname, arm_pdcache_size / 1024,
547 arm_pdcache_line_size, arm_pdcache_ways,
548 wtnames[arm_pcache_type]);
549 }
550
551 skip_pcache:
552
553 switch (cpu_class) {
554 #ifdef CPU_ARM2
555 case CPU_CLASS_ARM2:
556 #endif
557 #ifdef CPU_ARM250
558 case CPU_CLASS_ARM2AS:
559 #endif
560 #ifdef CPU_ARM3
561 case CPU_CLASS_ARM3:
562 #endif
563 #ifdef CPU_ARM6
564 case CPU_CLASS_ARM6:
565 #endif
566 #ifdef CPU_ARM7
567 case CPU_CLASS_ARM7:
568 #endif
569 #ifdef CPU_ARM7TDMI
570 case CPU_CLASS_ARM7TDMI:
571 #endif
572 #ifdef CPU_ARM8
573 case CPU_CLASS_ARM8:
574 #endif
575 #ifdef CPU_ARM9
576 case CPU_CLASS_ARM9TDMI:
577 #endif
578 #ifdef CPU_ARM9E
579 case CPU_CLASS_ARM9ES:
580 case CPU_CLASS_ARM9EJS:
581 #endif
582 #ifdef CPU_ARM10
583 case CPU_CLASS_ARM10E:
584 case CPU_CLASS_ARM10EJ:
585 #endif
586 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
587 defined(CPU_SA1110) || defined(CPU_IXP12X0)
588 case CPU_CLASS_SA1:
589 #endif
590 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
591 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
592 case CPU_CLASS_XSCALE:
593 #endif
594 #ifdef CPU_ARM11
595 case CPU_CLASS_ARM11J:
596 #endif
597 break;
598 default:
599 if (cpu_classes[cpu_class].class_option == NULL)
600 aprint_error("%s: %s does not fully support this CPU."
601 "\n", dv->dv_xname, ostype);
602 else {
603 aprint_error("%s: This kernel does not fully support "
604 "this CPU.\n", dv->dv_xname);
605 aprint_normal("%s: Recompile with \"options %s\" to "
606 "correct this.\n", dv->dv_xname,
607 cpu_classes[cpu_class].class_option);
608 }
609 break;
610 }
611
612 }
613
614 /* End of cpu.c */
615