cpu.c revision 1.70 1 /* $NetBSD: cpu.c,v 1.70 2008/10/24 13:23:45 matt Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.70 2008/10/24 13:23:45 matt Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70
71 char cpu_model[256];
72
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75
76 /*
77 * Identify the master (boot) CPU
78 */
79
80 void
81 cpu_attach(struct device *dv)
82 {
83 int usearmfpe;
84
85 usearmfpe = 1; /* when compiled in, its enabled by default */
86
87 curcpu()->ci_dev = dv;
88
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 NULL, dv->dv_xname, "arm700swibug");
91
92 /* Get the CPU ID from coprocessor 15 */
93
94 curcpu()->ci_arm_cpuid = cpu_id();
95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 curcpu()->ci_arm_cpurev =
97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98
99 identify_arm_cpu(dv, curcpu());
100
101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 curcpu()->ci_arm_cpurev < 3) {
103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 dv->dv_xname);
105 }
106
107 #ifdef CPU_ARM8
108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 int clock = arm8_clock_config(0, 0);
110 char *fclk;
111 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 aprint_normal("%s", (clock & 2) ? " sync" : "");
114 switch ((clock >> 2) & 3) {
115 case 0:
116 fclk = "bus clock";
117 break;
118 case 1:
119 fclk = "ref clock";
120 break;
121 case 3:
122 fclk = "pll";
123 break;
124 default:
125 fclk = "illegal";
126 break;
127 }
128 aprint_normal(" fclk source=%s\n", fclk);
129 }
130 #endif
131
132 #ifdef ARMFPE
133 /*
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
145 */
146
147 /*
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
154 */
155
156
157 if (boot_args)
158 get_bootconf_option(boot_args, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 if (usearmfpe)
161 initialise_arm_fpe();
162 #endif
163
164 #ifdef FPU_VFP
165 vfp_attach();
166 #endif
167 }
168
169 enum cpu_class {
170 CPU_CLASS_NONE,
171 CPU_CLASS_ARM2,
172 CPU_CLASS_ARM2AS,
173 CPU_CLASS_ARM3,
174 CPU_CLASS_ARM6,
175 CPU_CLASS_ARM7,
176 CPU_CLASS_ARM7TDMI,
177 CPU_CLASS_ARM8,
178 CPU_CLASS_ARM9TDMI,
179 CPU_CLASS_ARM9ES,
180 CPU_CLASS_ARM9EJS,
181 CPU_CLASS_ARM10E,
182 CPU_CLASS_ARM10EJ,
183 CPU_CLASS_SA1,
184 CPU_CLASS_XSCALE,
185 CPU_CLASS_ARM11J,
186 CPU_CLASS_ARMV4,
187 };
188
189 static const char * const generic_steppings[16] = {
190 "rev 0", "rev 1", "rev 2", "rev 3",
191 "rev 4", "rev 5", "rev 6", "rev 7",
192 "rev 8", "rev 9", "rev 10", "rev 11",
193 "rev 12", "rev 13", "rev 14", "rev 15",
194 };
195
196 static const char * const pN_steppings[16] = {
197 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
198 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
199 };
200
201 static const char * const sa110_steppings[16] = {
202 "rev 0", "step J", "step K", "step S",
203 "step T", "rev 5", "rev 6", "rev 7",
204 "rev 8", "rev 9", "rev 10", "rev 11",
205 "rev 12", "rev 13", "rev 14", "rev 15",
206 };
207
208 static const char * const sa1100_steppings[16] = {
209 "rev 0", "step B", "step C", "rev 3",
210 "rev 4", "rev 5", "rev 6", "rev 7",
211 "step D", "step E", "rev 10" "step G",
212 "rev 12", "rev 13", "rev 14", "rev 15",
213 };
214
215 static const char * const sa1110_steppings[16] = {
216 "step A-0", "rev 1", "rev 2", "rev 3",
217 "step B-0", "step B-1", "step B-2", "step B-3",
218 "step B-4", "step B-5", "rev 10", "rev 11",
219 "rev 12", "rev 13", "rev 14", "rev 15",
220 };
221
222 static const char * const ixp12x0_steppings[16] = {
223 "(IXP1200 step A)", "(IXP1200 step B)",
224 "rev 2", "(IXP1200 step C)",
225 "(IXP1200 step D)", "(IXP1240/1250 step A)",
226 "(IXP1240 step B)", "(IXP1250 step B)",
227 "rev 8", "rev 9", "rev 10", "rev 11",
228 "rev 12", "rev 13", "rev 14", "rev 15",
229 };
230
231 static const char * const xscale_steppings[16] = {
232 "step A-0", "step A-1", "step B-0", "step C-0",
233 "step D-0", "rev 5", "rev 6", "rev 7",
234 "rev 8", "rev 9", "rev 10", "rev 11",
235 "rev 12", "rev 13", "rev 14", "rev 15",
236 };
237
238 static const char * const i80321_steppings[16] = {
239 "step A-0", "step B-0", "rev 2", "rev 3",
240 "rev 4", "rev 5", "rev 6", "rev 7",
241 "rev 8", "rev 9", "rev 10", "rev 11",
242 "rev 12", "rev 13", "rev 14", "rev 15",
243 };
244
245 static const char * const i80219_steppings[16] = {
246 "step A-0", "rev 1", "rev 2", "rev 3",
247 "rev 4", "rev 5", "rev 6", "rev 7",
248 "rev 8", "rev 9", "rev 10", "rev 11",
249 "rev 12", "rev 13", "rev 14", "rev 15",
250 };
251
252 /* Steppings for PXA2[15]0 */
253 static const char * const pxa2x0_steppings[16] = {
254 "step A-0", "step A-1", "step B-0", "step B-1",
255 "step B-2", "step C-0", "rev 6", "rev 7",
256 "rev 8", "rev 9", "rev 10", "rev 11",
257 "rev 12", "rev 13", "rev 14", "rev 15",
258 };
259
260 /* Steppings for PXA255/26x.
261 * rev 5: PXA26x B0, rev 6: PXA255 A0
262 */
263 static const char * const pxa255_steppings[16] = {
264 "rev 0", "rev 1", "rev 2", "step A-0",
265 "rev 4", "step B-0", "step A-0", "rev 7",
266 "rev 8", "rev 9", "rev 10", "rev 11",
267 "rev 12", "rev 13", "rev 14", "rev 15",
268 };
269
270 /* Stepping for PXA27x */
271 static const char * const pxa27x_steppings[16] = {
272 "step A-0", "step A-1", "step B-0", "step B-1",
273 "step C-0", "rev 5", "rev 6", "rev 7",
274 "rev 8", "rev 9", "rev 10", "rev 11",
275 "rev 12", "rev 13", "rev 14", "rev 15",
276 };
277
278 static const char * const ixp425_steppings[16] = {
279 "step 0", "rev 1", "rev 2", "rev 3",
280 "rev 4", "rev 5", "rev 6", "rev 7",
281 "rev 8", "rev 9", "rev 10", "rev 11",
282 "rev 12", "rev 13", "rev 14", "rev 15",
283 };
284
285 struct cpuidtab {
286 u_int32_t cpuid;
287 enum cpu_class cpu_class;
288 const char *cpu_name;
289 const char * const *cpu_steppings;
290 };
291
292 const struct cpuidtab cpuids[] = {
293 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
294 generic_steppings },
295 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
296 generic_steppings },
297
298 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
299 generic_steppings },
300
301 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
302 generic_steppings },
303 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
304 generic_steppings },
305 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
306 generic_steppings },
307
308 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
309 generic_steppings },
310 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
311 generic_steppings },
312 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
313 generic_steppings },
314 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
315 generic_steppings },
316 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
317 generic_steppings },
318 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
319 generic_steppings },
320 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
321 generic_steppings },
322 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
323 generic_steppings },
324 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
325 generic_steppings },
326
327 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
328 generic_steppings },
329
330 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
331 generic_steppings },
332 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
333 generic_steppings },
334 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
335 generic_steppings },
336 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
337 generic_steppings },
338 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
339 generic_steppings },
340 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
341 generic_steppings },
342 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
343 generic_steppings },
344 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
345 generic_steppings },
346
347 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
348 generic_steppings },
349 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
350 generic_steppings },
351 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
352 generic_steppings },
353
354 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
355 sa110_steppings },
356 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
357 sa1100_steppings },
358 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
359 sa1110_steppings },
360
361 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
362 ixp12x0_steppings },
363
364 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
365 xscale_steppings },
366
367 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
368 i80321_steppings },
369 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
370 i80321_steppings },
371 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
372 i80321_steppings },
373 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
374 i80321_steppings },
375
376 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
377 i80219_steppings },
378 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
379 i80219_steppings },
380
381 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
382 pxa27x_steppings },
383 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
384 pxa2x0_steppings },
385 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
386 pxa2x0_steppings },
387 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
388 pxa2x0_steppings },
389 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
390 pxa2x0_steppings },
391 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
392 pxa255_steppings },
393 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
394 pxa2x0_steppings },
395
396 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
397 ixp425_steppings },
398 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
399 ixp425_steppings },
400 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
401 ixp425_steppings },
402
403 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
404 pN_steppings },
405 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
406 pN_steppings },
407 { CPU_ID_ARM1176JS, CPU_CLASS_ARM11J, "ARM1176J-S r0",
408 pN_steppings },
409 { CPU_ID_CORTEXA8R1, CPU_CLASS_ARM11J, "Cortex-A8 r1",
410 pN_steppings },
411 { CPU_ID_CORTEXA8R2, CPU_CLASS_ARM11J, "Cortex-A8 r2",
412 pN_steppings },
413
414 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
415 generic_steppings },
416
417 { 0, CPU_CLASS_NONE, NULL, NULL }
418 };
419
420 struct cpu_classtab {
421 const char *class_name;
422 const char *class_option;
423 };
424
425 const struct cpu_classtab cpu_classes[] = {
426 { "unknown", NULL }, /* CPU_CLASS_NONE */
427 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
428 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
429 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
430 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
431 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
432 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
433 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
434 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
435 { "ARM9E-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9ES */
436 { "ARM9EJ-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9EJS */
437 { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */
438 { "ARM10EJ", "CPU_ARM10" }, /* CPU_CLASS_ARM10EJ */
439 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
440 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
441 { "ARM11J", "CPU_ARM11" }, /* CPU_CLASS_ARM11J */
442 };
443
444 /*
445 * Report the type of the specified arm processor. This uses the generic and
446 * arm specific information in the CPU structure to identify the processor.
447 * The remaining fields in the CPU structure are filled in appropriately.
448 */
449
450 static const char * const wtnames[] = {
451 "write-through",
452 "write-back",
453 "write-back",
454 "**unknown 3**",
455 "**unknown 4**",
456 "write-back-locking", /* XXX XScale-specific? */
457 "write-back-locking-A",
458 "write-back-locking-B",
459 "**unknown 8**",
460 "**unknown 9**",
461 "**unknown 10**",
462 "**unknown 11**",
463 "**unknown 12**",
464 "**unknown 13**",
465 "write-back-locking-C",
466 "**unknown 15**",
467 };
468
469 void
470 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
471 {
472 u_int cpuid;
473 enum cpu_class cpu_class = CPU_CLASS_NONE;
474 int i;
475 const char *steppingstr;
476
477 cpuid = ci->ci_arm_cpuid;
478
479 if (cpuid == 0) {
480 aprint_error("Processor failed probe - no CPU ID\n");
481 return;
482 }
483
484 for (i = 0; cpuids[i].cpuid != 0; i++)
485 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
486 cpu_class = cpuids[i].cpu_class;
487 steppingstr = cpuids[i].cpu_steppings[cpuid &
488 CPU_ID_REVISION_MASK],
489 sprintf(cpu_model, "%s%s%s (%s core)",
490 cpuids[i].cpu_name,
491 steppingstr[0] == '*' ? "" : " ",
492 &steppingstr[steppingstr[0] == '*'],
493 cpu_classes[cpu_class].class_name);
494 break;
495 }
496
497 if (cpuids[i].cpuid == 0)
498 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
499
500 aprint_naive(": %s\n", cpu_model);
501 aprint_normal(": %s\n", cpu_model);
502
503 aprint_normal("%s:", dv->dv_xname);
504
505 switch (cpu_class) {
506 case CPU_CLASS_ARM6:
507 case CPU_CLASS_ARM7:
508 case CPU_CLASS_ARM7TDMI:
509 case CPU_CLASS_ARM8:
510 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
511 aprint_normal(" IDC disabled");
512 else
513 aprint_normal(" IDC enabled");
514 break;
515 case CPU_CLASS_ARM9TDMI:
516 case CPU_CLASS_ARM9ES:
517 case CPU_CLASS_ARM9EJS:
518 case CPU_CLASS_ARM10E:
519 case CPU_CLASS_ARM10EJ:
520 case CPU_CLASS_SA1:
521 case CPU_CLASS_XSCALE:
522 case CPU_CLASS_ARM11J:
523 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
524 aprint_normal(" DC disabled");
525 else
526 aprint_normal(" DC enabled");
527 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
528 aprint_normal(" IC disabled");
529 else
530 aprint_normal(" IC enabled");
531 break;
532 default:
533 break;
534 }
535 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
536 aprint_normal(" WB disabled");
537 else
538 aprint_normal(" WB enabled");
539
540 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
541 aprint_normal(" LABT");
542 else
543 aprint_normal(" EABT");
544
545 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
546 aprint_normal(" branch prediction enabled");
547
548 aprint_normal("\n");
549
550 /* Print cache info. */
551 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
552 goto skip_pcache;
553
554 if (arm_pcache_unified) {
555 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
556 dv->dv_xname, arm_pdcache_size / 1024,
557 arm_pdcache_line_size, arm_pdcache_ways,
558 wtnames[arm_pcache_type]);
559 } else {
560 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
561 dv->dv_xname, arm_picache_size / 1024,
562 arm_picache_line_size, arm_picache_ways);
563 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
564 dv->dv_xname, arm_pdcache_size / 1024,
565 arm_pdcache_line_size, arm_pdcache_ways,
566 wtnames[arm_pcache_type]);
567 }
568
569 skip_pcache:
570
571 switch (cpu_class) {
572 #ifdef CPU_ARM2
573 case CPU_CLASS_ARM2:
574 #endif
575 #ifdef CPU_ARM250
576 case CPU_CLASS_ARM2AS:
577 #endif
578 #ifdef CPU_ARM3
579 case CPU_CLASS_ARM3:
580 #endif
581 #ifdef CPU_ARM6
582 case CPU_CLASS_ARM6:
583 #endif
584 #ifdef CPU_ARM7
585 case CPU_CLASS_ARM7:
586 #endif
587 #ifdef CPU_ARM7TDMI
588 case CPU_CLASS_ARM7TDMI:
589 #endif
590 #ifdef CPU_ARM8
591 case CPU_CLASS_ARM8:
592 #endif
593 #ifdef CPU_ARM9
594 case CPU_CLASS_ARM9TDMI:
595 #endif
596 #ifdef CPU_ARM9E
597 case CPU_CLASS_ARM9ES:
598 case CPU_CLASS_ARM9EJS:
599 #endif
600 #ifdef CPU_ARM10
601 case CPU_CLASS_ARM10E:
602 case CPU_CLASS_ARM10EJ:
603 #endif
604 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
605 defined(CPU_SA1110) || defined(CPU_IXP12X0)
606 case CPU_CLASS_SA1:
607 #endif
608 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
609 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
610 case CPU_CLASS_XSCALE:
611 #endif
612 #if defined(CPU_ARM11)
613 case CPU_CLASS_ARM11J:
614 #endif
615 break;
616 default:
617 if (cpu_classes[cpu_class].class_option == NULL)
618 aprint_error("%s: %s does not fully support this CPU."
619 "\n", dv->dv_xname, ostype);
620 else {
621 aprint_error("%s: This kernel does not fully support "
622 "this CPU.\n", dv->dv_xname);
623 aprint_normal("%s: Recompile with \"options %s\" to "
624 "correct this.\n", dv->dv_xname,
625 cpu_classes[cpu_class].class_option);
626 }
627 break;
628 }
629
630 }
631
632 /* End of cpu.c */
633