cpu.c revision 1.72.2.1 1 /* $NetBSD: cpu.c,v 1.72.2.1 2010/08/17 06:44:01 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.72.2.1 2010/08/17 06:44:01 uebayasi Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70
71 char cpu_model[256];
72
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75
76 /*
77 * Identify the master (boot) CPU
78 */
79
80 void
81 cpu_attach(struct device *dv)
82 {
83 int usearmfpe;
84
85 usearmfpe = 1; /* when compiled in, its enabled by default */
86
87 curcpu()->ci_dev = dv;
88
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 NULL, dv->dv_xname, "arm700swibug");
91
92 /* Get the CPU ID from coprocessor 15 */
93
94 curcpu()->ci_arm_cpuid = cpu_id();
95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 curcpu()->ci_arm_cpurev =
97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98
99 identify_arm_cpu(dv, curcpu());
100
101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 curcpu()->ci_arm_cpurev < 3) {
103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 dv->dv_xname);
105 }
106
107 #ifdef CPU_ARM8
108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 int clock = arm8_clock_config(0, 0);
110 char *fclk;
111 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 aprint_normal("%s", (clock & 2) ? " sync" : "");
114 switch ((clock >> 2) & 3) {
115 case 0:
116 fclk = "bus clock";
117 break;
118 case 1:
119 fclk = "ref clock";
120 break;
121 case 3:
122 fclk = "pll";
123 break;
124 default:
125 fclk = "illegal";
126 break;
127 }
128 aprint_normal(" fclk source=%s\n", fclk);
129 }
130 #endif
131
132 #ifdef ARMFPE
133 /*
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
145 */
146
147 /*
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
154 */
155
156
157 if (boot_args)
158 get_bootconf_option(boot_args, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 if (usearmfpe)
161 initialise_arm_fpe();
162 #endif
163
164 #ifdef FPU_VFP
165 vfp_attach();
166 #endif
167 }
168
169 enum cpu_class {
170 CPU_CLASS_NONE,
171 CPU_CLASS_ARM2,
172 CPU_CLASS_ARM2AS,
173 CPU_CLASS_ARM3,
174 CPU_CLASS_ARM6,
175 CPU_CLASS_ARM7,
176 CPU_CLASS_ARM7TDMI,
177 CPU_CLASS_ARM8,
178 CPU_CLASS_ARM9TDMI,
179 CPU_CLASS_ARM9ES,
180 CPU_CLASS_ARM9EJS,
181 CPU_CLASS_ARM10E,
182 CPU_CLASS_ARM10EJ,
183 CPU_CLASS_SA1,
184 CPU_CLASS_XSCALE,
185 CPU_CLASS_ARM11J,
186 CPU_CLASS_ARMV4,
187 CPU_CLASS_CORTEX,
188 };
189
190 static const char * const generic_steppings[16] = {
191 "rev 0", "rev 1", "rev 2", "rev 3",
192 "rev 4", "rev 5", "rev 6", "rev 7",
193 "rev 8", "rev 9", "rev 10", "rev 11",
194 "rev 12", "rev 13", "rev 14", "rev 15",
195 };
196
197 static const char * const pN_steppings[16] = {
198 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
199 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
200 };
201
202 static const char * const sa110_steppings[16] = {
203 "rev 0", "step J", "step K", "step S",
204 "step T", "rev 5", "rev 6", "rev 7",
205 "rev 8", "rev 9", "rev 10", "rev 11",
206 "rev 12", "rev 13", "rev 14", "rev 15",
207 };
208
209 static const char * const sa1100_steppings[16] = {
210 "rev 0", "step B", "step C", "rev 3",
211 "rev 4", "rev 5", "rev 6", "rev 7",
212 "step D", "step E", "rev 10" "step G",
213 "rev 12", "rev 13", "rev 14", "rev 15",
214 };
215
216 static const char * const sa1110_steppings[16] = {
217 "step A-0", "rev 1", "rev 2", "rev 3",
218 "step B-0", "step B-1", "step B-2", "step B-3",
219 "step B-4", "step B-5", "rev 10", "rev 11",
220 "rev 12", "rev 13", "rev 14", "rev 15",
221 };
222
223 static const char * const ixp12x0_steppings[16] = {
224 "(IXP1200 step A)", "(IXP1200 step B)",
225 "rev 2", "(IXP1200 step C)",
226 "(IXP1200 step D)", "(IXP1240/1250 step A)",
227 "(IXP1240 step B)", "(IXP1250 step B)",
228 "rev 8", "rev 9", "rev 10", "rev 11",
229 "rev 12", "rev 13", "rev 14", "rev 15",
230 };
231
232 static const char * const xscale_steppings[16] = {
233 "step A-0", "step A-1", "step B-0", "step C-0",
234 "step D-0", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 static const char * const i80321_steppings[16] = {
240 "step A-0", "step B-0", "rev 2", "rev 3",
241 "rev 4", "rev 5", "rev 6", "rev 7",
242 "rev 8", "rev 9", "rev 10", "rev 11",
243 "rev 12", "rev 13", "rev 14", "rev 15",
244 };
245
246 static const char * const i80219_steppings[16] = {
247 "step A-0", "rev 1", "rev 2", "rev 3",
248 "rev 4", "rev 5", "rev 6", "rev 7",
249 "rev 8", "rev 9", "rev 10", "rev 11",
250 "rev 12", "rev 13", "rev 14", "rev 15",
251 };
252
253 /* Steppings for PXA2[15]0 */
254 static const char * const pxa2x0_steppings[16] = {
255 "step A-0", "step A-1", "step B-0", "step B-1",
256 "step B-2", "step C-0", "rev 6", "rev 7",
257 "rev 8", "rev 9", "rev 10", "rev 11",
258 "rev 12", "rev 13", "rev 14", "rev 15",
259 };
260
261 /* Steppings for PXA255/26x.
262 * rev 5: PXA26x B0, rev 6: PXA255 A0
263 */
264 static const char * const pxa255_steppings[16] = {
265 "rev 0", "rev 1", "rev 2", "step A-0",
266 "rev 4", "step B-0", "step A-0", "rev 7",
267 "rev 8", "rev 9", "rev 10", "rev 11",
268 "rev 12", "rev 13", "rev 14", "rev 15",
269 };
270
271 /* Stepping for PXA27x */
272 static const char * const pxa27x_steppings[16] = {
273 "step A-0", "step A-1", "step B-0", "step B-1",
274 "step C-0", "rev 5", "rev 6", "rev 7",
275 "rev 8", "rev 9", "rev 10", "rev 11",
276 "rev 12", "rev 13", "rev 14", "rev 15",
277 };
278
279 static const char * const ixp425_steppings[16] = {
280 "step 0", "rev 1", "rev 2", "rev 3",
281 "rev 4", "rev 5", "rev 6", "rev 7",
282 "rev 8", "rev 9", "rev 10", "rev 11",
283 "rev 12", "rev 13", "rev 14", "rev 15",
284 };
285
286 struct cpuidtab {
287 u_int32_t cpuid;
288 enum cpu_class cpu_class;
289 const char *cpu_classname;
290 const char * const *cpu_steppings;
291 };
292
293 const struct cpuidtab cpuids[] = {
294 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
295 generic_steppings },
296 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
297 generic_steppings },
298
299 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
300 generic_steppings },
301
302 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
303 generic_steppings },
304 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
305 generic_steppings },
306 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
307 generic_steppings },
308
309 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
310 generic_steppings },
311 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
312 generic_steppings },
313 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
314 generic_steppings },
315 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
316 generic_steppings },
317 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
318 generic_steppings },
319 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
320 generic_steppings },
321 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
322 generic_steppings },
323 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
324 generic_steppings },
325 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
326 generic_steppings },
327
328 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
329 generic_steppings },
330
331 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
332 generic_steppings },
333 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
334 generic_steppings },
335 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
336 generic_steppings },
337 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
338 generic_steppings },
339 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
340 generic_steppings },
341 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
342 generic_steppings },
343 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
344 generic_steppings },
345 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
346 generic_steppings },
347
348 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
349 generic_steppings },
350 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
351 generic_steppings },
352 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
353 generic_steppings },
354
355 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
356 sa110_steppings },
357 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
358 sa1100_steppings },
359 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
360 sa1110_steppings },
361
362 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
363 ixp12x0_steppings },
364
365 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
366 xscale_steppings },
367
368 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
369 i80321_steppings },
370 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
371 i80321_steppings },
372 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
373 i80321_steppings },
374 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
375 i80321_steppings },
376
377 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
378 i80219_steppings },
379 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
380 i80219_steppings },
381
382 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
383 pxa27x_steppings },
384 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
385 pxa2x0_steppings },
386 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
387 pxa2x0_steppings },
388 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
389 pxa2x0_steppings },
390 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
391 pxa2x0_steppings },
392 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
393 pxa255_steppings },
394 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
395 pxa2x0_steppings },
396
397 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
398 ixp425_steppings },
399 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
400 ixp425_steppings },
401 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
402 ixp425_steppings },
403
404 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
405 pN_steppings },
406 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
407 pN_steppings },
408 { CPU_ID_ARM1176JS, CPU_CLASS_ARM11J, "ARM1176J-S r0",
409 pN_steppings },
410
411 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
412 pN_steppings },
413 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
414 pN_steppings },
415 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
416 pN_steppings },
417 { CPU_ID_CORTEXA9R1, CPU_CLASS_CORTEX, "Cortex-A9 r1",
418 pN_steppings },
419 { CPU_ID_CORTEXA8R3, CPU_CLASS_ARM11J, "Cortex-A8 r3",
420 pN_steppings },
421
422 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
423 generic_steppings },
424
425 { 0, CPU_CLASS_NONE, NULL, NULL }
426 };
427
428 struct cpu_classtab {
429 const char *class_name;
430 const char *class_option;
431 };
432
433 const struct cpu_classtab cpu_classes[] = {
434 [CPU_CLASS_NONE] = { "unknown", NULL },
435 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
436 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
437 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
438 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
439 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
440 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
441 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
442 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
443 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
444 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
445 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
446 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
447 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
448 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
449 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
450 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
451 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
452 };
453
454 /*
455 * Report the type of the specified arm processor. This uses the generic and
456 * arm specific information in the CPU structure to identify the processor.
457 * The remaining fields in the CPU structure are filled in appropriately.
458 */
459
460 static const char * const wtnames[] = {
461 "write-through",
462 "write-back",
463 "write-back",
464 "**unknown 3**",
465 "**unknown 4**",
466 "write-back-locking", /* XXX XScale-specific? */
467 "write-back-locking-A",
468 "write-back-locking-B",
469 "**unknown 8**",
470 "**unknown 9**",
471 "**unknown 10**",
472 "**unknown 11**",
473 "**unknown 12**",
474 "**unknown 13**",
475 "write-back-locking-C",
476 "**unknown 15**",
477 };
478
479 void
480 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
481 {
482 u_int cpuid;
483 enum cpu_class cpu_class = CPU_CLASS_NONE;
484 int i;
485 const char *steppingstr;
486
487 cpuid = ci->ci_arm_cpuid;
488
489 if (cpuid == 0) {
490 aprint_error("Processor failed probe - no CPU ID\n");
491 return;
492 }
493
494 for (i = 0; cpuids[i].cpuid != 0; i++)
495 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
496 cpu_class = cpuids[i].cpu_class;
497 steppingstr = cpuids[i].cpu_steppings[cpuid &
498 CPU_ID_REVISION_MASK],
499 sprintf(cpu_model, "%s%s%s (%s core)",
500 cpuids[i].cpu_classname,
501 steppingstr[0] == '*' ? "" : " ",
502 &steppingstr[steppingstr[0] == '*'],
503 cpu_classes[cpu_class].class_name);
504 break;
505 }
506
507 if (cpuids[i].cpuid == 0)
508 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
509
510 aprint_naive(": %s\n", cpu_model);
511 aprint_normal(": %s\n", cpu_model);
512
513 aprint_normal("%s:", dv->dv_xname);
514
515 switch (cpu_class) {
516 case CPU_CLASS_ARM6:
517 case CPU_CLASS_ARM7:
518 case CPU_CLASS_ARM7TDMI:
519 case CPU_CLASS_ARM8:
520 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
521 aprint_normal(" IDC disabled");
522 else
523 aprint_normal(" IDC enabled");
524 break;
525 case CPU_CLASS_ARM9TDMI:
526 case CPU_CLASS_ARM9ES:
527 case CPU_CLASS_ARM9EJS:
528 case CPU_CLASS_ARM10E:
529 case CPU_CLASS_ARM10EJ:
530 case CPU_CLASS_SA1:
531 case CPU_CLASS_XSCALE:
532 case CPU_CLASS_ARM11J:
533 case CPU_CLASS_ARMV4:
534 case CPU_CLASS_CORTEX:
535 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
536 aprint_normal(" DC disabled");
537 else
538 aprint_normal(" DC enabled");
539 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
540 aprint_normal(" IC disabled");
541 else
542 aprint_normal(" IC enabled");
543 break;
544 default:
545 break;
546 }
547 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
548 aprint_normal(" WB disabled");
549 else
550 aprint_normal(" WB enabled");
551
552 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
553 aprint_normal(" LABT");
554 else
555 aprint_normal(" EABT");
556
557 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
558 aprint_normal(" branch prediction enabled");
559
560 aprint_normal("\n");
561
562 /* Print cache info. */
563 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
564 goto skip_pcache;
565
566 if (arm_pcache_unified) {
567 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
568 dv->dv_xname, arm_pdcache_size / 1024,
569 arm_pdcache_line_size, arm_pdcache_ways,
570 wtnames[arm_pcache_type]);
571 } else {
572 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
573 dv->dv_xname, arm_picache_size / 1024,
574 arm_picache_line_size, arm_picache_ways);
575 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
576 dv->dv_xname, arm_pdcache_size / 1024,
577 arm_pdcache_line_size, arm_pdcache_ways,
578 wtnames[arm_pcache_type]);
579 }
580
581 skip_pcache:
582
583 switch (cpu_class) {
584 #ifdef CPU_ARM2
585 case CPU_CLASS_ARM2:
586 #endif
587 #ifdef CPU_ARM250
588 case CPU_CLASS_ARM2AS:
589 #endif
590 #ifdef CPU_ARM3
591 case CPU_CLASS_ARM3:
592 #endif
593 #ifdef CPU_ARM6
594 case CPU_CLASS_ARM6:
595 #endif
596 #ifdef CPU_ARM7
597 case CPU_CLASS_ARM7:
598 #endif
599 #ifdef CPU_ARM7TDMI
600 case CPU_CLASS_ARM7TDMI:
601 #endif
602 #ifdef CPU_ARM8
603 case CPU_CLASS_ARM8:
604 #endif
605 #ifdef CPU_ARM9
606 case CPU_CLASS_ARM9TDMI:
607 #endif
608 #ifdef CPU_ARM9E
609 case CPU_CLASS_ARM9ES:
610 case CPU_CLASS_ARM9EJS:
611 #endif
612 #ifdef CPU_ARM10
613 case CPU_CLASS_ARM10E:
614 case CPU_CLASS_ARM10EJ:
615 #endif
616 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
617 defined(CPU_SA1110) || defined(CPU_IXP12X0)
618 case CPU_CLASS_SA1:
619 #endif
620 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
621 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
622 case CPU_CLASS_XSCALE:
623 #endif
624 #if defined(CPU_ARM11)
625 case CPU_CLASS_ARM11J:
626 #endif
627 #if defined(CPU_CORTEX)
628 case CPU_CLASS_CORTEX:
629 #endif
630 #if defined(CPU_FA526)
631 case CPU_CLASS_ARMV4:
632 #endif
633 break;
634 default:
635 if (cpu_classes[cpu_class].class_option == NULL)
636 aprint_error("%s: %s does not fully support this CPU."
637 "\n", dv->dv_xname, ostype);
638 else {
639 aprint_error("%s: This kernel does not fully support "
640 "this CPU.\n", dv->dv_xname);
641 aprint_normal("%s: Recompile with \"options %s\" to "
642 "correct this.\n", dv->dv_xname,
643 cpu_classes[cpu_class].class_option);
644 }
645 break;
646 }
647
648 }
649
650 /* End of cpu.c */
651