cpu.c revision 1.77 1 /* $NetBSD: cpu.c,v 1.77 2010/10/02 05:37:58 kiyohara Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.77 2010/10/02 05:37:58 kiyohara Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70
71 char cpu_model[256];
72
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75
76 /*
77 * Identify the master (boot) CPU
78 */
79
80 void
81 cpu_attach(struct device *dv)
82 {
83 int usearmfpe;
84
85 usearmfpe = 1; /* when compiled in, its enabled by default */
86
87 curcpu()->ci_dev = dv;
88
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 NULL, dv->dv_xname, "arm700swibug");
91
92 /* Get the CPU ID from coprocessor 15 */
93
94 curcpu()->ci_arm_cpuid = cpu_id();
95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 curcpu()->ci_arm_cpurev =
97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98
99 identify_arm_cpu(dv, curcpu());
100
101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 curcpu()->ci_arm_cpurev < 3) {
103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 dv->dv_xname);
105 }
106
107 #ifdef CPU_ARM8
108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 int clock = arm8_clock_config(0, 0);
110 char *fclk;
111 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 aprint_normal("%s", (clock & 2) ? " sync" : "");
114 switch ((clock >> 2) & 3) {
115 case 0:
116 fclk = "bus clock";
117 break;
118 case 1:
119 fclk = "ref clock";
120 break;
121 case 3:
122 fclk = "pll";
123 break;
124 default:
125 fclk = "illegal";
126 break;
127 }
128 aprint_normal(" fclk source=%s\n", fclk);
129 }
130 #endif
131
132 #ifdef ARMFPE
133 /*
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
145 */
146
147 /*
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
154 */
155
156
157 if (boot_args)
158 get_bootconf_option(boot_args, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 if (usearmfpe)
161 initialise_arm_fpe();
162 #endif
163
164 #ifdef FPU_VFP
165 vfp_attach();
166 #endif
167 }
168
169 enum cpu_class {
170 CPU_CLASS_NONE,
171 CPU_CLASS_ARM2,
172 CPU_CLASS_ARM2AS,
173 CPU_CLASS_ARM3,
174 CPU_CLASS_ARM6,
175 CPU_CLASS_ARM7,
176 CPU_CLASS_ARM7TDMI,
177 CPU_CLASS_ARM8,
178 CPU_CLASS_ARM9TDMI,
179 CPU_CLASS_ARM9ES,
180 CPU_CLASS_ARM9EJS,
181 CPU_CLASS_ARM10E,
182 CPU_CLASS_ARM10EJ,
183 CPU_CLASS_SA1,
184 CPU_CLASS_XSCALE,
185 CPU_CLASS_ARM11J,
186 CPU_CLASS_ARMV4,
187 CPU_CLASS_CORTEX,
188 };
189
190 static const char * const generic_steppings[16] = {
191 "rev 0", "rev 1", "rev 2", "rev 3",
192 "rev 4", "rev 5", "rev 6", "rev 7",
193 "rev 8", "rev 9", "rev 10", "rev 11",
194 "rev 12", "rev 13", "rev 14", "rev 15",
195 };
196
197 static const char * const pN_steppings[16] = {
198 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
199 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
200 };
201
202 static const char * const sa110_steppings[16] = {
203 "rev 0", "step J", "step K", "step S",
204 "step T", "rev 5", "rev 6", "rev 7",
205 "rev 8", "rev 9", "rev 10", "rev 11",
206 "rev 12", "rev 13", "rev 14", "rev 15",
207 };
208
209 static const char * const sa1100_steppings[16] = {
210 "rev 0", "step B", "step C", "rev 3",
211 "rev 4", "rev 5", "rev 6", "rev 7",
212 "step D", "step E", "rev 10" "step G",
213 "rev 12", "rev 13", "rev 14", "rev 15",
214 };
215
216 static const char * const sa1110_steppings[16] = {
217 "step A-0", "rev 1", "rev 2", "rev 3",
218 "step B-0", "step B-1", "step B-2", "step B-3",
219 "step B-4", "step B-5", "rev 10", "rev 11",
220 "rev 12", "rev 13", "rev 14", "rev 15",
221 };
222
223 static const char * const ixp12x0_steppings[16] = {
224 "(IXP1200 step A)", "(IXP1200 step B)",
225 "rev 2", "(IXP1200 step C)",
226 "(IXP1200 step D)", "(IXP1240/1250 step A)",
227 "(IXP1240 step B)", "(IXP1250 step B)",
228 "rev 8", "rev 9", "rev 10", "rev 11",
229 "rev 12", "rev 13", "rev 14", "rev 15",
230 };
231
232 static const char * const xscale_steppings[16] = {
233 "step A-0", "step A-1", "step B-0", "step C-0",
234 "step D-0", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 static const char * const i80321_steppings[16] = {
240 "step A-0", "step B-0", "rev 2", "rev 3",
241 "rev 4", "rev 5", "rev 6", "rev 7",
242 "rev 8", "rev 9", "rev 10", "rev 11",
243 "rev 12", "rev 13", "rev 14", "rev 15",
244 };
245
246 static const char * const i80219_steppings[16] = {
247 "step A-0", "rev 1", "rev 2", "rev 3",
248 "rev 4", "rev 5", "rev 6", "rev 7",
249 "rev 8", "rev 9", "rev 10", "rev 11",
250 "rev 12", "rev 13", "rev 14", "rev 15",
251 };
252
253 /* Steppings for PXA2[15]0 */
254 static const char * const pxa2x0_steppings[16] = {
255 "step A-0", "step A-1", "step B-0", "step B-1",
256 "step B-2", "step C-0", "rev 6", "rev 7",
257 "rev 8", "rev 9", "rev 10", "rev 11",
258 "rev 12", "rev 13", "rev 14", "rev 15",
259 };
260
261 /* Steppings for PXA255/26x.
262 * rev 5: PXA26x B0, rev 6: PXA255 A0
263 */
264 static const char * const pxa255_steppings[16] = {
265 "rev 0", "rev 1", "rev 2", "step A-0",
266 "rev 4", "step B-0", "step A-0", "rev 7",
267 "rev 8", "rev 9", "rev 10", "rev 11",
268 "rev 12", "rev 13", "rev 14", "rev 15",
269 };
270
271 /* Stepping for PXA27x */
272 static const char * const pxa27x_steppings[16] = {
273 "step A-0", "step A-1", "step B-0", "step B-1",
274 "step C-0", "rev 5", "rev 6", "rev 7",
275 "rev 8", "rev 9", "rev 10", "rev 11",
276 "rev 12", "rev 13", "rev 14", "rev 15",
277 };
278
279 static const char * const ixp425_steppings[16] = {
280 "step 0", "rev 1", "rev 2", "rev 3",
281 "rev 4", "rev 5", "rev 6", "rev 7",
282 "rev 8", "rev 9", "rev 10", "rev 11",
283 "rev 12", "rev 13", "rev 14", "rev 15",
284 };
285
286 struct cpuidtab {
287 u_int32_t cpuid;
288 enum cpu_class cpu_class;
289 const char *cpu_classname;
290 const char * const *cpu_steppings;
291 };
292
293 const struct cpuidtab cpuids[] = {
294 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
295 generic_steppings },
296 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
297 generic_steppings },
298
299 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
300 generic_steppings },
301
302 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
303 generic_steppings },
304 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
305 generic_steppings },
306 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
307 generic_steppings },
308
309 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
310 generic_steppings },
311 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
312 generic_steppings },
313 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
314 generic_steppings },
315 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
316 generic_steppings },
317 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
318 generic_steppings },
319 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
320 generic_steppings },
321 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
322 generic_steppings },
323 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
324 generic_steppings },
325 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
326 generic_steppings },
327
328 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
329 generic_steppings },
330
331 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
332 generic_steppings },
333 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
334 generic_steppings },
335 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
336 generic_steppings },
337 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
338 generic_steppings },
339 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
340 generic_steppings },
341 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
342 generic_steppings },
343 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
344 generic_steppings },
345 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
346 generic_steppings },
347 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
348 generic_steppings },
349 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
350 generic_steppings },
351
352 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
353 generic_steppings },
354 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
355 generic_steppings },
356 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
357 generic_steppings },
358
359 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
360 sa110_steppings },
361 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
362 sa1100_steppings },
363 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
364 sa1110_steppings },
365
366 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
367 ixp12x0_steppings },
368
369 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
370 xscale_steppings },
371
372 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
373 i80321_steppings },
374 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
375 i80321_steppings },
376 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
377 i80321_steppings },
378 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
379 i80321_steppings },
380
381 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
382 i80219_steppings },
383 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
384 i80219_steppings },
385
386 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
387 pxa27x_steppings },
388 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
389 pxa2x0_steppings },
390 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
391 pxa2x0_steppings },
392 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
393 pxa2x0_steppings },
394 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
395 pxa2x0_steppings },
396 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
397 pxa255_steppings },
398 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
399 pxa2x0_steppings },
400
401 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
402 ixp425_steppings },
403 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
404 ixp425_steppings },
405 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
406 ixp425_steppings },
407
408 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
409 pN_steppings },
410 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
411 pN_steppings },
412 { CPU_ID_ARM1176JS, CPU_CLASS_ARM11J, "ARM1176J-S r0",
413 pN_steppings },
414
415 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
416 pN_steppings },
417 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
418 pN_steppings },
419 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
420 pN_steppings },
421 { CPU_ID_CORTEXA9R1, CPU_CLASS_CORTEX, "Cortex-A9 r1",
422 pN_steppings },
423 { CPU_ID_CORTEXA8R3, CPU_CLASS_ARM11J, "Cortex-A8 r3",
424 pN_steppings },
425
426 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
427 generic_steppings },
428
429 { 0, CPU_CLASS_NONE, NULL, NULL }
430 };
431
432 struct cpu_classtab {
433 const char *class_name;
434 const char *class_option;
435 };
436
437 const struct cpu_classtab cpu_classes[] = {
438 [CPU_CLASS_NONE] = { "unknown", NULL },
439 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
440 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
441 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
442 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
443 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
444 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
445 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
446 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
447 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
448 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
449 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
450 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
451 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
452 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
453 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
454 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
455 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
456 };
457
458 /*
459 * Report the type of the specified arm processor. This uses the generic and
460 * arm specific information in the CPU structure to identify the processor.
461 * The remaining fields in the CPU structure are filled in appropriately.
462 */
463
464 static const char * const wtnames[] = {
465 "write-through",
466 "write-back",
467 "write-back",
468 "**unknown 3**",
469 "**unknown 4**",
470 "write-back-locking", /* XXX XScale-specific? */
471 "write-back-locking-A",
472 "write-back-locking-B",
473 "**unknown 8**",
474 "**unknown 9**",
475 "**unknown 10**",
476 "**unknown 11**",
477 "**unknown 12**",
478 "**unknown 13**",
479 "write-back-locking-C",
480 "**unknown 15**",
481 };
482
483 void
484 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
485 {
486 u_int cpuid;
487 enum cpu_class cpu_class = CPU_CLASS_NONE;
488 int i;
489 const char *steppingstr;
490
491 cpuid = ci->ci_arm_cpuid;
492
493 if (cpuid == 0) {
494 aprint_error("Processor failed probe - no CPU ID\n");
495 return;
496 }
497
498 for (i = 0; cpuids[i].cpuid != 0; i++)
499 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
500 cpu_class = cpuids[i].cpu_class;
501 steppingstr = cpuids[i].cpu_steppings[cpuid &
502 CPU_ID_REVISION_MASK],
503 sprintf(cpu_model, "%s%s%s (%s core)",
504 cpuids[i].cpu_classname,
505 steppingstr[0] == '*' ? "" : " ",
506 &steppingstr[steppingstr[0] == '*'],
507 cpu_classes[cpu_class].class_name);
508 break;
509 }
510
511 if (cpuids[i].cpuid == 0)
512 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
513
514 aprint_naive(": %s\n", cpu_model);
515 aprint_normal(": %s\n", cpu_model);
516
517 aprint_normal("%s:", dv->dv_xname);
518
519 switch (cpu_class) {
520 case CPU_CLASS_ARM6:
521 case CPU_CLASS_ARM7:
522 case CPU_CLASS_ARM7TDMI:
523 case CPU_CLASS_ARM8:
524 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
525 aprint_normal(" IDC disabled");
526 else
527 aprint_normal(" IDC enabled");
528 break;
529 case CPU_CLASS_ARM9TDMI:
530 case CPU_CLASS_ARM9ES:
531 case CPU_CLASS_ARM9EJS:
532 case CPU_CLASS_ARM10E:
533 case CPU_CLASS_ARM10EJ:
534 case CPU_CLASS_SA1:
535 case CPU_CLASS_XSCALE:
536 case CPU_CLASS_ARM11J:
537 case CPU_CLASS_ARMV4:
538 case CPU_CLASS_CORTEX:
539 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
540 aprint_normal(" DC disabled");
541 else
542 aprint_normal(" DC enabled");
543 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
544 aprint_normal(" IC disabled");
545 else
546 aprint_normal(" IC enabled");
547 break;
548 default:
549 break;
550 }
551 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
552 aprint_normal(" WB disabled");
553 else
554 aprint_normal(" WB enabled");
555
556 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
557 aprint_normal(" LABT");
558 else
559 aprint_normal(" EABT");
560
561 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
562 aprint_normal(" branch prediction enabled");
563
564 aprint_normal("\n");
565
566 /* Print cache info. */
567 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
568 goto skip_pcache;
569
570 if (arm_pcache_unified) {
571 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
572 dv->dv_xname, arm_pdcache_size / 1024,
573 arm_pdcache_line_size, arm_pdcache_ways,
574 wtnames[arm_pcache_type]);
575 } else {
576 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
577 dv->dv_xname, arm_picache_size / 1024,
578 arm_picache_line_size, arm_picache_ways);
579 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
580 dv->dv_xname, arm_pdcache_size / 1024,
581 arm_pdcache_line_size, arm_pdcache_ways,
582 wtnames[arm_pcache_type]);
583 }
584
585 skip_pcache:
586
587 switch (cpu_class) {
588 #ifdef CPU_ARM2
589 case CPU_CLASS_ARM2:
590 #endif
591 #ifdef CPU_ARM250
592 case CPU_CLASS_ARM2AS:
593 #endif
594 #ifdef CPU_ARM3
595 case CPU_CLASS_ARM3:
596 #endif
597 #ifdef CPU_ARM6
598 case CPU_CLASS_ARM6:
599 #endif
600 #ifdef CPU_ARM7
601 case CPU_CLASS_ARM7:
602 #endif
603 #ifdef CPU_ARM7TDMI
604 case CPU_CLASS_ARM7TDMI:
605 #endif
606 #ifdef CPU_ARM8
607 case CPU_CLASS_ARM8:
608 #endif
609 #ifdef CPU_ARM9
610 case CPU_CLASS_ARM9TDMI:
611 #endif
612 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
613 case CPU_CLASS_ARM9ES:
614 case CPU_CLASS_ARM9EJS:
615 #endif
616 #ifdef CPU_ARM10
617 case CPU_CLASS_ARM10E:
618 case CPU_CLASS_ARM10EJ:
619 #endif
620 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
621 defined(CPU_SA1110) || defined(CPU_IXP12X0)
622 case CPU_CLASS_SA1:
623 #endif
624 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
625 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
626 case CPU_CLASS_XSCALE:
627 #endif
628 #if defined(CPU_ARM11)
629 case CPU_CLASS_ARM11J:
630 #endif
631 #if defined(CPU_CORTEX)
632 case CPU_CLASS_CORTEX:
633 #endif
634 #if defined(CPU_FA526)
635 case CPU_CLASS_ARMV4:
636 #endif
637 break;
638 default:
639 if (cpu_classes[cpu_class].class_option == NULL)
640 aprint_error("%s: %s does not fully support this CPU."
641 "\n", dv->dv_xname, ostype);
642 else {
643 aprint_error("%s: This kernel does not fully support "
644 "this CPU.\n", dv->dv_xname);
645 aprint_normal("%s: Recompile with \"options %s\" to "
646 "correct this.\n", dv->dv_xname,
647 cpu_classes[cpu_class].class_option);
648 }
649 break;
650 }
651
652 }
653
654 /* End of cpu.c */
655