cpu.c revision 1.78 1 /* $NetBSD: cpu.c,v 1.78 2011/03/10 08:07:08 bsh Exp $ */
2
3 /*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created : 10/10/95
42 */
43
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.78 2011/03/10 08:07:08 bsh Exp $");
50
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70
71 char cpu_model[256];
72
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75
76 /*
77 * Identify the master (boot) CPU
78 */
79
80 void
81 cpu_attach(struct device *dv)
82 {
83 int usearmfpe;
84
85 usearmfpe = 1; /* when compiled in, its enabled by default */
86
87 curcpu()->ci_dev = dv;
88
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 NULL, dv->dv_xname, "arm700swibug");
91
92 /* Get the CPU ID from coprocessor 15 */
93
94 curcpu()->ci_arm_cpuid = cpu_id();
95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 curcpu()->ci_arm_cpurev =
97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98
99 identify_arm_cpu(dv, curcpu());
100
101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 curcpu()->ci_arm_cpurev < 3) {
103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 dv->dv_xname);
105 }
106
107 #ifdef CPU_ARM8
108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 int clock = arm8_clock_config(0, 0);
110 char *fclk;
111 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 aprint_normal("%s", (clock & 2) ? " sync" : "");
114 switch ((clock >> 2) & 3) {
115 case 0:
116 fclk = "bus clock";
117 break;
118 case 1:
119 fclk = "ref clock";
120 break;
121 case 3:
122 fclk = "pll";
123 break;
124 default:
125 fclk = "illegal";
126 break;
127 }
128 aprint_normal(" fclk source=%s\n", fclk);
129 }
130 #endif
131
132 #ifdef ARMFPE
133 /*
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
145 */
146
147 /*
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
154 */
155
156
157 if (boot_args)
158 get_bootconf_option(boot_args, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 if (usearmfpe)
161 initialise_arm_fpe();
162 #endif
163
164 #ifdef FPU_VFP
165 vfp_attach();
166 #endif
167 }
168
169 enum cpu_class {
170 CPU_CLASS_NONE,
171 CPU_CLASS_ARM2,
172 CPU_CLASS_ARM2AS,
173 CPU_CLASS_ARM3,
174 CPU_CLASS_ARM6,
175 CPU_CLASS_ARM7,
176 CPU_CLASS_ARM7TDMI,
177 CPU_CLASS_ARM8,
178 CPU_CLASS_ARM9TDMI,
179 CPU_CLASS_ARM9ES,
180 CPU_CLASS_ARM9EJS,
181 CPU_CLASS_ARM10E,
182 CPU_CLASS_ARM10EJ,
183 CPU_CLASS_SA1,
184 CPU_CLASS_XSCALE,
185 CPU_CLASS_ARM11J,
186 CPU_CLASS_ARMV4,
187 CPU_CLASS_CORTEX,
188 };
189
190 static const char * const generic_steppings[16] = {
191 "rev 0", "rev 1", "rev 2", "rev 3",
192 "rev 4", "rev 5", "rev 6", "rev 7",
193 "rev 8", "rev 9", "rev 10", "rev 11",
194 "rev 12", "rev 13", "rev 14", "rev 15",
195 };
196
197 static const char * const pN_steppings[16] = {
198 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
199 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
200 };
201
202 static const char * const sa110_steppings[16] = {
203 "rev 0", "step J", "step K", "step S",
204 "step T", "rev 5", "rev 6", "rev 7",
205 "rev 8", "rev 9", "rev 10", "rev 11",
206 "rev 12", "rev 13", "rev 14", "rev 15",
207 };
208
209 static const char * const sa1100_steppings[16] = {
210 "rev 0", "step B", "step C", "rev 3",
211 "rev 4", "rev 5", "rev 6", "rev 7",
212 "step D", "step E", "rev 10" "step G",
213 "rev 12", "rev 13", "rev 14", "rev 15",
214 };
215
216 static const char * const sa1110_steppings[16] = {
217 "step A-0", "rev 1", "rev 2", "rev 3",
218 "step B-0", "step B-1", "step B-2", "step B-3",
219 "step B-4", "step B-5", "rev 10", "rev 11",
220 "rev 12", "rev 13", "rev 14", "rev 15",
221 };
222
223 static const char * const ixp12x0_steppings[16] = {
224 "(IXP1200 step A)", "(IXP1200 step B)",
225 "rev 2", "(IXP1200 step C)",
226 "(IXP1200 step D)", "(IXP1240/1250 step A)",
227 "(IXP1240 step B)", "(IXP1250 step B)",
228 "rev 8", "rev 9", "rev 10", "rev 11",
229 "rev 12", "rev 13", "rev 14", "rev 15",
230 };
231
232 static const char * const xscale_steppings[16] = {
233 "step A-0", "step A-1", "step B-0", "step C-0",
234 "step D-0", "rev 5", "rev 6", "rev 7",
235 "rev 8", "rev 9", "rev 10", "rev 11",
236 "rev 12", "rev 13", "rev 14", "rev 15",
237 };
238
239 static const char * const i80321_steppings[16] = {
240 "step A-0", "step B-0", "rev 2", "rev 3",
241 "rev 4", "rev 5", "rev 6", "rev 7",
242 "rev 8", "rev 9", "rev 10", "rev 11",
243 "rev 12", "rev 13", "rev 14", "rev 15",
244 };
245
246 static const char * const i80219_steppings[16] = {
247 "step A-0", "rev 1", "rev 2", "rev 3",
248 "rev 4", "rev 5", "rev 6", "rev 7",
249 "rev 8", "rev 9", "rev 10", "rev 11",
250 "rev 12", "rev 13", "rev 14", "rev 15",
251 };
252
253 /* Steppings for PXA2[15]0 */
254 static const char * const pxa2x0_steppings[16] = {
255 "step A-0", "step A-1", "step B-0", "step B-1",
256 "step B-2", "step C-0", "rev 6", "rev 7",
257 "rev 8", "rev 9", "rev 10", "rev 11",
258 "rev 12", "rev 13", "rev 14", "rev 15",
259 };
260
261 /* Steppings for PXA255/26x.
262 * rev 5: PXA26x B0, rev 6: PXA255 A0
263 */
264 static const char * const pxa255_steppings[16] = {
265 "rev 0", "rev 1", "rev 2", "step A-0",
266 "rev 4", "step B-0", "step A-0", "rev 7",
267 "rev 8", "rev 9", "rev 10", "rev 11",
268 "rev 12", "rev 13", "rev 14", "rev 15",
269 };
270
271 /* Stepping for PXA27x */
272 static const char * const pxa27x_steppings[16] = {
273 "step A-0", "step A-1", "step B-0", "step B-1",
274 "step C-0", "rev 5", "rev 6", "rev 7",
275 "rev 8", "rev 9", "rev 10", "rev 11",
276 "rev 12", "rev 13", "rev 14", "rev 15",
277 };
278
279 static const char * const ixp425_steppings[16] = {
280 "step 0", "rev 1", "rev 2", "rev 3",
281 "rev 4", "rev 5", "rev 6", "rev 7",
282 "rev 8", "rev 9", "rev 10", "rev 11",
283 "rev 12", "rev 13", "rev 14", "rev 15",
284 };
285
286 struct cpuidtab {
287 u_int32_t cpuid;
288 enum cpu_class cpu_class;
289 const char *cpu_classname;
290 const char * const *cpu_steppings;
291 };
292
293 const struct cpuidtab cpuids[] = {
294 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2",
295 generic_steppings },
296 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250",
297 generic_steppings },
298
299 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3",
300 generic_steppings },
301
302 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600",
303 generic_steppings },
304 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610",
305 generic_steppings },
306 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620",
307 generic_steppings },
308
309 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700",
310 generic_steppings },
311 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710",
312 generic_steppings },
313 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500",
314 generic_steppings },
315 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a",
316 generic_steppings },
317 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE",
318 generic_steppings },
319 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T",
320 generic_steppings },
321 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T",
322 generic_steppings },
323 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
324 generic_steppings },
325 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
326 generic_steppings },
327
328 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810",
329 generic_steppings },
330
331 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T",
332 generic_steppings },
333 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T",
334 generic_steppings },
335 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S",
336 generic_steppings },
337 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T",
338 generic_steppings },
339 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S",
340 generic_steppings },
341 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S",
342 generic_steppings },
343 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S",
344 generic_steppings },
345 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T",
346 generic_steppings },
347 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131",
348 generic_steppings },
349 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd",
350 generic_steppings },
351
352 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E",
353 generic_steppings },
354 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S",
355 generic_steppings },
356 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S",
357 generic_steppings },
358
359 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110",
360 sa110_steppings },
361 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100",
362 sa1100_steppings },
363 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110",
364 sa1110_steppings },
365
366 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200",
367 ixp12x0_steppings },
368
369 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200",
370 xscale_steppings },
371
372 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz",
373 i80321_steppings },
374 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz",
375 i80321_steppings },
376 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz",
377 i80321_steppings },
378 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz",
379 i80321_steppings },
380
381 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz",
382 i80219_steppings },
383 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz",
384 i80219_steppings },
385
386 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x",
387 pxa27x_steppings },
388 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250",
389 pxa2x0_steppings },
390 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210",
391 pxa2x0_steppings },
392 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250",
393 pxa2x0_steppings },
394 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210",
395 pxa2x0_steppings },
396 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x",
397 pxa255_steppings },
398 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210",
399 pxa2x0_steppings },
400
401 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz",
402 ixp425_steppings },
403 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz",
404 ixp425_steppings },
405 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz",
406 ixp425_steppings },
407
408 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0",
409 pN_steppings },
410 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1",
411 pN_steppings },
412 { CPU_ID_ARM1176JS, CPU_CLASS_ARM11J, "ARM1176J-S r0",
413 pN_steppings },
414
415 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore",
416 generic_steppings },
417
418 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1",
419 pN_steppings },
420 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2",
421 pN_steppings },
422 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3",
423 pN_steppings },
424 { CPU_ID_CORTEXA9R1, CPU_CLASS_CORTEX, "Cortex-A9 r1",
425 pN_steppings },
426 { CPU_ID_CORTEXA8R3, CPU_CLASS_ARM11J, "Cortex-A8 r3",
427 pN_steppings },
428
429 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526",
430 generic_steppings },
431
432 { 0, CPU_CLASS_NONE, NULL, NULL }
433 };
434
435 struct cpu_classtab {
436 const char *class_name;
437 const char *class_option;
438 };
439
440 const struct cpu_classtab cpu_classes[] = {
441 [CPU_CLASS_NONE] = { "unknown", NULL },
442 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" },
443 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" },
444 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" },
445 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" },
446 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" },
447 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" },
448 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" },
449 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL },
450 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" },
451 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" },
452 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" },
453 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" },
454 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" },
455 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." },
456 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" },
457 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" },
458 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" },
459 };
460
461 /*
462 * Report the type of the specified arm processor. This uses the generic and
463 * arm specific information in the CPU structure to identify the processor.
464 * The remaining fields in the CPU structure are filled in appropriately.
465 */
466
467 static const char * const wtnames[] = {
468 "write-through",
469 "write-back",
470 "write-back",
471 "**unknown 3**",
472 "**unknown 4**",
473 "write-back-locking", /* XXX XScale-specific? */
474 "write-back-locking-A",
475 "write-back-locking-B",
476 "**unknown 8**",
477 "**unknown 9**",
478 "**unknown 10**",
479 "**unknown 11**",
480 "**unknown 12**",
481 "**unknown 13**",
482 "write-back-locking-C",
483 "**unknown 15**",
484 };
485
486 void
487 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
488 {
489 u_int cpuid;
490 enum cpu_class cpu_class = CPU_CLASS_NONE;
491 int i;
492 const char *steppingstr;
493
494 cpuid = ci->ci_arm_cpuid;
495
496 if (cpuid == 0) {
497 aprint_error("Processor failed probe - no CPU ID\n");
498 return;
499 }
500
501 for (i = 0; cpuids[i].cpuid != 0; i++)
502 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
503 cpu_class = cpuids[i].cpu_class;
504 steppingstr = cpuids[i].cpu_steppings[cpuid &
505 CPU_ID_REVISION_MASK],
506 sprintf(cpu_model, "%s%s%s (%s core)",
507 cpuids[i].cpu_classname,
508 steppingstr[0] == '*' ? "" : " ",
509 &steppingstr[steppingstr[0] == '*'],
510 cpu_classes[cpu_class].class_name);
511 break;
512 }
513
514 if (cpuids[i].cpuid == 0)
515 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
516
517 aprint_naive(": %s\n", cpu_model);
518 aprint_normal(": %s\n", cpu_model);
519
520 aprint_normal("%s:", dv->dv_xname);
521
522 switch (cpu_class) {
523 case CPU_CLASS_ARM6:
524 case CPU_CLASS_ARM7:
525 case CPU_CLASS_ARM7TDMI:
526 case CPU_CLASS_ARM8:
527 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
528 aprint_normal(" IDC disabled");
529 else
530 aprint_normal(" IDC enabled");
531 break;
532 case CPU_CLASS_ARM9TDMI:
533 case CPU_CLASS_ARM9ES:
534 case CPU_CLASS_ARM9EJS:
535 case CPU_CLASS_ARM10E:
536 case CPU_CLASS_ARM10EJ:
537 case CPU_CLASS_SA1:
538 case CPU_CLASS_XSCALE:
539 case CPU_CLASS_ARM11J:
540 case CPU_CLASS_ARMV4:
541 case CPU_CLASS_CORTEX:
542 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
543 aprint_normal(" DC disabled");
544 else
545 aprint_normal(" DC enabled");
546 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
547 aprint_normal(" IC disabled");
548 else
549 aprint_normal(" IC enabled");
550 break;
551 default:
552 break;
553 }
554 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
555 aprint_normal(" WB disabled");
556 else
557 aprint_normal(" WB enabled");
558
559 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
560 aprint_normal(" LABT");
561 else
562 aprint_normal(" EABT");
563
564 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
565 aprint_normal(" branch prediction enabled");
566
567 aprint_normal("\n");
568
569 /* Print cache info. */
570 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
571 goto skip_pcache;
572
573 if (arm_pcache_unified) {
574 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
575 dv->dv_xname, arm_pdcache_size / 1024,
576 arm_pdcache_line_size, arm_pdcache_ways,
577 wtnames[arm_pcache_type]);
578 } else {
579 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
580 dv->dv_xname, arm_picache_size / 1024,
581 arm_picache_line_size, arm_picache_ways);
582 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
583 dv->dv_xname, arm_pdcache_size / 1024,
584 arm_pdcache_line_size, arm_pdcache_ways,
585 wtnames[arm_pcache_type]);
586 }
587
588 skip_pcache:
589
590 switch (cpu_class) {
591 #ifdef CPU_ARM2
592 case CPU_CLASS_ARM2:
593 #endif
594 #ifdef CPU_ARM250
595 case CPU_CLASS_ARM2AS:
596 #endif
597 #ifdef CPU_ARM3
598 case CPU_CLASS_ARM3:
599 #endif
600 #ifdef CPU_ARM6
601 case CPU_CLASS_ARM6:
602 #endif
603 #ifdef CPU_ARM7
604 case CPU_CLASS_ARM7:
605 #endif
606 #ifdef CPU_ARM7TDMI
607 case CPU_CLASS_ARM7TDMI:
608 #endif
609 #ifdef CPU_ARM8
610 case CPU_CLASS_ARM8:
611 #endif
612 #ifdef CPU_ARM9
613 case CPU_CLASS_ARM9TDMI:
614 #endif
615 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
616 case CPU_CLASS_ARM9ES:
617 case CPU_CLASS_ARM9EJS:
618 #endif
619 #ifdef CPU_ARM10
620 case CPU_CLASS_ARM10E:
621 case CPU_CLASS_ARM10EJ:
622 #endif
623 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
624 defined(CPU_SA1110) || defined(CPU_IXP12X0)
625 case CPU_CLASS_SA1:
626 #endif
627 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
628 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
629 case CPU_CLASS_XSCALE:
630 #endif
631 #if defined(CPU_ARM11)
632 case CPU_CLASS_ARM11J:
633 #endif
634 #if defined(CPU_CORTEX)
635 case CPU_CLASS_CORTEX:
636 #endif
637 #if defined(CPU_FA526)
638 case CPU_CLASS_ARMV4:
639 #endif
640 break;
641 default:
642 if (cpu_classes[cpu_class].class_option == NULL)
643 aprint_error("%s: %s does not fully support this CPU."
644 "\n", dv->dv_xname, ostype);
645 else {
646 aprint_error("%s: This kernel does not fully support "
647 "this CPU.\n", dv->dv_xname);
648 aprint_normal("%s: Recompile with \"options %s\" to "
649 "correct this.\n", dv->dv_xname,
650 cpu_classes[cpu_class].class_option);
651 }
652 break;
653 }
654
655 }
656
657 /* End of cpu.c */
658